Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 5, grupa zaawansowana (7..009) Gry matematyczne. Na polua szachownicy8 8 stoi król. W każdym ruchu można przesunąć króla o jedno pole do góry, o jedno pole w prawo, lub o jedno pole po przekątnej w prawo i do góry. Wygrywa ten z graczy, który doprowadzi króla na pozycjęh8. Dla którego z graczy (rozpoczynającego, czy jego przeciwnika) istnieje strategia wygrywająca i jaka to strategia? Rozwiązanie. Będziemy zaznaczać na szachownicy kolejne pola: jeżeli prowadzą do wygranej - znakiem +, jeżeli prowadzą do przegranej - znakiem -. Na początek postawmy + na miejscuh8, gdyż postawienie króla na tym polu oznacza naszą wygraną. Oczywiście stawiając króla na jednym z pól: H7, G8, G7 przegrywamy, gdyż z istnieje z nich ruch na wygrywające pole H8. Oznaczamy więc te pola znakami -. 8 - + 7 - - 6 5 Z polaf8 można iść tylko na poleg8, które ma znak -. Zatem jeżeli postawiliśmy króla naf8, to mamy wygraną. Postawmy więc na tym polu znak +. To
samo możemy zrobić dla polah6, więc na nim też stawiamy +. 8 + - + 7 - - 6 + 5 Wszystkie pola, z których można dojść na pole ze znakiem + prowadzą do przegranej. Takimi polami sąe8,e7,f7,g6,g5,h5. Stawiamy na nich znaki -. 8 - + - + 7 - - - - 6 - + 5 - - Z póld8,f6,h możemy przejść do pól ze znakiem -. Jeżeli więc staniemy na tych polach, to jesteśmy w stanie wygrać. Stawiamy na tych polach znaki +. 8 + - + - + 7 - - - - 6 + - + 5 - - + Jak poprzednio stwierdzamy, że wszystkie pola, z których można dojść do pól ze znakiem +, prowadzą do przegranej. Zaznaczamy więc znaki - na polach C8,C7,D7,E6,E5,F5,G,G,H.
8 - + - + - + 7 - - - - - - 6 - + - + 5 - - - - - + - - Wynika z tego, że na polachb8,d6,f,h możemy postawić znak +. 8 + - + - + - + 7 - - - - - - 6 + - + - + 5 - - - - + - + - - + Zatem na polacha8,a7,c6,c5,d5,e,e,f,g,g,h stawiamy znaki -. 6 - + - + - + 5 - - - - - - - + - + - - - - - + - - Czyli na polachb6,d,f możemy postawić +. 6 + - + - + - + 5 - - - - - - + - + - + - - - - + - + - -
I analogicznie jak poprzednio, na polacha6,a5,b5,c,c,d,e,e,f stawiamy znaki -. 6 - + - + - + - + 5 - - - - - - - - - + - + - + - - - - - - - + - + - - - - Stawiamy teraz znaki + na polachb,d, zaś znaki - na polacha,a,b,c,c,d. 6 - + - + - + - + 5 - - - - - - - - - + - + - + - + - - - - - - - - - + - + - + - - - - - - Pozostaje nam jeszcze postawić znak + na polub i znaki - na polacha,a,b. Mamy więc opisaną całą szachownicę. 6 - + - + - + - + 5 - - - - - - - - - + - + - + - + - - - - - - - - - + - + - + - + - - - - - - - - Ponieważ na polu A stoi znak -, to dla gracza rozpoczynającego istnieje strategia wygrywająca. Wystarczy, aby w swoim pierwszym ruchu przesunął on króla na poleb. Wtedy przeciwnik musi wybrać jakieś pole ze znakiem -, a strategia wygrywająca dla gracza rozpoczynającego polega na przesuwaniu w każdym ruchu króla na pole ze znakiem +.. Do pudełka włożono 05 żetonów. W każdym ruchu gracz może wziąć z niego nie więcej niż n żetonów, gdzienjest liczbą żetonów, które są w tym momencie w pudełku, ale musi jednak wziąć co najmniej żeton. Wygrywa ten,
