OBCIĄŻENIA TERMICZNE W ZESPOLONYCH DŹWIGARACH MOSTOWYCH THERMAL LOADS IN BRIDGE COMPOSITE STRUCTURES

Podobne dokumenty
PRZEZNACZENIE I OPIS PROGRAMU

ANALIZA BELKI DREWNIANEJ W POŻARZE

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

DWUTEOWA BELKA STALOWA W POŻARZE - ANALIZA PRZESTRZENNA PROGRAMAMI FDS ORAZ ANSYS

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN

PROJEKT NOWEGO MOSTU LECHA W POZNANIU O TZW. PODWÓJNIE ZESPOLONEJ, STALOWO-BETONOWEJ KONSTRUKCJI PRZĘSEŁ

Mosty Metalowe I P1 wprowadzenie

OCENA WPŁYWU SKURCZU BETONU NA WARTOŚCI NAPRĘŻEŃ W PŁASZCZYŹNIE ZESPOLENIA DŻWIGARÓW Z PŁYTĄ DWUWARSTWOWĄ

DIF SEK. Część 2 Odpowiedź termiczna

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

BUDOWNICTWO I KONSTRUKCJE INŻYNIERSKIE. dr inż. Monika Siewczyńska

Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi. 14 czerwca 2011 r.

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

ANALIZA NUMERYCZNA SEGMENTU STALOWO-BETONOWEGO DŹWIGARA MOSTOWEGO OBCIĄŻONEGO CIĘŻAREM WŁASNYM

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH

Tasowanie norm suplement

Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt zespolonych z pełnymi i ażurowymi belkami stalowymi Waloryzacja

Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt zespolonych z pełnymi i ażurowymi belkami stalowymi Waloryzacja

Badania zespolonych słupów stalowo-betonowych poddanych długotrwałym obciążeniom

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

Spis treści STEEL STRUCTURE DESIGNERS... 4

KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG

WERYFIKACJA DOŚWIADCZALNA WIELKOŚCI SIŁY RYSUJĄCEJ PAS DOLNY DŹWIGARÓW PRZEPON KBOS-18 1

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ

(19) PL (11) (13) B1 (12) OPIS PATENTOWY PL B1

Politechnika Poznańska. Zakład Mechaniki Technicznej

PL B1. Instytut Badawczy Dróg i Mostów, Warszawa,PL BUP 26/03

OPIS TECHNICZNY. 1. Dane ogólne Podstawa opracowania.

Politechnika Poznańska. Metoda Elementów Skończonych

Optymalizacja konstrukcji wymiennika ciepła

ZAJĘCIA 3 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY

Analiza wpływu przypadków obciążenia śniegiem na nośność dachów płaskich z attykami

Zestaw pytań z konstrukcji i mechaniki

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)

Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi. 14 czerwca 2011 r.

Projekt belki zespolonej

WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU WYMIANY CIEPŁA W PRZEGRODZIE BUDOWLANEJ WYKONANEJ Z PUSTAKÓW STYROPIANOWYCH

Widok ogólny podział na elementy skończone

METODA ELEMENTÓW SKOŃCZONYCH

Funkcja Tytuł, Imię i Nazwisko Specjalność Nr Uprawnień Podpis Data. kontr. bud bez ograniczeń

KARTA MODUŁU KSZTAŁCENIA

OBLICZENIOWA OCENA NOŚNOŚCI ELEMENTÓW KONSTRUKCJI ZESPOLONYCH STALOWO-BETONOWYCH W WARUNKACH OBCIĄŻEŃ POŻAROWYCH W UJĘCIU PN - EN :2008

Analiza statyczno-wytrzymałościowa mostu podwieszonego przez rzekę Wisłok w Rzeszowie

Hale o konstrukcji słupowo-ryglowej

BADANIA WPŁYWU PODATNOŚCI PODPÓR NA NOŚNOŚĆ SPRĘŻONYCH PŁYT KANAŁOWYCH

PRZEDMOWA WIADOMOŚCI WSTĘPNE ROZWÓJ MOSTÓW DREWNIANYCH W DZIEJACH LUDZKOŚCI 13

Wewnętrzny stan bryły

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych

Numeryczna i doświadczalna analiza naprężeń w kołowych perforowanych płytach swobodnie podpartych obciążonych centralnie siłą skupioną

