T R I B O L O G I A 97

Podobne dokumenty
OCENA WPŁYWU POTENCJAŁU ELEKTRYCZNEGO INDUKOWANEGO W UKŁADZIE MIĘDZYFAZOWYM OBRACAJĄCY SIĘ WAŁ OLEJ USZCZELNIENIE WARGOWE NA MOMENT HAMUJĄCY

QUASI-ELEKTROREOLOGICZNE WŁAŚCIWOŚCI WYBRANYCH SILNIKOWYCH OLEJÓW BAZOWYCH

WPŁYW POLA ELEKTRYCZNEGO NA TARCIE WYBRANYCH ELASTOMERÓW PO STALI W ŚRODOWISKU SILNIKOWYCH OLEJÓW BAZOWYCH

Paweł Rózga, Marcin Stanek Politechnika Łódzka Instytut Elektroenergetyki

WPŁYW PROMIENIOWANIA ULTRAFIOLETOWEGO NA LEPKOŚĆ OLEJÓW SMAROWYCH

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY POWIERZCHNIOWEJ CRN W WARUNKACH TARCIA MIESZANEGO

DIAGNOSTYKA INTENSYWNOŚCI ZUŻYCIA OLEJU SILNIKOWEGO W CZASIE EKSPLOATACJI

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

WPŁYW DODATKU NA WŁASNOŚCI SMAROWE OLEJU BAZOWEGO SN-150

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, maja 1997 r.

Ewidentne wydłużenie czasu eksploatacji maszyn i urządzeń w przemyśle w wyniku zastosowania produktów z grupy Motor-Life Professional

Laboratorium. Hydrostatyczne Układy Napędowe

WPŁYW NIEKONWENCJONALNYCH DODATKÓW: α BN, SFR I POLY TFE NA WŁAŚCIWOŚCI SMARNOŚCIOWE I REOLOGICZNE OLEJU BAZOWEGO

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2

Wpływ dodatku Molyslip 2001E na właściwości. przeciwzużyciowe olejów silnikowych

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

UKŁADY KONDENSATOROWE

BADANIA NAD MODYFIKOWANIEM WARUNKÓW PRACY ŁOŻYSK ŚLIZGOWYCH SILNIKÓW SPALINOWYCH

TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

Podstawy fizyki wykład 8

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Lekcja 40. Obraz graficzny pola elektrycznego.

Q = 0,005xDxB. Q - ilość smaru [g] D - średnica zewnętrzna łożyska [mm] B - szerokość łożyska [mm]

Ćwiczenie: "Silnik indukcyjny"

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Wykład 18 Dielektryk w polu elektrycznym

WYKORZYSTANIE SYSTEMU PD SMART DO PORÓWNANIA WYŁADOWAŃ NIEZUPEŁNYCH W OLEJU MINERALNYM I ESTRZE SYNTETYCZNYM

Badanie prądnicy prądu stałego

INVESTIGATION OF INFLUENCE OF UTILIZATION DEGREE OF THE SYNTETIC MOTOR OIL ON FRICTIONAL PARAMETERS

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 94 Electrical Engineering DOI /j

Klasyczny efekt Halla

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Teoretyczny model panewki poprzecznego łożyska ślizgowego. Wpływ wartości parametru zużycia na nośność łożyska

WPŁYW PALIWA RME W OLEJU NAPĘDOWYM NA WŁAŚCIWOŚCI SMARNE W SKOJARZENIU STAL ALUMINIUM

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ćw. 5 BADANIE I OCENA DZIAŁANIA PIERŚCIENI TYPU SIMMERING STOSOWANYCH DO USZCZELNIEŃ WAŁÓW W OBUDOWIE