który opróżni pudełko. Dla którego z graczy istnieje strategia wygrywająca i jaka to strategia? Rozwiązanie. Łatwo zauważyć, że jeżeli zostanie tylko jeden żeton, to gracz, który wykonuje następny ruch wygrywa. Jeśli zatem zostaną dokładnie dwa żetony, to ponieważ można zabrać tylko jeden z nich, trzeba doprowadzić do sytuacji, gdzie zostaje. Wobec tego, jeżeli zostaną, gracz przegrywa. Jeśli zostaną żetony, to biorąc jeden doprowadzamy do sytuacji, kiedy zostają. Jest to zatem sytuacja wygrywająca. Jeżeli zostaną, to możemy wziąć dwa z nich, doprowadzając do sytuacji przegrywającej z dwoma żetonami. Wobec tego to również jest sytuacja wygrywająca. Oznaczmy indeksami W liczby wygrywające, a indeksami P liczby przegrywające. Mamy więc: W, P, W, W. Postępując dalej w ten sposób widzimy, że przy pięciu żetonach mamy sytuację przegrywającą, bo można wziąć z nich lub żetony, a więc doprowadzimy do jednej z sytuacji wygrywających - W lub W. Stąd przy sześciu lub siedmiu żetonach mamy sytuację wygrywającą, jest więc: 5 P,6 W,7 W. Analizując dalej zadanie w opisany powyżej sposób otrzymujemy następujący ciąg: 8 P,9 W,0 W, W, P, W, W,5 W,6 W,7 P,8 W,9 W,0 W, W... Łatwo teraz wykryć prawidłowość z jaką pojawiają się liczby przegrywające. Mianowicie, kolejnymi liczbami przegrywającymi będą:,8,,,8,56,65,7,8,9,05,... Ponieważ 05 jest liczbą przegrywającą, widzimy, że strategia wygrywająca istnieje dla drugiego gracza. Mianowicie, po każdym kolejnym ruchu pierwszego gracza musi on sprowadzić liczbę pozostałych żetonów do kolejnej liczby przegrywającej - 9, 8, itd. aż doprowadzi do liczby. Wtedy w ostatnim ruchu rozpoczynający bierze jeden żeton, a drugi gracz ostatni pozostały żeton, kończąc grę i wygrywając.. Na stole leży 5 patyczków. Dwie osoby, na przemian, biorą, lub patyczki, tak długo, aż wszystkie zostaną zabrane ze stołu. Dla którego z graczy istnieje strategia wygrywająca i jaka to strategia? Rozwiązanie. Strategię wygrywającą ma ten gracz, który w przedostatnim ruchu może zostawić patyczki. Przeciwnik zostawia wówczas co najmniej, ale co najwyżej patyczki, więc nasz gracz bierze wszystkie patyczki i wygrywa. Aby zapewnić sobie możliwość pozostawienia patyczków, w poprzednim ruchu powinien zostawić 8 i postąpić tak: jeśli przeciwnik zabierze k patyczków, to on zabiera k. Liczbami pozostawionymi we wcześniejszych ruchach powinny być kolejno:, 6, 0,. Widzimy, że pierwszy gracz ma strategię wygrywającą i w pierwszym ruchu powinien zabrać jeden patyczek, a dalej postępować w opisany sposób. 5
. Na stole leżą trzy stosiki zapałek, w jednym, w drugim 5, a w trzecim 7 zapałek. W każdym ruchu gracz wybiera jeden stosik i dzieli go na dwa mniejsze. Przegrywa ten, kto już nie jest w stanie wykonać żadnego ruchu. Dla którego z graczy istnieje strategia zapewniająca wygraną? Rozwiązanie. Zauważmy, że po każdym ruchu liczba stosików zwiększa się o jeden. Na początku gry mamy stosiki, na końcu 5. Niezależnie od sposobu gry i strategii grających, gra skończy się dokładnie po ruchach. Łatwo policzyć, że ostatni, wygrywający ruch, wykona gracz który grał jako drugi. Zatem niezależnie od sposobu gry, rozpoczynający przegra! 6