Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Paweł GÓRSKI 1), Emil KOZŁOWSKI 1), Gracjan SZCZĘCH 2) 1) Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy ul. Czerniakowska 16, 00-701 Warszawa pawel@ciop.pl 2) Instytut Radioelektroniki Politechniki Warszawskiej ul. Nowowiejska 15/19, 00-665 Warszawa 1. Wprowadzenie Metody aktywne redukcji hałasu są dynamicznie rozwijającym się obszarem nauki, w którym do zwalczania niepożądanych dźwięków (hałasu) o charakterze niskoczęstotliwościowym wykorzystuje się dodatkowe, odpowiednio sterowane źródła energii wibroakustycznej [1]. Poprawny dobór elementów wykonawczych, pełniących rolę wspomnianych dodatkowych źródeł energii w dużej mierze decyduje o użyteczności tych metod i możliwości zastosowania w praktyce. Zdecydowana większość systemów aktywnej redukcji hałasu (ARH), jako element wykonawczy wykorzystuje dodatkowe źródła dźwięku w postaci przetworników elektroakustycznych. Jedną z potencjalnych możliwości powiększenia pola zastosowań systemów ARH jest zastosowanie, jako elementów wykonawczych aktywnych ustrojów o zmiennej izolacyjności akustycznej [2]. Przyjęto, że aktywny ustrój o zmiennej izolacyjności akustycznej to układ materiałów zmieniający swoje właściwości izolacyjne pod wpływem doprowadzonej do niego energii. W artykule przedstawiono badania aktywnej redukcji hałasu ustroju o zmiennej izolacyjności akustycznej złożonego z płyty mosiężnej, elementu czynnego oraz układu sterowania [2]. W badaniach wyznaczono skuteczność aktywnej redukcji hałasu poprzez pomiary natężenia dźwięku przenikającego przez ustrój z wyłączonym i włączonym systemem aktywnej redukcji. Pomiary te przeprowadzono z wykorzystaniem trójkierunkowej sondy USP mini Microflown. 2. Stanowisko pomiarowe Badania przeprowadzono z wykorzystaniem falowodu akustycznego, na którego końcu zamocowano płytę mosiężną z elementem czynnym aktywnego ustroju o zmiennej
izolacyjności (Rysunek 1). Element czynny w postaci piezolaminatu MFC sterowano za pomocą układu sterującego. Sterowanie układem aktywnej redukcji hałasu odbywało się z wykorzystaniem adaptacyjnego filtra NOTCH z algorytmem LMS oraz poprzez ręczną zmianę opóźnienia i amplitudy sygnału kompensującego. Przy ręcznym sterowaniu wzmocnienie tego sygnału dobierano w taki sposób, aby w punkcie umieszczenia mikrofonu pomiarowego mierzony poziom ciśnienia akustycznego był jak najniższy. Mikrofon pomiarowy umieszczono w punkcie znajdującym na prostej prostopadłej do powierzchni ustroju w odległości 0,2 m od niej i przechodzącej przez jej środek geometryczny. Jednocześnie za pomocą tego samego układu sterującego generowano sygnał tonalny o czterech częstotliwościach: 100 Hz, 150 Hz, 200 Hz, 250 Hz oraz wzmocnieniach: 0,04, 0,08, 0,16, który był traktowany jako sygnał hałasu. Rysunek 1 Schemat i widok stanowiska laboratoryjnego Pomiary wykonano w odległości 30 mm od powierzchni ustroju aktywnego rejestrując rozkład prędkości akustycznej oraz ciśnienia akustycznego (Rysunek 1). Pomiary prędkości akustycznej oraz ciśnienia akustycznego w pobliżu powierzchni płyty przeprowadzono z wykorzystaniem trójkierunkowej sondy USPmini firmy Microflown. Sonda ta umożliwia bezpośredni pomiar prędkości akustycznej w trzech wymiarach i ciśnienia akustycznego, a przez to umożliwia wyznaczenie wektora natężenia dźwięku [3]. Podczas badań sonda pomiarowa przemieszczała się automatycznie po powierzchni pomiarowej, aby pokryła ją punktami pomiarowymi oddalonymi od siebie o 2 cm. Dla powierzchni 720 cm 2 daje to łącznie 130 jednostkowych punktów pomiarowych. W każdym z nich sonda zatrzymywała się na około 5 sekund, po czym przesuwała się do kolejnego punktu. Powierzchnia pomiarowa oddalona była od powierzchni płyty o 5 cm. Do automatycznego przesuwu sondy wykorzystano specjalnie do tego celu skonstruowany układ przemieszczania sondy.