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

Badania tribologiczne dodatku MolySlip 2001G

PORÓWNANIE SKUTECZNOŚCI DZIAŁANIA WYBRANYCH BIODODATKÓW I KLASYCZNEJ WIELOFUNKCYJNEJ SUBSTANCJI USZLACHETNIAJĄCEJ

ANALIZA ZALEŻNOŚCI POMIĘDZY CECHAMI DIELEKTRYCZNYMI A WŁAŚCIWOŚCIAMI CHEMICZNYMI MĄKI

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Łódź, maja 1997 r. WPŁYW RODZAJU DODATKU USZLACHETNIAJĄCEGO OLEJ NA PRZEBIEG PROCESU SAMOSMAROWANIA ŁOŻYSKA POROWATEGO

Ćwiczenie: "Silnik prądu stałego"

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10

Wykład 2 Silniki indukcyjne asynchroniczne

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH POLIAMIDU PA6 I MODARU

DOŚWIADCZENIE MILLIKANA

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2 W OBECNOŚCI PREPARATU EKSPLOATACYJNEGO O DZIAŁANIU CHEMICZNYM

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1

Pomiary rezystancji izolacji

INFLUENCE OF POWERING 1104C PERKINS WITH MIXTURE OF DIESEL WITH THE ADDITION OF THE ETHANOL TO HIS SIGNS OF THE WORK

Badanie oleju izolacyjnego

Innowacyjne silniki hydrauliczne zasilane emulsją

LABORATORIUM MECHANIKI PŁYNÓW

Badania tribologiczne poprzecznych łożysk ślizgowych z wykorzystaniem mikro-rowków smarnych

Wpływ dodatku Panther na toksyczność spalin silnika ZI

OCENA PORÓWNAWCZA ZUśYCIA PALIWA SILNIKA CIĄGNIKOWEGO ZASILANEGO BIOPALIWEM RZEPAKOWYM I OLEJEM NAPĘDOWYM

CZTEROKULOWA MASZYNA TARCIA ROZSZERZENIE MOŻLIWOŚCI BADAWCZYCH W WARUNKACH ZMIENNYCH OBCIĄŻEŃ

ZWIĄZKI MIĘDZY CECHAMI ELEKTRYCZNYMI A AKTYWNOŚCIĄ WODY ŚRUTY PSZENICZNEJ

ROLA RODZAJU CIECZY ELEKTROIZOLACYJNEJ W ROZKŁADZIE TEMPERATURY TRANSFORMATORA

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

BADANIE WPŁYWU DODATKU PANTHER 2 NA TOKSYCZNOŚĆ SPALIN SILNIKA ZI

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Niższy wiersz tabeli służy do wpisywania odpowiedzi poprawionych; odpowiedź błędną należy skreślić. a b c d a b c d a b c d a b c d

Hydrol L-HM/HLP 22, 32, 46, 68, 100, 150

Wykład 8 ELEKTROMAGNETYZM

ELEKTROTECHNIKA I ELEKTRONIKA

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

Analiza trwałości eksploatacyjnej oleju silnikowego

F = e(v B) (2) F = evb (3)

NOWOŚĆ. SATELITOWE SILNIKI HYDRAULICZNE typu SMW Zasilanie: Emulsja HFA, oleje hydrauliczne

BADANIA SILNIKA BLDC PRZEZNACZONEGO DO HYBRYDOWEGO NAPĘDU BEZZAŁOGOWEGO APARATU LATAJĄCEGO

WPŁYW WYBRANYCH SMAROWYCH PREPARATÓW EKSPLOATACYJNYCH NA WŁAŚCIWOŚCI TRIBOLOGICZNE MATERIAŁÓW POLIMEROWYCH PODCZAS TARCIA ZE STALĄ

WPŁYW PARAMETRÓW UKŁADU NAPĘDOWEGO NA SKUTECZNOŚĆ SYNCHRONIZACJI SILNIKA DWUBIEGOWEGO

WPŁYW ODKSZTAŁCENIA WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI I STOPIEŃ UMOCNIENIA WARSTWY POWIERZCHNIOWEJ PO OBRÓBCE NAGNIATANEM