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H

Instytut Inżynierii Lądowej. Rysunki koncepcyjne Podstawy Mostownictwa materiały edukacyjne

Wstępne obliczenia statyczne dźwigara głównego

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET

PaleZbrojenie 5.0. Instrukcja użytkowania

2. Badania doświadczalne w zmiennych warunkach otoczenia

ANALIZA PORÓWNAWCZA NOŚNOŚCI POŁĄCZENIA ŚCINANEGO ZESPOLONEJ BELKI STALOWO-BETONOWEJ DLA DWÓCH WYBRANYCH TYPÓW ŁĄCZNIKÓW

NUMERYCZNA ANALIZA ZŁĄCZA PRZEGRODY ZEWNĘTRZNEJ WYKONANEJ W TECHNOLOGII SZKIELETOWEJ DREWNIANEJ I STALOWEJ

ZASADY OBLICZANIA NOŚNOŚCI RAM STALOWYCH W ZALEŻNOŚCI OD SCENARIUSZA POŻARU

KONSTRUKCJE BUDOWLANE I INŻYNIERSKIE

PROPOZYCJA METODY OKREŚLANIA IZOLACYJNOŚCI CIEPLNEJ OKNA PODWÓJNEGO. 1. Wprowadzenie

Schemat statyczny płyty: Rozpiętość obliczeniowa płyty l eff,x = 3,24 m Rozpiętość obliczeniowa płyty l eff,y = 5,34 m

1 - Znać podstawowe. części budowli. mostowych, - Wymienić warunki 1 położenia przestrzennego obiektu mostowego, - Znać podstawowe

BADANIA DYNAMICZNE OBIEKTÓW MOSTOWYCH NIEPODLEGAJĄCYCH OBCIĄŻENIOM PRÓBNYM W KONTEKŚCIE MONITORINGU STANU KONSTRUKCJI

Materiały pomocnicze

METODA ELEMENTÓW SKOŃCZONYCH

Materiały pomocnicze

EFEKT SHEAR LAG W PRZEKROJU SKRZYNKOWYM OBIEKTU MOSTOWEGO PODEJŚCIE TEORETYCZNE I WYNIKI POMIARÓW W SKALI RZECZYWISTEJ

Analiza porównawcza przemieszczeń ustroju prętowego z użyciem programów ADINA, Autodesk Robot oraz RFEM

ZŁOŻONE KONSTRUKCJE BETONOWE I DŹWIGAR KABLOBETONOWY

ZESPÓŁ BUDYNKÓW MIESZKLANYCH WIELORODZINNYCH E t a p I I i I I I b u d B i C

Analiza wzmocnienia stalowych belek stropowych poprzez ich zespolenie z płytą żelbetową

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

Defi f nicja n aprę r żeń

Metoda Elementów Skończonych

OBLICZENIOWE PORÓWNANIE SYSTEMÓW STROPOWYCH MUROTHERM I TERIVA NA PRZYKŁADZIE STROPU W BUDYNKU MIESZKALNYM O ROZPIĘTOŚCI 7,20 M

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020

Załącznik nr 3. Obliczenia konstrukcyjne

ANALIZA NUMERYCZNA ZMIANY GRUBOŚCI BLACHY WYTŁOCZKI PODCZAS PROCESU TŁOCZENIA

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne:

VFT PREFABRYKOWANE DŹWIGARY ZESPOLONE Z AKTYWNYM DESKOWANIEM BETONOWYM

Modelowanie komputerowe konstrukcji w budownictwie transportowym

Dr inż. Wiesław Zamorowski, mgr inż. Grzegorz Gremza, Politechnika Śląska

IV WARMIŃSKO-MAZURSKIE FORUM DROGOWE

Q r POZ.9. ŁAWY FUNDAMENTOWE

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

OBLICZENIE ZARYSOWANIA

Analiza fundamentu na mikropalach

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM

Numeryczna symulacja rozpływu płynu w węźle

ROZPLANOWANIE UKŁADU KONSTRUKCYJNEGO STROPU MIĘDZYKONDYGNACYJNEGO BUDYNKU PRZEMYSŁOWEGO PŁYTY STROPU

Politechnika Poznańska

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Transkrypt:

PIOTR MITKOWSKI OBCIĄŻENIA TERMICZNE W ZESPOLONYCH DŹWIGARACH MOSTOWYCH THERMAL LOADS IN BRIDGE COMPOSITE STRUCTURES Streszczenie Abstract W niniejszym artykule rozważany jest wpływ oddziaływań termicznych na konstrukcje zespolone, stalowo-betonowe. Głównym celem była weryfikacja i porównanie sił wewnętrznych powstających w konstrukcji na skutek obciążenia termicznego w klasycznej belce zespolonej i belce podwójnie zespolonej (płyta betonowa z góry i z dołu dźwigara stalowego). Obliczenia prowadzone były za pomocą oprogramowania wykorzystującego Metodę Elementów Skończonych. Słowa kluczowe: obciążenia termiczne, konstrukcje zespolone, konstrukcje stalowo-betonowe The paper covers topic of steel-concrete composite structures under thermal loads. Main issue is to verify and compare internal forces that occur In the structure as a result of temperature activity. Double composite beam (steel girder joined on the top and bottom with the reinforced concrete plates) in contrast to standard composite beam is considered. Calculations were carried out with computer programs utilizing Finite Element Method. Keywords: thermal loads, composite structures, steel-concrete structures Mgr inż. Piotr Mitkowski, doktorant, Wydział Inżynierii Lądowej, Politechnika Krakowska.

104 1. Wstęp W budownictwie komunikacyjnym w Polsce i na całym świecie od dziesiątków lat w konstrukcji mostów stosuje się dźwigary zespolone. Najczęściej przęsła stanowi stalowa belka oraz współpracująca z nią płyta żelbetowa (rys. 1). Zaletą tych konstrukcji jest współpraca dwóch materiałów, stali i betonu, w wyniku czego powstaje nowa jakościowo konstrukcja zespolona. W ostatnim czasie coraz częściej buduje się mosty w formie konstrukcji podwójnie zespolonych, o stalowych dźwigarach kratownicowych. Są to nowoczesne rozwiązania, które znajdują zastosowanie w światowym budownictwie (np. most przez Ren w Bazylei czy nowo powstały most nad Dunajcem w ciągu obwodnicy Starego Sącza). Rys. 1. Klasyczna konstrukcja zespolona Fig. 1. Classical composite structure Dźwigary stalowe wykonuje się najczęściej jako blachownicowe, a przy większych rozpiętościach również jako kratownicowe, a następnie zespala z nimi górną i dolną płytę pomostu. Płyty te mogą być żelbetowe lub sprężone. Drugie z podanych rozwiązań jest dobre ze względu na lepsze wykorzystanie własności wytrzymałościowych materiałów, w tym przypadku betonu i stali. W tego typu konstrukcjach nie można pominąć wpływu zjawisk termicznych. Czynniki takie jak sezonowe i dobowe zmiany temperatury otoczenia, promieniowanie czy konwekcja powodują zmiany temperatury w elementach konstrukcji mostów zespolonych. Zmiany występują w kierunku podłużnym i poprzecznym oraz na wysokości dźwigara zespolonego. Zagadnienie to było przedmiotem wielu prac w odniesieniu do konstrukcji pojedynczo zespolonych. W przypadku konstrukcji podwójnie zespolonych zagadnienia termiczne nie są jeszcze dostatecznie wyjaśnione. Wpływ zmian temperatury na stan odkształcenia i naprężenia zależy od rozkładu temperatury w konstrukcji mostowej. Rysunek 2 przedstawia poglądowy rozkład temperatury w dźwigarze zespolonym na jego wysokości oraz jego podział na łatwiejsze do obliczania części składowe. Rysunki 1 i 3 pokazują klasyczną i podwójnie zespoloną konstrukcję przęsła mostowego.

