WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ

Podobne dokumenty
WYRAŻENIA ALGEBRAICZNE

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

Kryteria ocen z matematyki w klasie IV

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

Wymagania edukacyjne z matematyki dla klasy VII

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7

Przykładowe zadania z teorii liczb

PLAN DYDAKTYCZNY Z MATEMATYKI DLA KLASY IV

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Liczby. Wymagania programowe kl. VII. Dział

Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Lista działów i tematów

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V

Wymagania edukacyjne z matematyki w klasie IV

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Algorytmy i struktury danych. Wykład 4

SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY

OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV

Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

TEMATY JEDNOSTEK METODYCZNYCH

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019

Kryteria ocen z matematyki w klasie IV. na ocenę dopuszczającą: na ocenę dostateczną: Uczeń musi umieć:

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY

MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4

MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V

NaCoBeZU z matematyki dla klasy 7

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

Luty 2001 Algorytmy (7) 2000/2001

STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY IV W ROZBICIU NA OCENY

Matematyka. Klasa IV

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

KRYTERIA OCENIANIA KLASA IV KLASA V KLASA VI

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV

Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału

WYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem

Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac.

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

Sprowadzanie ułamków do wspólnego mianownika(

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Wymagania na poszczególne oceny Matematyka wokół nas klasa IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

PRZELICZANIE JEDNOSTEK MIAR

Wymagania edukacyjne z matematyki na poszczególne oceny klasa IV

Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną.

Wymagania edukacyjne z matematyki na poszczególne roczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V wg podstawy programowej z VIII 2008 r.

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju.

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

Transkrypt:

WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ Dla wszystkich, których przerażają opasłe podręczniki szkolne do matematyki, opracowałem w przystępnej formie to co trzeba wiedzieć by rozpocząć przygodę zwaną matematyką. Na razie będzie to przygoda w krainie II Gimnazjum. Będą kolejne. Miłej lektury. Liczby naturalne Są to po prostu liczby,, itd. Nie istnieje największa liczba naturalna, gdyż do każdej pomyślanej liczby można np. dodać 1 lub dowolną inną liczbę, otrzymując liczbę większą. Liczby te służą po prostu do liczenia (podawania liczby elementów danego zbioru) a także ustalania kolejności. Pojęcie liczby naturalnej jest jednym z najstarszych i najbardziej abstrakcyjnych pojęć, co nie przeszkadza nam sprawnie się nimi posługiwać. Dysponując jedynką, łatwo jest otrzymać wszystkie inne liczby naturalne. Jak? Ano trzeba tylko cierpliwie dodawać. Dziesiętny pozycyjny zapis liczby Każdy bez trudu powie jaką liczbę przedstawia zapis, i czemu liczba mimo iż składa się z tych samych cyfr nie jest jej równa. Dzieje się tak gdyż liczy się pozycja na której stoi dana cyfra w liczbie. Układ zapisywania liczb nazywamy dlatego pozycyjnym. To iż liczbę czytamy CZTERYSTA SZEŚĆDZIESIĄT OSIEM, wynika iż liczymy w układzie dziesiątkowym. znaczy 4 SETKI+6 DZIESIĄTEK+8 JEDNOŚCI. A zatem idąc w zapisie od prawej mamy jedności (), dziesiątki (), setki ( ), tysiące ( ) itd. Nietrudno zgadnąć iż wybór liczby został podyktowany po prostu liczbą palców u rąk. Przykładem systemu o innej podstawie niż jest ukochany przez komputery system dwójkowy. Nie będę go szerzej omawiał ale warto przypomnieć iż liczby w nim zapisane składają się z i, jest to dokładnie to co uwielbiają komputery. Przykładem z kolei systemu nie będącego systemem pozycyjnym jest system rzymski. W systemie tym używane jest 7 znaków I, V, X, L, C, D i M, ale odczytanie np. co za liczba kryje się pod zapisem DCCCXXXIX zajmuje naprawdę sporo czasu (odpowiedź, jest to liczba 839). Podzielność liczb naturalnych Definicja. Liczbę naturalną nazywamy dzielnikiem liczby naturalnej wtedy i tylko wtedy, gdy istnieje liczba naturalna taka, że =. Fakt ten zapisujemy symbolicznie. Nietrudno stwierdzić, że jest dzielnikiem każdej liczby naturalnej, a każda liczba naturalna jest swoim własnym dzielnikiem. Jeżeli to mówimy, że jest wielokrotnością. Przykładowo liczba 18 ma 6 dzielników:,,,,, i oczywiście nieskończenie wiele wielokrotności, np.,,,, itd. Każdy pewnie co oznacza, że liczba jest liczbą parzystą. Po prostu to, że. Jeśli nie dzieli, wówczas jest liczbą nieparzystą. Aby sprawdzić czy nie musimy zawsze wykonywać dzielenia. W przypadku gdy jest jedną z liczb:,,,,, możemy wykorzystać tak zwane cechy podzielności. Liczba jest podzielna przez: jeżeli na końcu ma cyfrę:,,,, lub. Przykłady:,,, jeżeli suma cyfr jest podzielna przez 3. Przykłady:,,,. jeżeli dwie ostatnie cyfry tworzą liczbę podzielną przez 4. Przykłady:,,. jeżeli na pozycji jedności ma cyfrę 0 lub 5. Przykłady:,,. gdy dzieli się przez 2 i przez 3. Przykłady:,,. jeżeli suma jej cyfr tworzy liczbę podzielną przez 9. Przykłady:,,. gdy dzieli się przez 2 i przez 5 (czyli na końcu ma 0). Przykłady:,,. 1