Badanie transformatora

2 K A T E D R A F I ZYKI S T O S O W AN E J

Zastosowanie metod dielektrycznych do badania właściwości żywności

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI

1 K A T E D R A F I ZYKI S T O S O W AN E J

prędkości przy przepływie przez kanał

PRACA INDUKCYJNEGO LICZNIKA ENERGII ELEKTRYCZNEJ W OBECNOŚCI POLA SILNEGO MAGNESU TRWAŁEGO

WPŁYW TEMPERATURY NA CECHY DIELEKTRYCZNE MIODU

BADANIA EKSPERYMENTALNE POLIMEROWEGO ŁOŻYSKA SMAROWANEGO WODĄ OKRĘTOWEGO WAŁU ŚRUBOWEGO

LABORATORIUM MECHANIKI PŁYNÓW

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary

Elektrostatyka, część pierwsza

Transkrypt:

4-2010 T R I B O L O G I A 97 Juliusz B. GAJEWSKI *, Marek J. GŁOGOWSKI ZALEŻNOŚĆ MOMENTU HAMUJĄCEGO OBRACAJĄCEGO SIĘ WAŁU OD REZYSTYWNOŚCI OLEJÓW KOMERCYJNYCH, BAZOWYCH CZYSTYCH I ICH MIESZANINY Z ZDDP ORAZ OD ZEWNĘTRZNEGO STAŁEGO POLA ELEKTRYCZNEGO DEPENDENCE OF THE BRAKING TORQUE OF A ROTATING SHAFT ON THE RESISTIVITY OF FORMULATED OILS, PURE BASE OILS AND THEIR BLENDS WITH ZDDP AND ON AN EXTERNAL DC ELECTRIC FIELD Słowa kluczowe: uszczelnienie wargowe, olej bazowy, olej smarny, moment hamujący, dialkiloditiofosforan cynku (ZDDP), pole elektryczne Key-words: lip seal, base oil, formulated oil, braking torque, zinc dialkyldithiophosphate (ZDDP), electric field Instytut Techniki Cieplnej i Mechaniki Płynów, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław.

98 T R I B O L O G I A 4-2010 Streszczenie W pracy przedstawiono wyniki pomiarów rezystywności olejów bazowych mineralnego i syntetycznego i ich mieszanin z dialkiloditiofosforanem cynku (ZDDP) oraz olejów komercyjnych dwóch świeżych i jednego zużytego w funkcji temperatury. Badano także wpływ zewnętrznego stałego pola elektrycznego otrzymanego wskutek przykładania stałego napięcia o różnych wartościach i polaryzacjach między uszczelnienie wargowe i obracający się uziemiony wał na jego moment hamujący w przypadku olejów bazowych bez i z dodatkiem ZDDP. Dodatkowo zaprezentowano w pracy wpływ rezystywności olejów komercyjnych na moment obrotowy wału dla różnych wartości i polaryzacji napięć stałych. WPROWADZENIE W różnych urządzeniach mechanicznych z obracającymi się elementami, takimi jak wały, podczas ich pracy występują znaczne straty energii w węzłach tarcia, czyli układach międzyfazowych: wał olej uszczelnienie. Moment hamujący obracających się wałów zależy, m.in. od: prędkości obrotowej wału, jego średnicy i chropowatości powierzchni, temperatury i rodzaju oleju, materiału i geometrii wargi uszczelnienia wargowego itd. Badania własne autorów [L. 1, 2] przeprowadzone na stanowisku do badań uszczelnień współpracujących z elementami wirującymi wykazały, że istnieje triboelektryzacja naturalna oleju podczas ruchu obrotowego wału. W zależności od rodzaju materiału i stanu powierzchni wału, materiału, z jakiego wykonano wargę uszczelnienia, rodzaju oleju i jego temperatury triboelektryzacja może osiągać różne wartości i znaki [L. 3]. Dodatkowym czynnikiem wpływającym na triboelektryzację oleju jest jego rezystywność. Od niej bowiem liniowo zależy czas relaksacji naładowanych cząstek znajdującej się w objętości oleju. Na wartość rezystywności, oprócz temperatury, duży wpływ ma również skład chemiczny bazy olejowej. Wszelkie dodatki lub produkty zużycia, znajdujące się w oleju, mogą również powodować zmiany wartości rezystywności. W wyniku triboelektryzacji w filmie olejowym powstaje nadmiarowy ładunek elektryczny, który indukuje w wale ładunek zwierciadlany. Pod wpływem działania siły Coulomba naelektryzowane cząstki oraz cząstki polarne są przyciągane do powierzchni wału. Można się spodziewać, że przy powierzchni wału następuje zwiększenie warstwy przyściennej i lokalnej gęstości oleju, a to może implikować wzrost momentu hamującego.