a) b) c) 105 Rys. 2. Schematyczny rozkład temperatury w dźwigarze zespolonym wywołany: a) równomiernym działaniem temperatury, b) różnicą temperatury na wysokości przekroju, c) zjawiskami reologicznymi [2] Fig. 2. Schematic temperature distribution for composite beam caused by: a) steady temperature, b) temperature difference on the height of cross section, c) rheological phenomena Rys. 3. Konstrukcja podwójnie zespolona most,,dreirosen Fig. 3. Double composite structure Dreirosen bridge W artykule przedstawiono analizę wpływu zmiany temperatury w dźwigarach zespolonych pojedynczo i podwójnie. Rozpatrywano różne sytuacje obliczeniowe związane z geometrią analizowanych dźwigarów oraz rozkładem temperatury. 2. Siły wewnętrzne i naprężenia od wpływów termicznych W ustrojach belkowych jednakowa zmiana temperatury w płycie i belce stalowej nie wywołuje dodatkowych naprężeń, gdyż współczynniki rozszerzalności liniowej betonu i stali są prawie równe. Jednak na skutek dużej różnicy w przewodnictwie cieplnym betonu i stali występują między tymi elementami różnice temperatur dochodzące nawet do 10 15 C.

106 Zgodnie z [1] na rysunku 4 przedstawiono rozkłady temperatur na wysokości dźwigara zespolonego, przyjmowane w normach niektórych krajów. Rozkład przedstawiony na rysunku 4b jest powszechnie stosowany w Polsce. a) b) c) d) Rys. 4. Rozkłady temperatury przyjmowane w niektórych krajach [1] Fig. 4. Temperature distributions used in some countries Według [4] rozkład temperatury należy przyjmować zgodnie z rysunku 5. a) b) c) Rys. 5. Rozkłady różnic temperatury na wysokości przekroju zespolonego [4] Fig. 5. Temperature difference distributions on the height of cross section Na skutek działania obciążeń termicznych w konstrukcji powstają siły wewnętrzne. Rysunek 6 przedstawia schematycznie te siły. Zwroty sił na rysunku przedstawiają oziębienie płyty względem belki stalowej, w przypadku ogrzania należy przyjąć przeciwny znak. Siły wewnątrz konstrukcji powodują powstanie naprężeń i odkształceń w rozpatrywanym przekroju. Rozkłady odkształceń i naprężeń termicznych w konstrukcji zespolonej przedstawia rysunek 7.

a) 107 b) Rys. 6. Schemat do obliczania sił wewnętrznych w belce zespolonej, wywołanych zmianami temperatury [4] Fig. 6. Internal forces scheme for composite beam, caused by temperature differences a) b) Rys. 7. Rozkład odkształceń i naprężeń w belce zespolonej [4] Fig. 7. Strains and Stress distribution in the composite beam

108 3. Założenia wyjściowe 3.1. Modele geometryczne i dane materiałowe Rozważane są dwa modele: dla belki zespolonej z płytą betonową u góry, oraz dla belki zespolonej z płytami betonowymi z góry i z dołu. W tabeli 1 podano przyjęte charakterystyki materiałowe dla stali i betonu. Przyjęte charakterystyki materiałowe Tabela 1 Przewodność cieplna [W/m K] Moduł Younga [Pa] Beton Stal 1.7 60.5 2.90E+10 2.00E+11 Współczynnik Poissona 0.2 0.3 Współczynnik rozszerzalności cieplnej [1/K] 1.10E-05 1.20E-05 Rysunki 8 i 9 przedstawiają geometrię badanych belek. Rys. 8. Geometria belki pojedynczo zespolonej [m] Fig. 8. Composite beam geometry Rys. 9. Geometria belki podwójnie zespolonej [m] Fig. 9. Double composite beam geometry

