PRZYRZĄD WIRTUALNY DO POMIARU KĄTA PRZESUNIĘCIA FAZOWEGO

Podobne dokumenty
PHASE SHIFTER IN QUASI-BALANCED CIRCUITS WITH DETUNING

ANALIZA WŁAŚCIWOŚCI PRZESUWNIKÓW FAZOWYCH W UKŁADACH QUASI-ZRÓWNOWAŻONYCH

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

CYFROWE PRZETWARZANIE SYGNAŁÓW

Zarządzanie sieciami telekomunikacyjnymi

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Krytyczne czynniki sukcesu w zarządzaniu projektami

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

PRZYRZĄD WIRTUALNY DO WYZNACZANIA RÓŻNICY FAZ DWÓCH SYGNAŁÓW NAPIĘCIOWYCH

APARATURA POMIAROWA SERII V MEASURING INSTRUMENTS V-SERIES

Selection of controller parameters Strojenie regulatorów

Installation of EuroCert software for qualified electronic signature

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

WOLTOMIERZA PRÓBKUJĄCY Z ANALIZĄ HARMONICZNYCH W ŚRODOWISKU LabVIEW

Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.

Rev Źródło:

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Tychy, plan miasta: Skala 1: (Polish Edition)

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader

Knovel Math: Jakość produktu

KOMPARACYJNY MIERNIK REZYSTANCJI IZOLACJI

5.3 Frequency contents

Helena Boguta, klasa 8W, rok szkolny 2018/2019

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS 393 V LOVOS-10/280

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Medical electronics part 10 Physiological transducers

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA


Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

USAGE OF SHORT TIME FOURIER TRANSFORM IN IDENTIFICATION OF VEHICLE SHOCK ABSORBER TECHNICAL CONDITIONS RESEARCHED BY FORCE VIBRATION METHOD

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej. Laboratorium cyfrowej techniki pomiarowej. Ćwiczenie 3

Patients price acceptance SELECTED FINDINGS

OSI Physical Layer. Network Fundamentals Chapter 8. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 5(109)/2016

Has the heat wave frequency or intensity changed in Poland since 1950?

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

XIII International PhD Workshop OWD 2011, October Study of small signal transmittances BOOST converter

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ

TACHOGRAPH SIMULATOR DTCOSIM

Rev Źródło:

Instrukcja obsługi User s manual

PRACA DYPLOMOWA Magisterska

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

STATISTICAL METHODS IN BIOLOGY


Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

Planning and Cabling Networks

BADANIA WYBRANYCH CZUJNIKÓW TEMPERATURY WSPÓŁPRACUJĄCYCH Z KARTAMI POMIAROWYMI W LabVIEW

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

The Overview of Civilian Applications of Airborne SAR Systems

Przetworniki. Przetworniki / Transducers. Transducers. Przetworniki z serii PNT KON PNT CON Series Transducers

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

Załącznik nr 1 część IX - sprzęt pomiarowy. Formularz cenowy. Opis przedmiotu zamówienia. Wartość brutto. Wartość netto.

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

SNP SNP Business Partner Data Checker. Prezentacja produktu

Revenue Maximization. Sept. 25, 2018

KOMPUTEROWE STANOWISKO LABORATORYJNE DO BADANIA PARAMETRÓW WZMACNIACZY

Ćw. 12. Akwizycja sygnałów w komputerowych systemach pomiarowych ( NI DAQPad-6015 )

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

ZWROTNICOWY ROZJAZD.

Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is

FEEDBACK CONTROL OF ACOUSTIC NOISE AT DESIRED LOCATIONS

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

ANALIZA PORÓWNAWCZA METOD POMIARU IMPEDANCJI PĘTLI ZWARCIOWEJ PRZY ZASTOSOWANIU PRZETWORNIKÓW ANALOGOWYCH

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Sargent Opens Sonairte Farmers' Market

PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

RADIO DISTURBANCE Zakłócenia radioelektryczne

U3000/U3100 Mini (Dla Komputera Eee na systemie operacyjnym Linux) Krótka Instrukcja


User s manual for icarwash

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

UNIWERSALNY ELEKTRONICZNY PULPIT NASTAWCZY

Mostek niezrównoważony do dokładnych pomiarów pojemności

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

Transkrypt:

ELEKTRYKA 2016 Zeszyt 2 (238) Rok LXII Sebastian BARWINEK Silesian University of Technology VIRTUAL PHASE SHIFT METER Summary: The paper presents the possibility of using virtual instrument for the phase shift measurement. The hardware is built on the basis of National Instrument data acquisition card and PC. The software is based on LabVIEW. The measurement results were compared with results obtained from simulation. Keywords: virtual instruments, measurement of the phase shift, discrete Fourier transform, LabVIEW PRZYRZĄD WIRTUALNY DO POMIARU KĄTA PRZESUNIĘCIA FAZOWEGO Streszczenie. W artykule przedstawiono możliwość zastosowania przyrządu wirtualnego do pomiaru kąta przesunięcia fazowego. Część sprzętowa zbudowanego przyrządu to karta pomiarowa firmy National Instruments oraz komputer PC. Część programowa powstała w oparciu o środowisko LabVIEW. Otrzymane wyniki pomiarów porównano z wynikami otrzymanymi z symulacji. Słowa kluczowe: przyrządy wirtualne, pomiar kąta przesunięcia fazowego, dyskretna transformata Fouriera, LabVIEW 1. INTRODUCTION Measurements of phase angle (phase shift angle) are commonly used in many engineering fields [8]. They are applied for instance in quasi-balanced systems with phase detection. These are ac circuits for measuring the immittance components, they may also be used for measuring dielectric loss factor tg δ and Q-factor of a coil [2], [5], [6]. A single phase angle is distinguished in phase detection, usually this is π/2 [4]. Detection of quasi-balanced state is one test component, which has a direct bearing on the final immittance measurement result. The use of virtual instruments (i.e. devices with software processing) has become universal due to increasing computational power of computers and microprocessors [2]. Such devices contain hardware and software parts. The hardware part is limited to an indispensable

70 S. Barwinek minimum, usually this is a data acquisition card. The principal part of the device is the software executing digital data processing. On the basis of available reference data [1], [7], [8] and conducted simulations [3], a discrete Fourier transform has been chosen as an algorithm for measuring phase shift angle. Fourier transform converts signals from time domain into frequency domain. It is universally used in digital data processing, among others for assessment of higher harmonics content [9]. It is also possible to calculate phase angle of measured signal. The investigated device uses a short-period Fourier transform; this is a transform computed on the basis of samples currently contained within the time window. The value of phase shift angle is calculated for time instant corresponding to middle of the window. Then the window is shifted by one sample. In this way phase shifts for successive time instants are obtained [8]. The application of this method for measuring real signals originating from two-channel generator (instead of simulation signals used before [3], [8], [9]) is presented in the paper. 2. MEASUREMENT SYSTEM The measurement system was composed of two basic parts: two-channel generator and virtual instrument (Fig.1, Fig.2). Function generator RIGOL DG1022 was used as sine wave generator. The resolution of phase angle setting advertised by the manufacturer is 0.1 ; however, during measurements it transpired that it only attained 1. This error in generator performance is probably due to error in internal software of the device (software version used 00.03.00.08.00.02.08). The manufacturer does not disclose precise parameters of phase angle settings or their stability in the device manual [12]. Fig. 1. Block diagram of the measuring system Rys. 1. Schemat blokowy układu pomiarowego The virtual instrument consists of two basic elements: - the hardware, - the software (Fig. 1). The hardware of virtual instrument utilizes a DAQ module USB-6251 of National Instruments. The module samples the investigated signals. This device is characterized by 16- bit sampling resolution, maximum speed 1.25 MS/s (1 MS/s when two channels are used simultaneously). A single A/D converter uses acquisition multiplexed between eight channels. This multiplexing introduces some delay in sample acquisition of different signals, which influences the phase angle measurement error [10], [11]. The algorithm of short-time discrete Fourier transform requires that investigated signals should be sampled at identical time

Virtual phase shift... 71 instants. Therefore in order to obtain more precise results synchronous sampling should be applied [7] [8]. To check the impact of time window shape on measurement results, a low pass filter was not used, since it would limit the signal spectrum (elimination of aliasing effect). During measurements the DAQ card was set for measurement range equal to ±1 V. Fig. 2. Measurement stand Rys. 2. Stanowisko pomiarowe LabVIEW environment was used for the software of virtual instrument. It is characterized by its easy management and possibility of introducing fast corrections into the program. The program code may be divided into three parts (Fig.3): - data acquisition block and communication with measurement card, - block using MATLAB software for estimation of phase shift angle, - block for visualising and archiving the results. Fig.3. Program code Rys.3. Kod programu