Cechy podzielności ułatwiają szukanie dzielników. Np. liczba dzieli się przez, przez (suma cyfr 18), przez (28 dzieli się przez 4), przez (bo dzieli się przez 2 i przez 3), przez (suma cyfr 18). Oczywiście nie są to wszystkie dzielniki (jakie wyznaczyć pozostałe?). Liczby pierwsze i złożone Liczba pierwsza jest liczbą naturalną posiadającą dokładnie dwa różne dzielniki: jeden oraz samą siebie. Przykłady:,,,,,,,,,, Istnieje nieskończenie wiele liczb pierwszych. (Uwaga: 1 nie jest liczbą pierwszą gdyż posiada tylko jeden dzielnik, a nie dwa różne). Liczba złożona to liczba posiadająca więcej niż 2 różne dzielniki. (1 nie jest ani liczbą pierwszą ani złożoną). Rozkład liczby na czynniki pierwsze Każdą liczbę można zapisać za pomocą iloczynu liczb pierwszych. Na przykład: =, =, =. Algorytm rozkładu liczby na czynniki podam na przykładzie liczby. Po lewej stronie zapisuję daną liczbę (w tym przypadku 1296). Po prawej będę zapisywał kolejne liczby pierwsze, przez które dzieli się liczba 1296. I tak: 1296 dzieli się przez 2 (w kółku), rezultat 648 zapisuję pod spodem. 648 dzieli się przez 2 co daje 324. 324 dzieli się przez 2, co daje 162. 162 dzieli się przez 2 co daje 81. 81 dzieli się przez 3, co daje 27. 27 dzieli się przez 3 co daje 9. Wreszcie 9 dzieli się przez 3 co daje 3. 3 dzieli się przez 3 co daje 1. W prawej kolumnie mamy czynniki pierwsze rozkładu liczby 1296, co zapisujemy: =. Największy wspólny dzielnik Największy wspólny dzielnik (,) dwóch liczb naturalnych i to największa liczba naturalna dzieląca każdą z tych liczb. Na przykład: (,)=. 24 to największa liczba dzieląca zarówno 72 jak i 48. Algorytm znajdowania największego wspólnego dzielnika podam na przykładzie liczb i. Znajduję rozkład na czynniki pierwsze obu liczb. Następnie znajduję wspólne czynniki pierwsze. Są to i. (,) to iloczyn =. Nietrudno zauważyć, że jest to największy dzielnik obu liczb gdyż występuje jako największy czynnik obydwu. Najmniejsza wspólna wielokrotność Najmniejsza wspólna wielokrotność (,) dwóch liczb naturalnych i to taka najmniejsza liczba, która dzieli się zarówno przez jak i. Na przykład: (,)=. Algorytm znajdowania najmniejszej wspólnej wielokrotności dzielnika podam na przykładzie liczb i. Znajduję rozkład na czynniki pierwsze obu liczb. Następnie znajduję wspólne czynniki pierwsze. Na koniec mnożę jedną z liczb przez iloczyn czynników drugiej liczby, które nie występują w pierwszej. W naszym przykładzie (,)= =. Oczywiście iloczyn dwóch liczb jest równocześnie ich wspólną wielokrotnością, choć nie zawsze najmniejszą. 2

