Montaż strunobetonowych podkładów kolejowych w torze Wytyczne

Podobne dokumenty
Czynniki decydujące o właściwościach i trwałości strunobetonowych podkładów kolejowych

TYPY PODKŁADÓW, PODROZJAZDNIC I MOSTOWNIC ORAZ ICH CHARAKTERYSTYKA TECHNICZNA

prefabrykaty drogowo-mostowe

1 9% dla belek Strata w wyniku poślizgu w zakotwieniu Psl 1 3% Strata od odkształceń sprężystych betonu i stali Pc 3 5% Przyjęto łącznie: %

2. Badania doświadczalne w zmiennych warunkach otoczenia

INNOWACYJNA KONSTRUKCJA NAWIERZCHNI, ZWIĘKSZAJĄCA SZTYWNOŚĆ RAMY TORU Z PODKŁADAMI BETONOWYMI 1

Stropy TERIVA - Projektowanie i wykonywanie

Wytyczne dla projektantów

POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY

Specyfikacja TSI CR INF

PRZEZNACZENIE I OPIS PROGRAMU

D NAWIERZCHNIA CHODNIKÓW Z KOSTKI BETONOWEJ

NOWOCZESNE KONSTRUKCJE TOROWISK TRAMWAJOWYCH -

ZŁOŻONE KONSTRUKCJE BETONOWE I DŹWIGAR KABLOBETONOWY

4. Ścinanie w elementach sprężonych

Elementy do systemów nawierzchni kolejowych

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

Spis treści. Wprowadzenie... Podstawowe oznaczenia Ustalenia ogólne... 1 XIII XV

Projekt belki zespolonej

Konstrukcja przejazdów przez torowisko

Hale o konstrukcji słupowo-ryglowej

Interaktywna rama pomocnicza. Opis PGRT

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE

Wytrzymałość Materiałów

PROJEKT NOWEGO MOSTU LECHA W POZNANIU O TZW. PODWÓJNIE ZESPOLONEJ, STALOWO-BETONOWEJ KONSTRUKCJI PRZĘSEŁ

OBLICZENIE ZARYSOWANIA

SZCZEGÓŁOWA SPECYFIKACJA TECHNICZNA B STROPY

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE D WYKONANIE CHODNIKÓW Z KOSTKI BRUKOWEJ BETONOWEJ

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

2. Budowa toru. dr inż. Jarosław Zwolski

1. Projekt techniczny Podciągu

ZAJĘCIA 2 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY

CHODNIK Z BRUKOWEJ KOSTKI BETONOWEJ

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1)

ŚCIEK PREFABRYKOWANY BETONOWY

BUDOWA SIEDZIBY PLACÓWKI TERENOWEJ W STASZOWIE PRZY UL. MICKIEWICZA PROJEKT WYKONAWCZY - KONSTRUKCJA SPIS TREŚCI

Wymiarowanie sztywnych ław i stóp fundamentowych

SAS 670/800. Zbrojenie wysokiej wytrzymałości

Dotyczy PN-EN :2008 Eurokod 2 Projektowanie konstrukcji z betonu Część 1-1: Reguły ogólne i reguły dla budynków

dr inż. Jarosław Zwolski

Zestawić siły wewnętrzne kombinacji SGN dla wszystkich kombinacji w tabeli:

Raport wymiarowania stali do programu Rama3D/2D:

Schöck Isokorb typu Q, Q+Q, QZ

Zagadnienia konstrukcyjne przy budowie

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA

CHODNIK Z KOSTKI BRUKOWEJ GRUBOŚCI 6CM

Gdańsk, dnia r.

KONSTRUKCJE BETONOWE PROJEKT ŻELBETOWEJ HALI SŁUPOWO-RYGLOWEJ

OBLICZENIOWE PORÓWNANIE SYSTEMÓW STROPOWYCH MUROTHERM I TERIVA NA PRZYKŁADZIE STROPU W BUDYNKU MIESZKALNYM O ROZPIĘTOŚCI 7,20 M

Schöck Isokorb typu K-Eck

Ekspertyzy obiektów mostowych i nadzór nad przejazdami ponadnormatywnymi na trasie Nagnajów Leżajsk

APROBATA TECHNICZNA ITB AT /2012. Zgrzewane siatki stalowe B500A do zbrojenia betonu WARSZAWA