4-2010 T R I B O L O G I A 99 Ogólnie wiadomo, że naelektryzowana cząstka umieszczona w stałym polu elektrycznym porusza się z pewną prędkością zależną od wartości natężenia tego pola, a kierunek jej ruchu zależy od kierunku działania sił pola elektrycznego. Badania własne wykazały, że istnieje zależność między zewnętrznym polem elektrycznym wytworzonym w filmie olejowym i momentem hamującym wału, a wartość tego momentu zależy od zastosowanego oleju [L. 4] i rodzaju uszczelnienia wargowego [L. 5]. STANOWISKO BADAWCZE, MATERIAŁY I PROCEDURY POMIAROWE Stanowiska badawcze Do wyznaczenia rezystywności ρ olejów wykorzystano wzorcowy kondensator pomiarowy typu KP-4 zbudowany zgodnie z normą [L. 6]. Pomiary wykonywano za pomocą mostka RLC typu 7600 Plus oraz miernika izolacji MIC-2500. Pomiary momentu hamującego wykonywano na stanowisku do badań uszczelnień czołowych i wargowych [L. 4], wyposażonym w momentomierz typu T34ST oraz w system akwizycji danych. Materiały użyte w badaniach W badaniach wykorzystano oleje bazowe: mineralny LOTOS SAE 10/95 (A) i syntetyczny PAO 6 (B) oraz oleje komercyjne: świeże LOTOS 15W40 (C) i ESSO SAE 30 (D) oraz zużyty po przebiegu 15 000 km LOTOS 10W40 (E), a ich specyfikacje przedstawiono w Tabeli 1. Jako dodatek do olejów bazowych zastosowano dialkiloditiofosforan cynku (ZDDP) produkcji Lubrizol odpowiednio z dodatkiem 10% cynku i 9,5% fosforu. Tabela 1. Specyfikacja badanych olejów Table 1. Specification of the oils tested Lepkość kinematyczna (mm 2 s 1 ) przy 40ºC przy 100ºC A B C D E 30,4 38,0 5,2 5,9 30,2 5,8 112,6 14,8 103,0 12,0 99,6 14,6 Indeks lepkości ( ) 95 138 132 105 153 Gęstość przy 15ºC (kg m 3 ) 874 825 885 892 876 Rezystywność (Ω m) przy 40ºC przy 100ºC 1,6 10 11 2,6 10 11 1,5 10 7 6,9 10 7 4,5 10 7 8,7 10 9 6,4 10 10 1,9 10 6 9,5 10 6 3,1 10 6