Liczby całkowite Liczbami całkowitymi nazywamy znane nam już liczby naturalne,,,..., liczby ujemne,,,... oraz liczbę. Liczby,,,... można sobie wyobrazić jako liczby naturalne z dołączonym znakiem minus. Wszystkie liczby całkowite (a jest ich nieskończenie wiele) możemy ustawić na prostej, którą będziemy nazywać osią liczbową. W jednym z jej punktów (obojętnie którym) umieszczamy liczbę. Wystarczy teraz obrać gdziekolwiek (po prawej) drugi punkt i umieścić w nim liczbę 1. Gdzie będą pozostałe liczby całkowite? Wiadomo. Będą rozmieszczone równomiernie na całej prostej w tej samej odległości od siebie. Ujemne będą po lewej stronie od, a dodatnie po prawej. O osi liczbowej będziemy jeszcze mówić. Oś liczbowa Jak widać z powyższego rysunku liczby całkowite można dobrać w pary: i, i, i, itd. Są to przykłady liczb parami przeciwnych. A zatem jeśli mamy liczbę, liczbę do niej przeciwną oznaczamy. I tak np. liczbą przeciwną dla jest, a liczbą przeciwną do liczba. Nie należy jednak myśleć, że zapis oznacza zawsze liczbę ujemną. Jeżeli np. = to ( )= (liczba dodatnia). Liczbą przeciwną do jest, co zapisujemy =. Dodawanie i odejmowanie liczb całkowitych Chyba każdy umie dodawać do siebie liczby naturalne. Z odejmowaniem jest trochę trudniej. Oczywiście nietrudno wykonać działanie =, ale co będzie rezultatem działania? Właśnie po to by wykonywać takie działania wymyślono liczby całkowite. Zresztą liczby całkowite najwygodniej wyobrazić sobie jako strzałki na osi liczbowej. Strzałki w prawo to liczby naturalne, w lewo liczby całkowite ujemne, strzałka, której początek i koniec pokrywają się, to liczba. Otóż dodawanie i odejmowanie liczb odpowiada składaniu ze sobą strzałek. I tak np. gdy chcemy wykonać działanie, idziemy w prawo o 7 jednostek (liczba ), a następnie w lewo o 5 (liczba ). Wynik odpowiada właśnie skierowanej w prawo strzałce o końcu w punkcie 2. Podobnie dla działania, idziemy w prawo o 5 jednostek (liczba ), a następnie w lewo o 7 (liczba ). Wynik odpowiada właśnie skierowanej w lewo strzałce o końcu w punkcie. Dzięki takiemu podejściu możemy stwierdzić iż dodawanie i odejmowanie to te same działania. Mnożenie i dzielenie liczb całkowitych Każdy potrafi pomnożyć przez siebie liczby naturalne (kłania się upiorna tabliczka mnożenia). Zresztą mnożenie to też żadne nowe działanie. No bo właściwie co to znaczy np. pomnożyć przez? Ano to samo co 5 razy dodać do siebie 4 albo 4 razy dodać do siebie 5. Wynik wynika właśnie z tego iż ++++= jak również +++=. Każdy widzi przecież, że sadząc po 4 drzewa w 5 rzędach w istocie posadził po 5 drzew w 4 rzędach. No ale jaki będzie rezultat działania razy ( )? Otóż, przypominając sobie działania na strzałkach, jest to 4 krotne odłożenie strzałki o długości 5 skierowanej w lewo. Wynikiem będzie oczywiście skierowana w lewo strzałka o długości 20 (czyli liczba ). Na koniec pada pytanie: a jak pomnożyć ( ) przez ( )? Przyjmiemy na razie bez dowodu, że ( ) ( )=, gdyż iloczyn dwóch (i ogólnie parzystej liczby) liczb ujemnych jest liczbą dodatnią. Z dzieleniem jest dokładnie tak samo (jeśli chodzi o znak). Przykłady: ( ) ( )= ( ) ()= ( ) ( )= ( ) ()= 3