KATEGORIE LINII KOLEJOWYCH KLASY TECHNICZNE TORÓW

Schöck Isokorb typu KF

Węzeł nr 28 - Połączenie zakładkowe dwóch belek

R-Group Finland Oy. Stalowe pętle linowe RVL Wytyczne projektowe. Projekt zgodny z Eurokodami

Wybieranie ramy pomocniczej i mocowania. Opis. Zalecenia

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Spis treści. Przedmowa... Podstawowe oznaczenia Charakterystyka ogólna dźwignic i torów jezdnych... 1

9.0. Wspornik podtrzymujący schody górne płytowe

POŁĄCZENIA ŚRUBOWE 1.1 ASORTYMENT I WŁAŚCIWOŚCI ŁĄCZNIKÓW. Konstrukcje Metalowe Laboratorium

Schöck Isokorb typu D

Osiadanie kołowego fundamentu zbiornika

PŁYTY SRTOPOWE KANAŁOWE SPB 2002

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

INSTRUKCJA MONTAŻU, UŻYTKOWANIA. i KONSERWACJI

Rodzaje obciążeń, odkształceń i naprężeń

FIBRON FL to specjalnie zaprojektowany beton posadzkowy wzmocniony syntetycznymi makrowłóknami konstrukcyjnymi. Włókna syntetyczne dozowane są na

Stalowe konstrukcje prętowe. Cz. 1, Hale przemysłowe oraz obiekty użyteczności publicznej / Zdzisław Kurzawa. wyd. 2. Poznań, 2012.

żelbetowym powinien być klasy minimum C20/25.

NAWIERZCHNIA Z KOSTKI BETONOWEJ WIBROPRASOWANEJ

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Schöck Isokorb typu K-HV, K-BH, K-WO, K-WU

Strunobetonowe płyty TT. Poradnik Projektanta

1Z.5. SZCZEGÓŁOWA SPECYFIKACJA TECHNICZNA B PREFABRYKATY

Schöck Isokorb typu HP

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

PRZYDATNOŚĆ EKSPLOATACYJNA PRZEKŁADEK PODSZYNOWYCH A WYMAGANIA NORM EUROPEJSKICH

INWENTARYZACJA OPINIA TECHNICZNA ROZWIĄZANIA PROJEKTOWE

Wzmocnienia konstrukcje metodą wstępnie naprężonych taśm kompozytowych z włókien węglowych doświadczenia polskie. Construction

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH U POSADZKI BETONOWE

Schöck Isokorb typu HP

OBLICZENIA STATYCZNE konstrukcji wiaty handlowej

Pręt nr 1 - Element żelbetowy wg. EN :2004

Załącznik nr 3. Obliczenia konstrukcyjne

DOKUMENT NORMATYWNY 01-9/ET/2008 Uchwyty grzejników eor. Iet-119

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach

PL B1. Opis wynalazku

INSTRUKCJA MONTAŻU STROPU GĘSTOŻEBROWEGO TERIVA

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH

TSI-aspekty drewnianej nawierzchni kolejowej

Ramy pojazdów samochodowych

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH

Zaprojektować zbrojenie na zginanie w płycie żelbetowej jednokierunkowo zginanej, stropu płytowo- żebrowego, pokazanego na rysunku.

Transkrypt:

Montaż strunobetonowych podkładów kolejowych w torze Wytyczne Cel dokumentu Dokument stanowi wytyczne producenta dotyczące instalacji strunobetonowych podkładów w torze kolejowym. Daje podstawową wiedzę o funkcji, budowie oraz wymaganiach dotyczących strunobetonowych podkładów kolejowych. Dokument nie zastępuje instrukcji pracy, kontroli jakości i odbiorów niezbędnych na danych stanowiskach pracy przedsiębiorstw budownictwa kolejowego.

