Matematyka rozszerzona matura 2017

Podobne dokumenty
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

EGZAMIN MATURALNY Z MATEMATYKI

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

EGZAMIN MATURALNY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

Próbny egzamin maturalny z matematyki Poziom rozszerzony

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

PRÓBNY EGZAMIN MATURALNY

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

PRÓBNY EGZAMIN MATURALNY

Próbny egzamin maturalny z matematyki Poziom rozszerzony

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na

11. Długości boków trójkąta tworzą ciąg geometryczny. Jakie wartości może przyjmować iloraz tego ciągu?

PRÓBNY EGZAMIN MATURALNY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

W(x) = Stopień wielomianu jest równy: A. B. C. D. A. B. C. D.

PRÓBNY EGZAMIN MATURALNY

Propozycje rozwiązań zadań z matematyki - matura rozszerzona

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

PRÓBNY EGZAMIN MATURALNY

Próbny egzamin maturalny z matematyki Poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

PRÓBNY EGZAMIN MATURALNY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

PRÓBNY EGZAMIN MATURALNY

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Egzamin wstępny z Matematyki 1 lipca 2011 r.

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

MATURA probna listopad 2010

Tematy: zadania tematyczne

Przykładowe rozwiązania

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

Próbny egzamin maturalny z matematyki Poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

PRÓBNY EGZAMIN MATURALNY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Indukcja matematyczna

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

PRÓBNY EGZAMIN MATURALNY

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH

PRÓBNY EGZAMIN MATURALNY

ARKUSZ II

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Transkrypt:

Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem a n = (n 10)( 3n) dla n 1. Wtedy n 3 +n +3 A. lim n a n = 1 C. lim n a n = B. lim n a n = 0 D. lim n a n = 3 lim a n = n (n 10)( 3n) n 3n 3 0 + 30n lim n n 3 + n = lim + 3 n n 3 + n + 3 Podzielmy wszystkie wyrazy licznika i mianownika przez n 3 n n 3n 3 0 + 30n lim n n 3 + n = lim n 3 3n3 n 3 0 n 3 + 30n n 3 + 3 n n 3 n 3 + n n 3 + 3 n 3 = lim n n 3 0 n 3 + 30 n + 1 n + 3 n 3 W ostatniej granicy wszystkie składniki sumy, prócz -3 dążą do zera. Podobnie w mianowniku wszystkie wyrazy sumy prócz dążą do zera. W takim razie lim n n 3 0 n 3 + 30 n + 1 n + 3 = 3 n 3 D.

Zadanie 3. Odcinek CD jest wysokością trójkąta ABC, w którym AD = CD = 1 BC (zobacz rysunek). Okrąg ośrodku C i promieniu CD Jest styczny do prostej AB. Okrąg ten przecina boki AC i BC trójkąta odpowiednio w punktach K i L. Zaznaczony na rysunku kąt α wpisany w okrąg jest równy A. 37,5 o B. 45 o C. 5,5 o D. 60 o Kąt wpisany α oparty jest na tym samym łuku co kąt środkowy KCL, wiec jego rozwartość jest połową rozwartości kąta KCL. α = 1 KCL = 1 ( ACD + DCL ). Z warunków zadania wynika, że trójkąt ADC jest prostokątny i równoramienny, więc ACD = 45 o. Z warunków zadania wynika też, że trójkąt CDB jest połową trójkąta równobocznego, więc DCB = 60 o. W takim razie, KCL = 105 o, a α = 5,5 o. C. Zadanie 4. Dane są punkt B = ( 4; 7) i wektor u = [ 3; 5]. Punkt A, taki, że AB = 3u, ma współrzędne A. A = (5; 8) B. A = ( 13; ) C. A = (9; 15) D. A = (1; 4) A. AB = [ 4 5; 7 ( 8)] = [ 9; 15] B. AB = [ 4 ( 13); 7 ] = [9; 15] 3u = 3[ 3; 5] = [9; 15]