3.2. Obciążenia Obciążenie zadane jest przez ogrzanie belki stalowej w stosunku do płyty (płyt) żelbetowej temperaturą 30 C. Przyjęto stały rozkład temperatur na wysokości belki. Belki te są sztywno połączone z płytą (płytami) żelbetową. 109 Rys. 10. Belka pojedynczo zespolona Fig. 10. Composite beam Rys. 11. Belka podwójnie zespolona Fig. 11. Double composite beam 3.3. Obliczenia Obliczenia wykonano za pomocą programu ANSYS 10. Program obliczeniowy wykorzystuje Metodę Elementów Skończonych. 4. Wyniki analizy Poniżej na wykresach i rysunkach przedstawiono wyniki przeprowadzonych symulacji. 4.1. Naprężenia Rys. 12. Mapa naprężeń termicznych dla belki pojedynczo zespolonej Fig. 12. Thermal stress map for composite beam Rys. 13. Rozkład naprężeń na wysokości belki pojedynczo zespolonej Fig. 13. Stress distribution on the height of composite beam

110 BELKA POJEDYNCZO ZESPOLONA BELKA ZESPOLONA 1000000 370000 900000 800000 878496 360000 359278 Naprężenia 700000 600000 500000 400000 300000 439248 658872 324876 433172 gs ds. Naprężenia 350000 340000 330000 320000 350058 324879 200000 219624 216586 310000 100000 0 108293 3.63E-16 7.27E-16 1.10E-15 1.45E-15 10 20 30 40 Temperatura [ o C] 300000 0.2 0.25 0.3 Wysokość płyty górnej [m] (Stała wysokość płyty dolnej h=0.3m) Rys. 14. Naprężenia na wysokości belki pojedynczo zespolonej w zależności od temperatury Fig. 14. Stress at the height of composite beam depanding on temperature Rys. 15. Naprężenia na górnej krawędzi belki pojejedynczo zespolonej w zależności od wysokości płyty betonowej, przy stałej temperaturze Fig. 15. Stress at the top edge of the composite beam depanding on the slab height Rys. 16. Mapa naprężeń termicznych dla belki podwójnie zespolonej Fig. 16. Thermal stress map for double composite beam Rys. 17. Rozkład naprężeń na wysokości belki podwójnie zespolonej Fig. 17. Stress distribution at the height of double composite beam BELKA PODWÓJNIE ZESPOLONA BELKA PODWÓJNIE ZESPOLONA 1000000 370000 900000 800000 878496 360000 359278 Naprężenia 700000 600000 500000 400000 300000 439248 658872 324879 433172 gs ds. db Naprężenia 350000 340000 330000 320000 350058 324879 200000 219624 216586 310000 100000 0 108293 10 20 30 40 Temperatura [ o C] 300000 0.2 0.25 0.3 Wysokość płyty górnej [m] (Stała wysokość płyty dolnej h=0.3m) Rys. 18. Naprężenia na wysokość belki podwójnie zespolonej w zależności od temperatury Fig. 18. Stress at the height of double composite beam depanding on temperature Rys. 19. Naprężenia na górnej krawędzi belki podwójnie zespolonej w zależności od wysokości płyty górnej, przy stałej temperaturze Fig. 19. Stress at the top edge of double composite beam depanding on the top slab height with constant temperature

111 Rys. 20. Mapa odkształceń. Belka pojedynczo zespolona Fig. 20. Strain map. Composite beam BELKA POJEDYNCZO ZESPOLONA Rys. 21. Rozkład odkształceń na wysokości belki pojedynczo zespolonej Fig. 21. Strain distribution at the height of the composite beam BELKA ZESPOLONA 3.50E-05 1.26E-05 Odkształcenia 3.00E-05 2.50E-05 2.00E-05 1.50E-05 1.00E-05 7.57E-06 1.51E-05 7.47E-06 2.27E-05 3.03E-05 1.49E-05 gs ds. Odkształcenia 1.24E-05 1.22E-05 1.20E-05 1.18E-05 1.16E-05 1.14E-05 1.10E-05 1.24E-05 1.21E-05 5.00E-06 0.00E+00 3.73E-06 3.63E-16 7.27E-16 1.10E-15 1.45E-15 10 20 30 40 Temperatura [ o C] 1.08E-05 1.06E-05 0.2 0.25 0.3 Wysokość płyty górnej [m] (Stała wysokość płyty dolnej h=0.3m) Rys. 22. Odkształcenia na wysokości belki pojedynczo zespolonej w zależności od temperatury Fig. 22. Strain at the height of the composite beam depanding on the temperature Rys. 23. Odkształcenia na górnej krawędzi belki pojedynczo zespolonej w zależności od wysokości płyty betonowej, przy stałej stałej temperaturze Fig. 23. Strain at the top edge of composite beam depanding on the height of concrete slab with constant temperature Rys. 24. Mapa odkształceń. Belka podwójnie zespolona Fig. 24. Strain map. Double composite beam Rys. 25. Rozkład odkształceń na wysokości belki podwójnie zespolonej Fig. 25. Strain distribution at the height of double composite beam