3. Wyniki pomiarów Na rysunku 2 zaprezentowano rozkłady poziomu ciśnienia akustycznego i poziomu natężenia dźwięku przenikającego przez ustrój dla sygnału hałasu o częstotliwości 100 Hz i wzmocnieniu 0,04 z wyłączonym (a, b) i włączonym (c, d) systemem ARH. Przed włączeniem elementu czynnego wyznaczone poziomy ciśnienia akustycznego mieściły się w granicach 75-82 db, zaś poziomy natężenia dźwięku zawierały się w przedziale od 80 do 90 db. Po uruchomieniu elementu czynnego poziomy ciśnienia akustycznego wynosiły od 70 db do 88 db, zaś poziomy natężenia dźwięku wynosiły od 80 do 93 db. Wraz z włączeniem systemu ARH zmienił się rozkład drgań na powierzchni ustroju. W przypadku płyty bez włączonego systemu ARH rozkład ciśnienia i natężenia przenikającego dźwięku był bardziej równomierny. Poziom ciśnienia akustycznego zmierzony przez mikrofon pomiarowy wynosił 71,1 db dla wyłączonego systemu aktywnej redukcji hałasu, zaś dla włączonego spadł do 65,9 db. Rysunek 2 Poziom ciśnienia akustycznego i natężenia dźwięku ustroju dla sygnału o częstotliwości 100 Hz i o wzmocnieniu 0,04 z wyłączonym i włączonym systemem aktywnej redukcji hałasu Rysunek 3 obrazuje skuteczność ARH wyznaczonej jako różnica poziomów natężenia dźwięku z wyłączonym i włączonym systemem ARH dla sygnału hałasu o częstotliwości 100 Hz i o wzmocnieniu 0,04. Na rysunku widoczne jest wyraźna redukcja emitowanego
hałasu zlokalizowana na przekątnej powierzchni ustroju. Z kolei w jednym z rogów ustroju widoczna jest znaczna degradacja skuteczności dochodząca do -7 db. Rysunek 3 Skuteczność aktywnej redukcji hałasu ustroju dźwiękochłonno-izolacyjnego dla pomiaru natężenia dźwięku sygnału o częstotliwości 100 Hz i o wzmocnieniu 0,04 Rysunek 4 Poziom ciśnienia akustycznego i natężenia dźwięku ustroju dla sygnału o częstotliwości 200 Hz i o wzmocnieniu 0,08 z wyłączonym i włączonym systemem aktywnej redukcji hałasu
Na rysunku 4 zaprezentowano rozkłady poziomu ciśnienia akustycznego i poziomu natężenia dźwięku przenikającego przez płytę metalową dla hałasu o częstotliwości 200 Hz i wzmocnieniu 0,08. przy wyłączonym (a, b) i włączonym (c, d) systemem aktywnej redukcji hałasu. Przed włączeniem systemu aktywnej redukcji hałasu wyznaczone poziomy ciśnienia akustycznego mieściły się w granicach 75-82 db, zaś poziomy natężenia dźwięku zawierały się w przedziale od 82 do 88 db. Po uruchomieniu elementu czynnego poziomy ciśnienia akustycznego wynosiły od 60 db do 78 db, zaś poziomy natężenia dźwięku wynosiły od 75 do 82 db. Poziom ciśnienia akustycznego zbadanego w odległości 20 cm od ustroju wynosił 63,6 db dla wyłączonego systemu aktywnej redukcji hałasu, zaś dla włączonego spadł do 52 db. Rysunek 5 Skuteczność aktywnej redukcji hałasu ustroju dźwiękochłonno-izolacyjnego dla pomiaru natężenia dźwięku sygnału o częstotliwości 200 Hz i o wzmocnieniu 0,08 Rysunek 5 przedstawia skuteczność aktywnej redukcji hałasu dla pomiaru natężenia dźwięku sygnału o częstotliwości 200 Hz i o wzmocnieniu 0,08. Widoczna jest wyraźna redukcja hałasu na brzegach płyty, dochodzące do 18 db. Najniższe wartości skuteczności aktywnej redukcji widoczne są w centrum płyty i wynoszą ok. 0 db. 4. Podsumowanie Na rysunku 6 przedstawiono skuteczność aktywnej redukcji w zależności od częstotliwości redukowanego hałasu. Zależności te wyznaczono dla trzech różnych wzmocnień generowanego sygnału hałasu. Największe wartości skuteczności aktywnej
redukcji zmierzone przez mikrofon pomiarowy uzyskano dla częstotliwości 200 Hz i maksymalnego badanego wzmocnienia (0,16). Dla tego przypadku redukcja hałasu dochodziła do 16 db. W tym przypadku wartości aktywnej redukcji hałasu zarejestrowane sondą oscylowały w granicach 15 db, a także nie zarejestrowano wartości ujemnych. Rysunek 6 Skuteczność aktywnej redukcji hałasu sygnałów tonalnych o różnym wzmocnieniu Porównanie pomiarów przeprowadzonych za pomocą mikrofonu pomiarowego i sondą pomiarową wykazały, że osiągnięcie dodatniej wartości skuteczności aktywnej redukcji hałasu mierzonej punktowo nie zawsze przekłada się na zmniejszenie promieniowania ustroju na całej jego powierzchni. Przykładowo dla sygnału hałasu o częstotliwości 100 Hz i o wzmocnieniu 0,16 zarejestrowano przy powierzchni ustroju skuteczności dochodzące do 14 db, jednak skuteczność w punkcie mikrofonu błędu osiągnięto na poziomie jedynie 3 db. Powodem tak słabego wyniku była jednoczesna degradacja skuteczności aktywnej redukcji hałasu w innym miejscu na powierzchni ustroju o wartościach -7 db. Skuteczność aktywnej redukcji hałasu była tym większa, im bardziej równomiernie redukcja drgań była rozłożona na płycie. Literatura 1. Engel Z., Koradecka D., Augustyńska D., Kowalski P., Morzyński L., Żera J., Zagrożenia wibroakustyczne, w: Koradecka D. (red), Handbook of occupational safety and health, New York, CRC Press, 2010, 153-198. 2. Górski P., Morzyński L., Sprawozdanie z realizacji pracy: Opracowanie modelu aktywnego ustroju dźwiękochłonno-izolacyjnego o zmiennych tłumieniu i izolacyjności, CIOP-PIB, 2009-2010 3. Weyna S., Rozpływ energii akustycznych źródeł rzeczywistych, Warszawa 2005, WNT, 81-112 Publikacja przygotowana na podstawie wyników uzyskanych w ramach pracy statutowej Centralnego Instytutu Ochrony Pracy - Państwowy Instytut Badawczy.