72 S. Barwinek Fig.4. Control panel Rys.4. Panel użytkownika User control panel (Fig.4) makes it possible to change parameters of measurement algorithm, to visualize investigated signals and measurement results. It is possible to record the obtained results on a disk, and this facilitates the subsequent analysis. 3. MEASUREMENT RESULTS Sine signals with amplitude of 1 V and phase shift of 90 (π/2) were used in measurements. This value of phase shift was chosen, since it is widely used in quasi-balanced systems with phase detection. During the tests impact of difference parameters on angle estimation was checked. When number of acquired samples is increased, the error of phase shift angle measurement decreases (averaging of a greater number of test data points) and difference in results for different time windows decreases also (Fig.6, Fig.7). By increasing amount of data, time spent in calculating measurement results rises, this is caused by increase in the number of mathematical operations.

Virtual phase shift... 73 Fig.5. Absolute error of phase shift measurement vs. number of signal samples Rys.5. Błąd bezwzględny pomiaru kąta przesunięcia fazowego w zależności od ilości próbek sygnału Fig.6. Absolute error of phase shift measurement vs. number of signal samples Rys.6. Błąd bezwzględny pomiaru kąta przesunięcia fazowego w zależności od ilości próbek sygnału In case when number of samples used is large and width of time window is badly (inappropriately) selected, results burdened with high errors are obtained (Fig.8). It is necessary to select proper width of the time window and sampling frequency for a given number of samples. A wide window does not necessarily yield lesser errors (Fig.7, Fig.9). Narrowing the window lengthens measurement time, since a greater number of iterations in angle measurement algorithm is needed.

74 S. Barwinek Fig. 7. Absolute error of phase shift measurement vs. width of the time window Rys. 7. Błąd bezwzględny pomiaru kąta przesunięcia fazowego w zależności od szerokości okna czasowego Fig. 8. Absolute error of phase shift measurement vs. width of the time window Rys. 8. Błąd bezwzględny pomiaru kąta przesunięcia fazowego w zależności od szerokości okna czasowego

Virtual phase shift... 75 Fig. 9. Absolute error of phase shift measurement vs. width of the time window Rys. 9. Błąd bezwzględny pomiaru kąta przesunięcia fazowego w zależności od szerokości okna czasowego Signal sampling frequency must be high enough in order to attain the smallest possible measurement error. When sampling frequency rises and number of data acquired remains constant, the measurement time is decreased. In some cases decreasing sampling frequency several times does not lead to significant error decrease; however, difference in error between diverse time windows decreases. In case of some time windows and lower sampling frequency, smaller errors were obtained (Fig.10). Fig. 10. Absolute error of phase shift measurement vs. sampling frequency Rys. 10. Błąd bezwzględny pomiaru kąta przesunięcia fazowego w zależności od częstotliwości próbkowania

76 S. Barwinek To eliminate spectral leakage, time windows of definite shapes are used in measurements [9]. Slight impact of time window type on measurement results may be due to the fact, that spectral leakage is not a significant error component and quality of signal generated by the device is more important (setting resolution of signal s phase angle). In order to compare results obtained with the help of virtual instrument signals were measured also with PFL-28A device. The result is 0.5274. In comparison to results obtained by simulation (Table 1), PFL-28A device and virtual instrument with time windows other than rectangular yield worse results. Results for rectangular time window are better than those obtained in simulation. The error values in simulation depend largely on type of time window. Type of time window Signals without interference Constant component in two signals Constant component in one signal Random disturbance Simulation results [3] Maximum absolute error Bartlett Blackman Chebyshev Hamming Hanning (1.1 10 ) 0.15 0.07 (1.1 10 ) -14 (5.0 10 ) (1.1 10 ) -3 (1.0 10 ) -3 (2.0 10 ) -3 (2.0 10 ) -2 (3.3 10 ) -2 (8.8 10 ) -2 (6.0 10 ) -4 (1.7 10 ) -3 (1.4 10 ) -4 (8.0 10 ) Kaiser β=100 Table 1 Rectangular (1.7 10 ) 0.2 (1.2 10 ) 0.6 (2.0 10 ) 0.4 3.1 4.1 4.2 3.8 3.0 7.7 2.7 4. CONCLUSIONS The applied algorithm should make it possible to conduct measurements with error not greater than (1 10 ). Still, during real measurements the obtained results were much worse (by several orders of magnitude). The smallest error was equal to 0.041, it was obtained for following parameters: sampling frequency 100 khz, number of samples 10000, window width 1000, Bartlett type window. In case of remaining windows the resultant errors were greater (with maximum difference equal to 0.02 ). The result burdened with greatest error (equal to 9.474 ) was obtained for sampling frequency 100 khz, number of samples 5000, width of window 250, Kaiser type window. For other window types and identical parameters, the results were similar. To achieve results encumbered with small errors, a proper number of samples should be selected as well as width of window (apart from high sampling frequency).