B. Zadanie 5. Reszta z dzielenia wielomianu W(x) = x 3 x + ax + 3 przez dwumian x jest równa 1. Oblicz 4 wartość współczynnika a. W poniższe kratki wpisz kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. x 3 x + ax + 3 4 : x = x + 1 8 x 3 + x = = ax + 3 4 1 8 x + 1 4 = 1 Czyli a = 1 = 0,15 8 1; ; 5 Zadanie 6. Funkcja f jest określona wzorem f(x) = x 1 dla każdej liczby rzeczywistej x. Wyznacz równanie x +1 stycznej do wykresu tej funkcji w punkcie P=(1; 0). Styczna ma postać y = ax + b. Aby wyznaczyć współczynnik kierunkowy a równania obliczymy wpierw pochodną funkcji f(x).

f (x) = 1 (x + 1) (x 1) x (x + 1) = x 1 x + x (x + 1) = 3x + x 1 (x + 1) a = f (1) = 3 1 + 1 1 (1 + 1) = 3 + 1 = 1 4 Pozostał współczynnik b. Wyznaczymy go z równania y = ax + b, kładąc za x=1 i y=0, otrzymujemy 0 = 1 1 + b b = 1 y = 1 x + 1 Zadanie 7. Udowodnij, że dla dowolnych różnych liczb rzeczywistych x, y prawdziwa jest nierówność x y + x + y 8xy + 4 > 0 x y + x + y 8xy + 4 = x + y 8xy + x y + 4 = = x + y 4xy 4xy + x y + 4 = (x xy + y ) + (x y 4xy + 4) = = (x y) + (xy ) > 0 Ponieważ kwadraty są większe od 0, gdy tylko x y Zadanie 8. W trójkącie ostrokątnym ABC bok AB ma długość c, długość boku BC jest równa a oraz ABC = β. Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E. Wykaż, że długość odcinka BE jest równa ac cos β. a+c Zacznijmy od rysunku

Pole trójkąta ABC można obliczyć na dwa sposoby. Sposób 1. P = 1 ch, ale h = a sin β, więc P = 1 ac sin β Sposób. Pole trójkąta ABC jest sumą pól trójkątów AEB i BCE. Licząc pola tych trójkątów za podstawę uznamy bok BE o długości x P ABE = 1 xh 1, ale h 1 = c sin β, więc P ABE = 1 xc sin β. P CBE = 1 xh, ale h = a sin β, więc P CBE = 1 xa sin β. Tak więc Porównajmy prawe strony wzorów na pola P = 1 xc sin β + 1 xa sin β = 1 x sin β (a + c) 1 ac sin β = 1 x sin β (a + c) ac sin β = x sin β (a + c) Otrzymany wzór przekształćmy tak, by wyznaczyć x x = ac sin β sin β (a + c)

Zastosujemy teraz wzór sin α = sin α cos α I stosując podstawienie α = 1 β Otrzymamy Wstawiając to do wzoru na x otrzymujemy sin β = sin β cos β x = ac sin β cos β ac cos β sin β = (a + c) a + c Zadanie 9. W czworościanie, którego wszystkie krawędzie mają taką samą długość 6, umieszczono kulę tak, że ma na dokładnie jeden punkt wspólny z każdą ścianą czworościanu. Płaszczyzna π, równoległa do podstawy tego czworościanu, dzieli go na dwie bryły: ostrosłup o objętości równej 8 7 objętości dzielonego czworościanu i ostrosłup ścięty. Oblicz odległość środka S kuli od płaszczyzny π, tj. długość najkrótszego spośród odcinków SP, gdzie P jest punktem płaszczyzny π. Narysujmy sobie czworościan

Wyznaczmy wysokość ostrosłupa. Ponieważ wysokość ściany bocznej h p = a 3 = 6 3 = 3 3 więc h o = h p ( 1 3 h p) = 7 3 = 4 h o = 6 Ponieważ płaszczyzna π odcina z czworościanu czworościan o objętości 8 razy mniejszej, więc te dwa 7 czworościany są do siebie podobne w skali. Wysokość tego mniejszego czworościanu h = h 3 o = 3 6 3 = 4 3 6. Oznacza to, że płaszczyzna rozcina czworokąt na wysokości x = 6 4 3 6 = 3 6 Jeżeli kula została wpisana w ten czworościan, to jej środek znajduje się na wysokości a jej sfera styka się ze wszystkimi ścianami tego czworościanu w punkcie przecięcia się wszystkich trzech wysokości każdej ściany. Trzeba wyznaczyć długość promienia tej kuli. W tym celu dokonajmy przekroju czworościanu wraz z kulą, tak by płaszczyzna przekroju przechodziła przez wysokość podstawy, wysokość jednej ściany bocznej i jedną krawędź podstawy. Płaszczyzna ta podzieli kulę w środku na dwie równe części. Popatrz na rysunek. Wyznaczmy długość odcinka CD CD = BC DB CD = 7 9 = 18 CD = 3