100 T R I B O L O G I A 4-2010 W układzie międzyfazowym uszczelnienie wargowe olej obracający się wał zastosowano uszczelnienie fluorowe o średnicy 88 mm, którego rezystywność powierzchniowa w temperaturze pokojowej wynosi 10 8 Ω. Wał stalowy o średnicy 88 mm ma chropowatość 0,32 µm. Procedury pomiarowe Pomiary rezystywności ρ olejów wykonywano dla temperatury T w zakresie od 30 do 100ºC skokowo co 10ºC. Podczas tych pomiarów układ zasilano napięciem stałym o wartości 100 V. Wartości rezystywności otrzymano po przeliczeniu wyników z uwzględnieniem stałej kondensatora pomiarowego. Pomiary momentu hamującego M b wykonywano dla stałej prędkości obrotowej wału n równej 500 obr/min i stałych temperatur T olejów 70 i 90ºC. Aby wytworzyć stałe pole elektryczne między obracającym się wałem i wargą uszczelnienia, zastosowano wysokonapięciowy zasilacz prądu stałego z możliwością zmiany polaryzacji zacisków wyjściowych, które podłączono między uziemiony wał i pierścień usztywniający uszczelnienia. Ze względu na występujące zjawisko przebicia między wałem a uszczelnieniem ograniczono napięcie zasilania układu do wartości ±1500 V. Przy ustalonej prędkości obrotowej wału i stałej temperaturze oleju dokonywano pomiaru momentu hamującego M DC dla następujących wartości napięć U DC : 0, ±500, ±1000 i ±1500 V. Po odczekaniu około pięciu minut zmieniano polaryzację napięcia i ponownie mierzono moment hamujący dla powyższych napięć. Moment hamujący bez zewnętrznego pola elektrycznego jest oznaczany jako M b, natomiast z przyłączonym napięciem zewnętrznym U DC wytwarzającym stałe zewnętrzne pole elektryczne jako M DC. Używany w dalszej części pracy moment względny M r jest równy stosunkowi momentu hamującego M DC mierzonego w chwili oddziaływania zewnętrznego stałego pola elektrycznego w filmie olejowym do momentu hamującego M b, gdy napięcie U DC równe jest zero. WYNIKI BADAŃ I ICH DYSKUSJA Rezystywność elektryczna oleju Na Rys. 1 3 przedstawiono wyniki pomiarów rezystywności ρ w funkcji temperatury dla olejów bazowych i ich mieszaniny z 0,1 i 0,2% zawartością wagową ZDDP i dla olejów komercyjnych. We wszystkich przed-

4-2010 T R I B O L O G I A 101 stawionych przypadkach wzrost temperatury powodował zmniejszenie wartości rezystywności badanych olejów. Fakt ten jest związany ze wzrostem ruchliwości cząstek w objętości oleju, która zależy od lepkości dynamicznej oleju [L. 7]. ZDDP w temperaturze 80ºC ma rezystywność około cztery rzędy mniejszą od rezystywności badanych olejów bazowych. Dodanie ZDDP do oleju bazowego spowodowało zmniejszenie rezystywności całej mieszaniny. 12 12 11 10 11 10 9 30 40 50 60 70 80 90 100 T [ C] 9 30 40 50 60 70 80 90 100 T [ C] Rys. 1. Rezystywność oleju mineralnego A w funkcji temperatury dla różnej zawartości ZDDP: 0%, 0,1%, 0,2% Fig. 1. Resistivity vs. temperature for mineral oil A for different ZDDP contents: 0%, 0.1%, 0.2% 9 Rys. 2. Rezystywność oleju syntetycznego B w funkcji temperatury dla różnej zawartości ZDDP: 0%, 0,1%, 0,2% Fig. 2. Resistivity vs. temperature for synthetic oil B for different ZDDP contents: 0%, 0.1%, 0.2% 8 7 6 30 40 50 60 70 80 90 100 T [ C] Rys. 3. Rezystywność olejów komercyjnych w funkcji temperatury: C, D, E Fig. 3. Resistivity vs. temperature for commercial oils: C, D, E