Ułamki Fajnie jest gdy dzielimy przez siebie dwie liczby całkowite i wynik jest również liczbą całkowitą. No bo na przykład = a =. Ale co będzie gdy na przykład chcemy obliczyć ile wynosi? Że nie jest to liczba całkowita to widać. Otóż aby takie działania były możliwe stworzono właśnie ułamki. UŁAMKI TO PO PROSTU LICZBY. Ułamkiem o liczniku i mianowniku ( ) nazywamy liczbę odpowiadającą właśnie rezultatowi działania. A teraz najważniejsze! DZIELENIE PRZEZ JEST NIEWYKONALNE! stąd nie istnieją ułamki o mianowniku. Natomiast ułamek o mianowniku jest to po prostu liczba równa jego licznikowi ( =). Ułamek można najprościej zinterpretować jako podzielenie pewnej wielkości na części i wzięcie takich części. Na przykład podzielenie tabliczki czekolady na 4 części i wzięcie 3 z nich, powoduje w istocie wzięcie tabliczki czekolady. Nietrudno zgadnąć iż to samo można uzyskać dzieląc tabliczkę na 8 części i biorąc 6, na 16 części i biorąc 12 itd. Za każdym razem będziemy w posiadaniu tabliczki. Widać stąd, że = = Ogólnie, = gdy =. Skoro na przykładzie czekolady widać, iż istnieje nieskończenie wiele identycznych ułamków, należałoby zapytać jak z danego ułamka otrzymać ułamek jemu równy? Służy do tego operacja skracania i rozszerzania ułamków. Skracaniem ułamka nazywamy podzielenie licznika i mianownika przez ich dowolny wspólny dzielnik (różny od 1 dlaczego?). Rozszerzanie jest jeszcze prostsze, gdyż polega na pomnożeniu licznika i mianownika przez dowolną tę samą liczbę całkowitą (różną od 0). I tak, ułamek można skrócić dzieląc licznik i mianownik przez, otrzymując a następnie przez otrzymując. Oczywiście tego ostatniego skrócić się już nie da (taki ułamek nazywamy nieskracalnym). Działania na ułamkach Wspomnieliśmy, że ułamki są liczbami, a liczby można porównywać, dodawać, odejmować, mnożyć i dzielić. Otóż, > > gdy >, a < gdy <. Przykład: < gdyż < Mnożenie ułamków omówię na początku gdyż jest najprostsze. Ułamki mnożymy mnożąc liczniki i mianowniki. =. Przykład: = = Dzielenie ułamków również nie jest trudne. Otóż ułamki dzielimy następująco: = =. Przykład: = = = Dodawanie (odejmowanie) ułamków jest trudniejsze. Jeżeli ułamki mają takie same mianowniki to dodajemy liczniki, a mianownik zostawiamy bez zmian. Przykład: += =. Jeżeli ułamki mają różne mianowniki, to najpierw należy sprowadzić je do wspólnego mianownika, a dalej jak wyżej. Aby sprowadzić ułamki do wspólnego mianownika, należy znaleźć najmniejszą wspólną wielokrotność tych mianowników. Wiadomo teraz po co była nam NWW! Przykład: Chcemy obliczyć +. Obliczamy (,)=. Następnie rozszerzamy ułamki: =, =, += Liczby wymierne i działania na nich Liczbą wymierną jest każda liczba, którą można przedstawić w postaci ułamka, gdzie i ( ), są liczbami całkowitymi. Wszystkie pomiary wykonujemy właśnie w tych liczbach, zresztą nie tylko 4