1. Wstęp Funkcja podkładów kolejowych Podkłady kolejowe są to belki o precyzyjnie zdefiniowanej geometrii, których zadaniem jest: Pozycjonowanie toru kolejowego Mocowanie szyn Zapewnienie odpowiedniej szerokości toru Przenoszenie i dystrybucja sił pochodzących od taboru w kierunku pionowym, bocznym i wzdłużnym Podstawowe właściwości podkładów kolejowych decydują o trwałości toru i bezpieczeństwie ruchu kolejowego. Prześwit toru normalnego wynosi 1435 mm, szerokiego (np. Polska LHS, obszary przygraniczne, Litwa, Łotwa) - 1520 mm 1, a odchylenie od tej wielkości w przypadku nowego toru nie powinno przekraczać ± 2 mm. Oznacza to wysokie wymagania co do stałości wymiarów geometrycznych, w całym okresie eksploatacji podkładu. Na podkłady kolejowe oddziałują zarówno duże siły pionowe jak i poprzeczne. Klasyczna nawierzchnia kolejowa składa się z szyn, przytwierdzeń, podkładów i podsypki z tłucznia. Typowy odstęp pomiędzy podkładami wynosi 0.6 m. Szyny do podkładów przytwierdzane są za pomocą mocowań zapewniających przewidziane normami właściwości mechaniczne oraz izolację elektryczną. Typowe mocowanie w Polsce to system SB (z kolejnymi jego odmianami SB-3, SB-4, SB-7, SB-8). Stosowane są również inne systemy mocowania, z których najbardziej rozpowszechnionym jest mocowanie W (W-14, W21). Konstrukcja podtorza, tłuczeń wraz z podkładami, musi zapewnić odpowiednią sztywność ramy toru we wszystkich kierunkach odporność na szybko zmieniające się siły wywoływane przez jadący tabor kolejowy, oddziałujące wzdłuż osi toru (hamowanie i przyspieszenie), przemieszczenia boczne jak i siły prostopadłe do toru. Monoblokowe strunobetonowe podkłady kolejowe Podkład strunobetonowy jest elementem nośnym wykonanym z jednolitego bloku betonowego, zbrojonym za pomocą stalowych cięgien. Beton jest materiałem posiadającym tę własność, że jego wytrzymałość na rozciąganie jest znacznie mniejsza niż na ściskanie (8-12 krotnie). Kombinacja stali, posiadającej dużą wytrzymałość na rozciąganie, z betonem o dużej wytrzymałości na ściskanie w konstrukcjach ze strunobetonu pozwala na wykorzystanie zalet obu materiałów przy wytwarzaniu prefabrykatów. Aby zatem wytworzyć odpowiednią wytrzymałość na rozciąganie w betonowym elemencie nośnym wykonuje się sprężenie betonu. Sprężenie jest celowym wprowadzeniem w konstrukcję sił, które wywołują przed jej użytkowaniem stan naprężeń przeciwny do naprężeń wywołanych obciążeniami przenoszonymi przez tę konstrukcję. Podczas projektowania podkładów strunobetonowych uwzględnia się własności betonu dostosowując kształt podłużnego przekroju podkładu do spodziewanego przebiegu obwiedni momentów zginających, i tak aby pochylenie powierzchni bocznych ułatwiało rozformowanie w procesie produkcji. 1 możliwe również są inne szerokości (1668, 1600, 1000 mm)

Powierzchnie boczne odgrywają także istotną rolę w osiąganiu wymaganych oporów na przemieszczanie się podkładu w kierunkach wzdłuż osi toru i bocznym. Powierzchnia podparcia podkładu ma istotne znaczenie dla przenoszenia sił pionowych. Zbrojenie sprężające w przekrojach poprzecznych podkładu jest tak rozmieszczane, aby siła sprężająca przekazana na beton zabezpieczała strefy rozciągane podkładu. Jako przykład podkładu strunobetonowego pokazano na rysunku 1a podkład PS-94, a na rysunku 1b czoło podkładu B70. Trójwymiarowy rysunek wykonano w taki sposób aby umożliwić spojrzenie do wnętrza podkładu, uwidoczniając zbrojenie sprężające. Zbrojenie sprężające wykonane jest z dwóch pakietów. Każdy pakiet składa się z 4 gładkich stalowych prętów z nałożonymi na ich końce płytkami oporowymi. Pręty na swoich końcach posiadają główki uformowane na zimno. W czasie produkcji podkładów wykonuje się naciąg zbrojenia siłą 360 kn, zapewniając odpowiednią wytrzymałość podkładu na momenty gnące. Po stwardnieniu betonu, gdy jego wytrzymałość na ściskanie osiągnie wymaganą wartość minimum 45 MPa następuje zwolnienie naciągu, co powoduje przeniesienie sił na beton i jego sprężenie. Taki sposób sprężania (sprężenie mechaniczne) zapewnia trwałość i niezawodność podkładu przez minimum 40 lat. Rysunek 1a. Podkład strunobetonowy PS-94 z uwidocznionym zbrojeniem sprężającym