Z podobieństwa trójkątów ADC i EOC mamy CO CA = EO AD = EC CD EO AD = EC CD EO 3 = 3 3 EO = 3 3 3 = 3 = 6 Odległość płaszczyzny π od środka okręgu wynosi y = 6 1 6 = 4 6 3 6 6 = 3 6 6 6 Środek kuli znajduje się 6 od płaszczyzny przekroju 6 Zadanie 10. Rozwiąż równanie cos x + 3 cos x = w przedziale 0; π W rozwiązaniu korzystamy ze wzoru Zastosujmy podstawienie Otrzymujemy równanie cos α = cos α 1 cos x = y cos x + 3 cos x = cos x 1 + 3 cos x = y 1 = y + 3y + 1 = 0 = 9 8 = 1 b a = 1 = 3 1 4 = 1

b + y = = 3 + 1 = 1 a 4 cos x = 1 lub cos x = 1 x = π lub x = 3 π lub x = 4 3 π Zadanie 11. W pudełku znajduje się 8 piłeczek oznaczonych kolejnymi liczbami naturalnymi od 1 do 8. Losujemy jedną piłeczkę, zapisujemy liczbę na niej występującą, a następnie zwracamy piłeczkę do urny. Tę procedurę wykonujemy jeszcze dwa razy i tym samym otrzymujemy zapisane trzy liczby. Oblicz prawdopodobieństwo otrzymania takich piłeczek, że iloczyn trzech zapisanych liczb jest podzielny przez 4. Wynik podaj w postaci ułamka zwykłego. Obliczmy zdarzenie przeciwne. Zajdzie ono wówczas, gdy iloczyn wylosowanych liczb nie będzie podzielny przez 4. Temu zdarzeniu sprzyjają dwa przypadki: Przypadek 1. Wszystkie wylosowane liczby są nieparzyste. Wśród 8 liczb cztery są nie parzyste, więc prawdopodobieństwo wylosowania liczby nieparzystej w jednym losowaniu wynosi 1. Ponieważ losujemy trzy razy ze zwracaniem, to prawdopodobieństwo, że wszystkie wylosowane liczby są nieparzyste wynosi ( 1 )3 = 1 8 Ten przypadek zajdzie, gdy w dwóch losowaniach wylosujemy liczbę nieparzystą a w jednym liczbę podzielną przez lecz niepodzielną przez 4, czyli lub 6. Prawdopodobieństwo dwukrotnego wylosowania liczby nieparzystej w losowaniu ze zwracaniem wynosi ( 1 ) = 1 4. Prawdopodobieństwo wylosowania w jednym losowaniu liczby lub 6 wynosi 1. Ponieważ kulę lub 6 można wylosować 4 albo za pierwszym razem, albo za drugim razem, albo za trzecim razem, więc prawdopodobieństwo zajścia przypadku wynosi 3 1 4 1 4 = 3 16. Prawdopodobieństwo wylosowania trzech liczb, których iloczyn nie jest podzielny przez 4 wynosi 1 8 + 3 16 = 5 16 Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn wylosowanych trzech liczb jest podzielny przez 4 wynosi 1 5 16 = 11 16 Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn wylosowanych trzech liczb jest podzielny przez 4 wynosi 11 16.