pomiary, wszelkie rachunki wykonywane są w praktyce wyłącznie w obrębie liczb wymiernych. Liczby wymierne możemy dodawać, odejmować, mnożyć i dzielić. Jeśli bowiem liczba jest różna od zera, to nie ma liczby, która byłaby wynikiem podzielenia liczby przez gdyż jeśli =, to = (a miało być ). Wynikiem operacji mogłaby być dowolna liczba gdyż jeśli i =, to = dla dowolnej liczby. Prawa dotyczące działań na liczbach. Dla każdych liczb i : + = + (przemienność dodawania) = (przemienność mnożenia) (+)+ = +(+) (łączność dodawania) ( ) = ( ) (łączność mnożenia) (+)= + (rozdzielność mnożenia względem dodawania) ( )= (rozdzielność mnożenia względem odejmowania) + = (dodanie zera do dowolnej liczby nie zmienia wyniku) = (pomnożenie dowolnej liczby przez 1 nie zmienia wyniku) +( ) = (suma liczby i liczby przeciwnej równa się zero) =, (iloczyn liczby (różnej od zera) przez jej odwrotność wynosi jeden) Jeżeli = to = lub = (aby iloczyn dwóch liczb był zerem wystarczy by jedna z nich była zerem) Obliczenia procentowe Procent (%) to po prostu ułamek 5 % z danej liczby wynosi. A zatem %= =, %= =, %=. Na przykład % z wynosi = = = Jeżeli liczba stanowi % nieznanej liczby to =. Na przykład jeśli stanowi % z liczby to = = Jeżeli mamy dwie liczby i to liczba =( )% liczby. Na przykład liczba stanowi % liczby 400 bo = %=% Potęgi o wykładniku naturalnym Potęgowanie to po prostu mnożenie przez siebie danej liczby określoną ilość razy. Zapisujemy to następująco: = i tych jest n. Na przykład = =. Liczbę nazywamy podstawą potęgi a jej wykładnikiem. Oczywiście =. Na potęgach można wykonywać działania. I tak: = Na przykład = = = : = Na przykład : = = = =( ) Na przykład =( ) = = ( ) = Na przykład ( ) = = =