Rysunek 2b. Czoło podkładu B70 z widocznym zbrojeniem sprężającym oraz dyblami mocowania W14. Na życzenie klienta podkłady mogą być dostarczane z podporami sprężystymi zwanymi potocznie zelówkami (ang. USP under sleeper pad, niem. Sohle) 2. Współpraca podkładów strunobetonowych z podsypką Na rysunku 2 pokazano podkład, na który działają pionowe siły pochodzące od kół pojazdów kolejowych symbolicznie oznaczonych jako Q. Momenty zginające Na podkład działają dwie siły skupione Q przy założeniu ciągłego oparcia podkładu o podsypkę na całej długości z tym, że nośność podsypki w części podszynowej jest dwa razy większa na skutek zagęszczenia podsypki. Analizując przebieg momentów zginających rys.3. od sił zewnętrznych należy zauważyć, że zachowana jest pewna prawidłowość: - w przekroju podszynowym moment zginający jest dodatni powodujący rozciąganie dolnej powierzchni podkładu oraz ściskanie górnej powierzchni podkładu, - w przekroju środkowym moment zginający jest ujemny powodujący rozciąganie górnej powierzchni podkładu oraz ściskanie dolnej powierzchni podkładu. Rysunek 3. Prawidłowe podparcie podkładu kolejowego. Oddziaływanie sił. Rysunek 4. Przebieg momentów zginających w podkładzie kolejowym o długości L.

PKP PLK w swoich standardach technicznych 2 formułuje następujące wymagania: dla części podszynowej: F r0.05 >300 kn dla części środkowej podkładu (łącznika) w pozycji odwróconej F crn >50 kn Porównując moment zginający w części podszynowej z ujemnym momentem gnącym zauważamy, że podkład nie jest przystosowany do przenoszenia sił poprzez łącznik. Wymagane jest zatem staranne podbicie toru tak aby podkład był podparty pod częściami do których mocowane są szyny. Na rys.4. pokazano przykład nieprawidłowego montażu podkładu w torze. Przesadnie uwidoczniono, że podkład opiera się o łącznik część środkową, która nie jest odpowiednio wytrzymała na momenty zginające. Rysunek 5. Schemat nieprawidłowo podbitego toru kolejowego. Efektem takiej sytuacji może być pękanie podkładu w części górnej, pokazano to schematycznie na rysunku 5. Rysunek 6. Skutki złego podparcia (podbicia) podkładu kolejowego na przykładzie belki betonowej Na rysunku 6 pokazano podkład w którym po przejeździe taboru pojawiły się w części środkowej regularne rysy. Podkład został źle zainstalowany w torze kolejowym. 2 Warunki Techniczne Wykonania i Odbioru Podkładów i Podrozjazdnic Strunobetonowych, WTWiO ILK3a- 5187/01/05

Rysunek 7. Uszkodzony podkład kolejowy na skutek przeciążenia w części środkowej wyraźnie widać regularne, symetryczne zarysowania. 3. Badania laboratoryjne podkładów strunobetonowych W celu sprawdzenia czy produkowane podkłady spełniają wymagania poddaje się ustaloną próbkę statystyczną wyprodukowanych w danej partii podkładów badaniom niszczącym. Na rysunkach 7 i 8 pokazano podstawowe schematy obciążeń w celu określenia rysoodporności części podszynowych rys.7 oraz w części środkowej w pozycji odwróconej rys. 8. Rysunek 8. Badanie rysoodporności w części podszynowej [źródło: EN-13230-2]

Rysunek 9. Badanie wytrzymałości na ujemny moment gnący [źródło: EN-13230-2] 4. Zalecenia instalacyjne Należy dbać o prawidłowe posadowienie podkładu zagęszczenie podsypki w częściach podszynowych podkład musi być podparty jak to przewidziano w projekcie Niewłaściwym jest podparcie podkładu w części środkowej. Przejazd taboru po torze źle podbitym może skutkować pojawieniem się regularnych pęknięć na podkładach jak to pokazano na przykładzie - rys.6. Pęknięcia tego rodzaju nie są spowodowane korozją chemiczną! Zarysowania spowodowane przeciążeniem podkładu w części środkowej będą się z czasem powiększać w szczególności po okresach zimowych, w wyniku wielokrotnego zamrażania wody w szczelinie rysu a następnie rozmrażania lodu. Uszkodzone w ten sposób podkłady muszą zostać wymienione.