102 T R I B O L O G I A 4-2010 Przebadane oleje komercyjne wykazały mniejszą rezystywność od olejów bazowych. Olej D, który jest używany w silnikach o małych wymaganiach smarowych, ma największą rezystywność, gdyż do jego wytworzenia używa się mniejszej liczby dodatków uszlachetniających niż w przypadku pozostałych olejów komercyjnych. Najmniejszą rezystywność wykazał mineralny olej C, w którego składzie jest objętościowo najwięcej dodatków. W zależności od objętości i rodzaju użytych dodatków uszlachetniających oraz produktów powstałych w oleju szczególnie pod wpływem wysokiej temperatury i ciśnienia podczas eksploatacji w silniku samochodowym (olej E), rezystywność oleju może ulec zmianie nawet o kilka rzędów wielkości. Moment hamujący Na Rys. 4 7 przedstawiono zależność momentu względnego M r w funkcji napięcia U DC dla stałej prędkości obrotowej wału n i olejów bazowych bez i z 0,1% zawartością wagową ZDDP. Aby można było porównać moment hamujący między badanymi olejami, wprowadzono wartość względną momentu M r. Na wykresach temperaturę oleju oznaczono następującymi symbolami graficznymi: 70 C i 90 C. Kolor czarny symboli oznacza ujemną polaryzację ( na uszczelnieniu), a kolor biały dodatnią polaryzację napięcia. 0 500 1000 1500 U DC [V] Rys. 4. Moment względny w funkcji napięcia dla oleju A Fig. 4. Relative braking torque vs. the absolute DC voltage value for the oil A 0 500 1000 1500 U DC [V] Rys. 5. Moment względny w funkcji napięcia dla oleju A z 0,1% wagową zawartością ZDDP Fig. 5. Relative braking torque vs. the absolute DC voltage value for the oil A and 0.1% ZDDP content

4-2010 T R I B O L O G I A 103 Na podstawie uzyskanych wyników można stwierdzić, że oddziaływanie zewnętrznego stałego pola elektrycznego w filmie olejowym daje największe zmiany momentu hamującego dla syntetycznego oleju bazowego zarówno bez, jak i z ZDDP, a najlepsze efekty zmniejszenia momentu hamującego obserwowano dla polaryzacji ujemnej napięcia U DC. 0 500 1000 1500 U DC [V] Rys. 6. Moment względny w funkcji napięcia dla oleju B Fig. 6. Relative braking torque vs. the absolute DC voltage value for the oil B 0 500 1000 1500 U DC [V] Rys. 7. Moment względny w funkcji napięcia dla oleju B z 0,1% wagową zawartością ZDDP Fig. 7. Relative braking torque vs. the absolute DC voltage value for the oil B and 0.1% ZDDP content Obserwowane zmiany momentu hamującego wywołane zewnętrznym stałym polem elektrycznym mogą być skutkiem przemieszczania się naładowanych i polarnych cząstek między elektrodami w obu kierunkach oraz zmianami położenia dipoli przy powierzchniach wału i wargi uszczelnienia, przez co następuje zmiana koncentracji cząstek i lokalny wzrost lub spadek lepkości oleju. Na Rys. 8 10 przedstawiono zależność momentu względnego w funkcji rezystywności olejów komercyjnych. Na wykresach symbole graficzne oznaczają napięcie U DC : 500 V, 1000 V i 1500 V. Kolorem czarnym przedstawiono ujemną polaryzację napięcia, a kolorem białym polaryzację dodatnią. Otrzymane wyniki wskazują, że zmiany rezystywności poszczególnych olejów mają wpływ na moment hamujący M r podczas działania stałego zewnętrznego pola elektrycznego w filmie olejowym. Charakter zmian momentu hamującego może być, jak się przypuszcza, związany z gęstością i grubością warstwy olejowej (elektryczna warstwa podwójna)