Zadanie 1. Wyznacz wszystkie wartości parametru m, dla których równanie 4x 6mx + (m + 3)(m 3) = 0 Ma dwa różne rozwiązania rzeczywiste x 1 i x, przy czym x 1<x, spełniające warunek (4x 1 4x 1)(4x 1 4x + 1) < 0 Aby równanie kwadratowe miało dwa różne pierwiastki > 0 Sprawdźmy, dla jakich m jest spełniony ten warunek = b 4ac = ( 6m) 4 4 (m + 3)(m 3) = 36m 16 (m + 3)(m 3) = = 36m (3m + 48)(m 3) = 36m (3m 96m + 48m 144) = = 36m (3m 48m 144) = 36m 3m + 48m + 144 = 4m + 48m + 144 > 0 4m + 48m + 144 > 0 m + 1m + 36 > 0 = 144 144 = 0 m = 1 = 6 Wyjściowe równanie ma różne rozwiązania dla m 6 Zajmijmy się teraz warunkiem (4x 1 4x 1)(4x 1 4x + 1) < 0 (4(x 1 x ) 1)(4(x 1 x ) + 1) < 0 16(x 1 x ) 1 < 0 16(x 1 x 1 x + x ) 1 < 0 16((x 1 + x ) 4x 1 x ) 1 < 0 16 (( 6m 4 ) (m + 3)(m 3) 4 ) 1 < 0 4 16 ( 9 4 m (m + 3)(m 3)) 1 < 0 36m 16(m + 3)(m 3) 1 < 0

4m + 48m + 143 < 0 = 304 88 = 16 m 1 = 48 4 8 m = 48 + 4 8 = 4 = 5 8 = 6 1 = 44 8 = 5 1 Ostatecznie, uwzględniając, że m 6, możemy powiedzieć, że warunek zadania jest spełniony, gdy m ( 6 1 ; 6) ( 6; 5 1 ) m ( 6 1 ; 6) ( 6; 5 1 ) Zadanie 13. Wyznacz równanie okręgu przechodzącego przez punkty A = ( 5; 3) i B = (0; 6), którego środek leży na prostej o równaniu x 3y + 1 = 0 Skorzystamy z następującego równania okręgu Gdzie (a; b) współrzędne środka okręgu. Należy rozwiązać następujący układ równań x ax + y by + c = 0 5 + 10a + 9 6b + c = 0 { 36 1b + c = 0 a 3b + 1 = 0 34 + 10a 6b + c = 0 { 36 1b + c = 0 a 3b + 1 = 0 10a 6b + c = 34 { 1b + c = 36 a 3b = 1 { 10a 6b + c = 34 1b + c = 36

10(3b 1) 6b + c = 34 { 1b + c = 36 30b 10 6b + c = 34 { 1b + c = 36 4b + c = 4 { 1b + c = 36 4b + c = 4 { c = 1b 36 4b + 1b 36 = 4 { c = 1b 36 36b = 1 { c = 1b 36 b = 1 { 3 c = 1b 36 b = 1 { 3 c = 3 a = 0 x + y y 3 = 0 3 Zadanie 14. Liczby a; b; c są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Suma tych liczb jest równa 7. Ciąg (a ; b; c + 1) jest geometryczny. Wyznacz liczby a; b; c Niech b = x; a = x r; c = x + r Wówczas x r + x + x + r = 7 3x = 7 x = 9

Zachodzi warunek a b 7 r 9 = b c + 1 = 9 19 + r 133 + 14r 19r r = 81 r 1 = r + 5r 5 = 0 = 5 + 416 = 441 5 1 4 r = = 1 = 6 4 = 6 1 5 + 1 4 = 4 (a; b; c) = (15 1 ; 9; 1 ) lub (a; b; c) = (5; 9; 13) Zadanie 15. Rozpatrujemy wszystkie walce o danym polu powierzchni całkowitej P. Oblicz wysokość i promień podstawy tego walca, którego objętość jest największa. Oblicz tę największą objętość. Z pierwszego równania P = πr + πrh h = V = πr h P πr πr V = πr P πr πr V = V = Pr πr3 P 6πr

Przyrównajmy pochodną do 0 P 6πr = 0 6πr P = 0 r P 6π = 0 (r P 6π ) (r + P 6π ) = 0 r = P 6π Drugi przypadek odpada bo r > 0 h = P πr πr h = P π P 6π π P 6π h = 3 P π P 6π h = 3 P P 6π = P P 6π 3 V = πr h = π P 6π P 6π V = 1 3 P P 6π r = P 6π, h = P 6π ; V = 1 3 P P 6π