ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Podobne dokumenty
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin maturalny z matematyki Poziom rozszerzony

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom rozszerzony 1

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

Nazwisko i imię... PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

EGZAMIN MATURALNY Z MATEMATYKI

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony LO

Próbny egzamin maturalny z matematyki Poziom rozszerzony

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin maturalny z matematyki Poziom rozszerzony

EGZAMIN MATURALNY Z MATEMATYKI

Próbny egzamin maturalny z matematyki Poziom rozszerzony

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Czas pracy 170 minut

LUBELSKA PRÓBA PRZED MATUR 2016

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Czas pracy 170 minut

Czas pracy 170 minut

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Transkrypt:

Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2010 Instrukcja dla zdającego Czas pracy 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań rachunkowych przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie; używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 6. Zapisy w brudnopisie nie będą oceniane. 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów. Życzymy powodzenia! Wpisuje zdajàcy przed rozpocz ciem pracy PESEL ZDAJĄCEGO KOD ZDAJĄCEGO Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione. Wydawca zezwala na kopiowanie zadań przez dyrektorów szkół biorących udział w programie Próbna Matura z OPERONEM.

Zadanie 1. (4 pkt) ^9x2-4h^x+ 1h Wyznacz wszystkie liczby całkowite, dla których wartość wyrażenia jest liczbą całkowitą. 3x3+ 2x2-3x-2 2

Zadanie 2. (4 pkt) Wykaż, że wśród rozwiązań równania x+ 2 - x- 4 = 6 istnieje takie, które jest liczbą niewymierną. 3

Zadanie 3. (5 pkt) Na tra pe zie opi sa no okrąg, któ re go śred ni ca jest jed ną z pod staw tra pe zu. Prze kąt na tra pe zu ma dłu - gość 12, a długość okrę gu wynosi 13r. Ob licz po le tra pe zu. 4

Zadanie 4. (4 pkt) Reszty z dzielenia wielomianu Wx () przez ] x - 1g, ] x + 1g, ] x + 2g są odpowiednio równe 1, -1, 3. Znajdź resztę z dzielenia tego wielomianu przez wielomian P() x = ] x- 1g] x+ 1g] x+ 2g. 5

Zadanie 5. (5 pkt) Dla ja kich war to ści pa ra me tru x 2 + ( m- 5) x+ m- 7 = 0 m su ma kwa dra tów dwóch róż nych pier wiast ków rów na nia jest najmniejsza? 6

Zadanie 6. (5 pkt) Suma długości wszystkich krawędzi graniastosłupa prawidłowego trójkątnego jest równa 60. Wysokość jest o 2 większa od długości boku podstawy. Przez przekątną ściany bocznej i środek krawędzi bocznej, niezawierającej się w tej ścianie, poprowadzono płaszczyznę. Oblicz pole otrzymanego w ten sposób przekroju. 7

Zadanie 7. (4 pkt) Wykaż, że cos( a+ b) $ cos ] a-bgg 1. 8

Zadanie 8. (5 pkt) Pole kwadratu K jest równe 8. Środki boków tego kwadratu połączono, tworząc czworokąt. Następnie połączono środki boków czworokąta, tworząc czworokąt. W podobny sposób utworzono C 3 C 4 czworokąty,,. K C 1 C 2 C 1 C 1 C 2 3 Suma pól czworokątów K+ C 1 + C 2 +... + C n jest równa 15. 4 Znajdź licz bę n. 9

Zadanie 9. (5 pkt) W szufladzie znajdują się skarpetki zielone i niebieskie. Zielone skarpetki są co najmniej dwie, a niebieskich było dwa razy więcej niż zielonych. Z szuflady w sposób losowy wyciągnięto jedną skarpetkę, odłożono ją i wyciągnięto kolejną. Prawdopodobieństwo, że wylosowane w ten sposób dwie skarpetki 13 były koloru zielonego, jest o mniejsze od prawdopodobieństwa, że wyciągnięto dwie skarpetki różnych kolorów. Oblicz, ile skarpetek było w 33 szufladzie. 10

Zadanie 10. (5 pkt) Dany jest okrąg o środku w punkcie ] 21, g i promieniu 17. Punkty A, B są punktami przecięcia tego okręgu z osią OX. Punkt C leży na prostej 3x- y+ 3 = 0, a pole trójkąta ABC jest równe 24. Oblicz współrzędne punktu C. 11

Zadanie 11. (4 pkt) Rysunek przedstawia fragment wykresu funkcji y = f() x, otrzymanego z wykresu funkcji w wyniku odpowiednich przekształceń. Znajdź wzór funkcji f i rozwiąż równanie fx () =- 3. gx () = sinx Y 3 2 1 r 0 r r r 3 2 2 r 2 1 X 2 3 12

BRUDNOPIS (nie podlega ocenie) 13