Virtual phase shift... 77 During future research aimed at achieving smaller errors, a better generator should be used (one characterized by greater resolution) and measurement system with synchronous sampling. The results obtained so far may be satisfactory in some applications. However, in case of precise measurements it is necessary to obtain errors smaller by several orders of magnitude. Practical application of the described virtual instrument may be found in quasi-balanced systems with phase detection. The use of virtual instrument makes it possible to replace easily the part responsible for signal processing. All corrections may therefore be introduced quickly and without additional device exchange. REFERENCES 1. Dusza D., Bartoszewski J.: Algorytmy estymacji kąta fazowego. Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej nr 64. Studia i Materiały nr 30. Wrocław 2010. 2. Cichy A., Skórkowski A., Barwinek S.: Automated quasi-balancing in virtual quasibalanced circuit designed to capacitance measurements. 19th Symposium IMEKO TC-4 Symposium and 17th TC-4 IWADC. Workshop Advances in Instrumentation and Sensors Interoperability, Barcelona. Universidad Politecnica de Catalunya, Barcelona, Spain 2013. 3. Barwinek S.: Implementacja i właściwości wybranego algorytmu pomiaru kąta przesunięcia fazowego w środowiskach MATLAB i LabVIEW, Dokonania Młodych Naukowców 1/2014 Nr 2 ISSN 2300-4436 Creativetime, Kraków 2014. 4. Cichy A.: Analiza właściwości układów quasi-zrównoważonych z detekcją fazową przeznaczonych do pomiaru składowych immitancji. Monografia 479. Wydawnictwo Politechniki Śląskiej, Gliwice 2013. 5. Cichy A.: Non-bridge circuit with double quasi-balancing for measurement of dielectric loss factor. IET Sci. Meas. Technol. 2013 vol. 7 iss. 5, s. 274-279 6. Cichy A., Skórkowski A., Barwinek S.: Double quasi-balanced meter for measurement of inductor quality factor. 19th Symposium IMEKO TC-4 Symposium and 17th TC-4 IWADC. Workshop Advances in Instrumentation and Sensors Interoperability, Barcelona. Universidad Politecnica de Catalunya, Barcelona, Spain 2013. 7. Krajewski M.: Analiza właściwości wybranych algorytmów cyfrowego przetwarzania sygnałów w pomiarze zespolonego stosunku napięć. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra 2010. 8. Gajda J., Sroka R.: Pomiary kąta fazowego: metody, układy, algorytmy. Wydawnictwo Akademii Górniczo-Hutniczej im. Stanisława Staszica, Kraków 2000. 9. Zieliński Tomasz P.: Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań. Wydawnictwa Komunikacji i Łączności, Warszawa 2007. 10. National Instruments USB-6251 NI 625xSpecifications. Dostępny w WWW: www.ni.com/pdf/manuals/371291h.pdf [Dostęp: 26, czerwiec, 2014].

78 S. Barwinek 11. National Instruments DAQ M Series User Manual NI 622x, NI 625x, and NI 628x Devices. Dostępny w WWW: www.ni.com/pdf/manuals/371022k.pdf [Dostęp: 26, czerwiec, 2014]. 12. RIGOL Data Sheet DG1000 Series Dual-Channel Function/ArbitraryWaveform Generator. Dostępny w WWW: www.rigol.com/download/oversea/dg/datasheet/dg1000_datasheet_en.pdf [Dostęp: 26, czerwiec, 2014]. Mgr inż. Sebastian BARWINEK Silesian University of Technology Faculty of Electrical Engineering, Institute of Measurement Science, Electronics and Control ul. Akademicka 10, 44-100 Gliwice Tel. 032 2371241; e-mail: sebastian.barwinek@polsl.pl