Potęgi o wykładniku całkowitym ujemnym Jeżeli i jest liczbą naturalną to =. Na przykład = =. Na potęgach o wykładniku ujemnym obowiązują wszystkie podane wyżej działania (jak dla dodatnich). Pierwiastki Jeżeli >0 i >1 to pierwiastkiem stopnia z liczby nazywamy taką liczbę, że =. Pierwiastek stopnia z liczby oznaczamy. Jeżeli = to w zapisie pomijamy i piszemy. Przykłady: =, bo =, =, bo =, =, bo ( ) = Nietrudno zauważyć, że nie z każdej liczby da się łatwo wyciągnąć pierwiastek. Już liczba sprawia kłopoty. Podobnie, i wiele wiele innych. Jednak takie pierwiastki istnieją i są liczbami niewymiernymi. Będziemy je zapisywać właśnie w postaci,,, i zajmiemy się nimi później. Liczbą niewymierną jest również dobrze znana liczba. Ma ona jednak inny typ niewymierności. Wszystkie liczby wymierne i niewymierne nazywać będziemy liczbami rzeczywistymi. Kolejność wykonywania działań Matematyka to sztuka ale jak w każdej sztuce konieczne jest rzemiosło. Tym rzemiosłem jest wykonywanie działań. Opiszę to na przykładzie. Przypuśćmy, że mamy obliczyć wartość wyrażenia: ( ) + Pierwszeństwo mają działania w nawiasach. W nich z kolei zaczynamy od potęgowania, następnie wykonujemy mnożenie, a następnie dodawanie. Na końcu rezultat musimy podnieść do potęgi. A zatem =, ( ) =. W nawiasie mamy zatem + =. Na koniec ( ) = Zapamiętajmy najpierw wykonujemy potęgowanie, potem mnożenie i dzielenie (w kolejności zapisu), a następnie dodawanie i odejmowanie (też w kolejności zapisu). Kolejność zapisu oznacza, że : =, gdyż najpierw dzielimy 4 przez 5 a następnie wynik mnożymy przez 2. Gdybyśmy operacje wykonali w innej kolejności otrzymalibyśmy inny (nieprawidłowy) rezultat. Oś liczbowa Wygodnie jest utożsamiać liczby rzeczywiste z punktami na prostej. Istotnie punktów na prostej jest nieskończenie wiele, podobnie jak liczb. Oprócz tego każde dwie liczby możemy porównać, odpowiada to położeniu punktów, ten bardziej w prawo będzie odpowiadał liczbie większej. Na koniec, pomiędzy dwie dowolne liczby można wstawić trzecią, dotyczy to również punktów. Nietrudno stwierdzić, że wystarczy ustalić położenie 0 i 1 by reszta liczb ułożyła się sama. Położenie liczb wymiernych (ułamków) ustalić łatwo (patrz niżej), położeniem liczb niewymiernych zajmiemy się później. Znajdowanie liczb wymiernych na osi liczbowej Nietrudno stwierdzić, że znajdowanie dowolnej liczby wymiernej sprowadza się do umiejętności podzielenia odcinka na tyle części jaka liczba znajduje się w mianowniku ułamka. Przypuśćmy, że chcemy wskazać, gdzie na osi liczbowej znajduje się ułamek. Jeżeli zatem podzielimy odcinek [,] na 5 części i weźmiemy z nich 4 to otrzymamy właśnie szukany ułamek. Aby podzielić odcinek na 5 6

części, w punkcie 0 kreślimy drugi dowolnej długości odcinek i odkładamy na nim 5 jednakowej długości odcinków. Robimy to oczywiście za pomocą cyrkla. Ostatni punkt łączymy odcinkiem z punktem 1, a następnie na koniec prowadzimy odcinki równoległe (w jaki sposób?) do ostatniego odcinka, przechodzące przez kolejno odłożone punkty. Nie będziemy w tej chwili dowodzić (choć wszyscy wiemy, że chodzi o twierdzenie Talesa), że nasz odcinek [,] zostanie w ten sposób podzielony na 5 części i ustalenie położenia ułamka jest dziecinnie proste. Oczywiście konstrukcja działa dla dowolnego ułamka, tyle, że na przykład znalezienie ułamka napotkałoby pewne problemy natury technicznej Powiedzieliśmy sobie, że pomiędzy dowolne dwa różne punkty na prostej można wstawić trzeci. Wynika to z faktu, że punkt nie zajmuje miejsca, a zatem jeśli punkty są różne to zawsze pomiędzy nimi jest trochę miejsca na wstawienie no właśnie wstawienie czegoś co miejsca nie zajmuje. No dobrze, ale skoro każdemu punktowi odpowiada jakaś liczba (niekoniecznie wymierna), to znaczyłoby że pomiędzy każde dwie liczby można wstawić trzecią. Jak? Ano przypuśćmy, że mamy dwie liczby wymierne i. Chcemy wstawić pomiędzy nie liczbę, tak by znajdowała się w połowie drogi, czyli spełniona była równość =. Ponieważ znamy i, to mamy równanie z jedną niewiadomą, którą to możemy prosto wyliczyć. Przekształcamy: +=+ co daje += i =. Ostatnia równość oznacza, że jest średnią arytmetyczną liczb i, a dla każdych liczb istnieje taka średnia. Na przykład: pomiędzy ułamek i wstawmy kolejny. Korzystamy z wyprowadzonego wzoru = = =. 7