104 T R I B O L O G I A 4-2010 przy powierzchni wału, a budowa tej warstwy zależy od właściwości fizycznych i chemicznych olejów. Dla olejów C i D największe zmiany momentu hamującego występują dla ujemnej polaryzacji napięcia. Wzrost rezystywności oleju C wpływa na zmniejszenie momentu hamującego M r, a dla oleju D obserwuje się zjawisko odwrotne. Bardzo małe zmiany momentu względnego dla zużytego oleju E w całym zakresie jego rezystywności mogą wynikać z dużej zawartości w nim metalicznych produktów zużycia powierzchni trących silnika. 6 7 8 Rys. 8. Moment względny w funkcji rezystywności oleju C Fig. 8. Relative braking torque vs. resistivity for the oil C 6 7 8 Rys. 9. Moment względny w funkcji rezystywności oleju D Fig. 9. Relative braking torque vs. resistivity for the oil D 6 7 8 Rys. 10. Moment względny w funkcji rezystywności oleju E Fig. 10. Relative braking torque vs. resistivity for the oil E

4-2010 T R I B O L O G I A 105 PODSUMOWANIE W oparciu o wyniki przeprowadzonych badań stwierdzono, że wartość rezystywności oleju zależy od rodzaju bazy olejowej oraz objętości i, jak się przypuszcza, liczby i rodzajów użytych dodatków uszlachetniających w blendowaniu z olejami bazowymi. Wytworzenie stałego pola elektrycznego w filmie olejowym powoduje spadek lub wzrost momentu hamującego wału albo może nie mieć na niego żadnego wpływu. Moment ten zależy od rodzaju oleju oraz dodatku ZDDP, a także od zwrotu wytworzonego pola elektrycznego. Efekt zastosowania stałego napięcia U DC w postaci zmian momentu hamującego M DC obracającego się wału można skorelować ze zmianami rezystywności badanych olejów. Lepsze zrozumienie mechanizmów zachodzących na lub przy powierzchni wału i wargi uszczelnienia oraz w samym filmie olejowym może umożliwić poprawę warunków pracy uszczelnienia wargowego. LITERATURA 1. Gajewski J.B., Głogowski M.J.: Influence of tribocharging on the work of lip seals in a model engine. Journal of Electrostatics, 51 52 (2001), s. 366 373. 2. Gajewski J.B., Głogowski M.J., Gatner K., Gawliński M.: ZDDP content in mineral and synthetic motor base oils and its effect on electrostatic and tribological phenomena in a rotating shaft oil lip seal system. 2 nd International Conference on Advanced Tribology icat 2008, 3 5 December 2008, Singapore, s. 152 154. 3. Płaza S., Margielewski L., Celichowski G.: Wstęp do tribologii i tribochemia. Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2005. 4. Gajewski J.B., Głogowski M.J.: Influence of an applied electric field on the torque of rotary lip seals on metal shafts. Part I: Effect of lip seal. Tribology International, 40 (2007), s. 49 55. 5. Gajewski J.B., Głogowski M.J.: Influence of an applied electric field on the torque of rotary lip seals on metal shafts. Part II: Effect of oil type. Tribology International, 40 (2007), s. 56 63. 6. PN-EN 60247. Ciecze elektroizolacyjne. Pomiar przenikalności względnej, współczynnika strat dielektrycznych (tgδ) i rezystywności przy prądzie stałym. PKN, Warszawa 2008. 7. Adamczewski I.: Ionization, conductivity and breakdown in dielectric liquids, Taylor and Francis, London, 1969. Recenzent: Krzysztof KRAWCZYK

106 T R I B O L O G I A 4-2010 Summary In the paper, the results of measurements of resistance of mineral and synthetic base oils and their blends with zinc dialkyldithiophosphate (ZDDP), and of commercial (formulated) oils two fresh oils and one used oil as a function of temperature are presented. In addition, the effect of an external DC electric field on the braking torque of a rotating shaft for the base oils with and without ZDDP was examined. The DC electric field was obtained when DC voltage of different values and polarities was applied between the grounded shaft and the stiffening ring of a rotating lip seal. Additionally, the influence of the resistance of commercial oils on the braking torque for different DC voltages of both polarities is presented.