112 BELKA PODWÓJNIE ZESPOLONA BELKA PODWÓJNIE ZESPOLONA 3.50E-05 1.26E-05 Odkształcenia 3.00E-05 2.50E-05 2.00E-05 1.50E-05 1.00E-05 7.57E-06 1.51E-05 7.47E-06 2.27E-05 3.03E-05 1.49E-05 gs ds. db Odkształcenia 1.24E-05 1.22E-05 1.20E-05 1.18E-05 1.16E-05 1.14E-05 1.10E-05 1.24E-05 1.21E-05 5.00E-06 0.00E+00 3.73E-06 10 20 30 40 Temperatura [ o C] 1.08E-05 1.06E-05 0.2 0.25 0.3 Wysokość płyty górnej [m] (Stała wysokość płyty dolnej h=0.3m) Rys. 26. Odkształcenia na wysokości belki podwójnie zespolonej w zależności od temperatury Fig. 26. Strain at the height of double composite beam depanding on temperature Rys. 27. Odkształcenia na górnej krawędzi belki podwójnie zespolonej w zależności od wysokości płyty betonowej, przy stałej stałej temperaturze Fig. 27. Strain at the top edge of the double composite beam depanding on the slab height 4. Wnioski W artykule przedstawiono wyniki analizy wpływu rozwiązania geometrycznego dźwigara zespolonego na stan naprężenia i odkształcenia od zmian termicznych, ze szczególnym uwzględnieniem dźwigarów podwójnie zespolonych. Dla porównania analizowano również klasyczny przekrój pojedynczo zespolony. Wyniki analizy wykazują, że dodatkowa płyta dolna w niewielkim stopniu wpływa na wartość naprężeń i odkształceń termicznych w dźwigarze zespolonym. Większy wpływ mają relacje wymiarów (tym samym pola przekrojów poprzecznych) belki stalowej i płyt żelbetowych. Czym większe są wymiary płyt, tym mniejsze wartości odkształceń i naprężeń. Literatura [1] Karlikowski J., Naprężenia normalne przy różnych rozkładach temperatury na wysokości dźwigara zespolonego, Konferencja Naukowo-Techniczna Mosty zespolone, Kraków, 7 9.05.1998. [2] F u r t a k K., Mosty zespolone, PWN, Warszawa, Kraków 1999. [3] M a d a j A., W o ł owicki W., Mosty betonowe, WKŁ, Warszawa 2002. [4] Karlikowski J., Madaj A., Woł owicki W., Mostowe konstrukcje zespolone stalowo-betonowe, WKŁ, Warszawa 2007. [5] Zobel H., Naturalne zjawiska termiczne w mostach, WKŁ, Warszawa 2003. [6] Flaga K., Furtak K., Rozwiązanie konstrukcyjne i technologiczne nowoczesnego podwójnie zespolonego mostu przez Ren w Bazylei, Inżynieria i Budownictwo, nr 1/2007. [7] Koreleski J., Zespolone konstrukcje mostowe, PWN, Warszawa 1967. [8] PN-S-10030:1985, Obiekty mostowe obciążenia.

113 [9] Mitkowski P., The impact of thermal effects on steel concrete, truss composite structures, 5 th International conference Concrete And Concrete Structures, Zilina, Slovakia, October 15 16, 2009, University of Zilina, Faculty of Civil Engineering. [10] Mitkowski P., Double Composite Bridge Girders Under Thermal Loads, ECCM 2010 IV European Conference on Computational Mechanics, Palais des Congres, Paris, France, May 16 21, 2010.