Materiał do tematu: Piezoelektryczne czujniki ciśnienia Efekt piezoelektryczny
Cel zajęć: Celem zajęć jest zapoznanie się ze zjawiskiem piezoelektrycznym, zachodzącym w niektórych materiałach krystalicznych - między innymi w odpowiednio wyciętym krysztale kwarcu
Co to jest efekt piezoelektryczny? Efekt piezoelektryczny zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach tych materiałów w momencie, gdy poddawane są one naprężeniom mechanicznym. Materiały tego typu noszą nazwę piezoelektryków.
Płytka piezoelektryka w spoczynku (nie poddana naprężeniom mechanicznym)
Odkształcona mechanicznie płytka piezoelektryka
Ważniejsze piezoelektryki Kwarc Jest to polimorficzna odmiana dwutlenku krzemu ( SiO2 ), nazywana niekiedy kryształem górskim. Może być bezbarwny, zabarwiony na fioletowo (ametyst), żółto (cytryn) lub brunatno. Jest jednym z najpospolitszych minerałów na powierzchni Ziemi.
Ważniejsze piezoelektryki Sól Rochelle a Nazwa ta jest używana nieprawidłowo, gdyż chodzi tu o sól Seignette a ( KNaC4H4O6 4H2O ), czyli winian sodowo-potasowy. Nazwa pochodzi od nazwiska aptekarza Seignette a z La Rochelle we Francji. Piezoelektryk ten ma postać bezbarwnego kryształu, charakteryzującego się bardzo silnym zjawiskiem piezoelektrycznym. Stosowany bywa m.in. do budowy mikrofonów i głośników krystalicznych. Wadą tego piezoelektryka jest jego silna higroskopijność tzn. zdolność wchłaniania wody.
Ważniejsze piezoelektryki Tytanian baru Otrzymywany syntetycznie kryształ o wzorze BaTiO3. Jest piezoelektrykiem. Posiada także dużą wartość stałej dielektrycznej i jako doskonały dielektryk stosowany jest do budowy kondensatorów elektrycznych.
Ważniejsze piezoelektryki Turmalin Jest to borokrzemiam glinu, sodu, wapnia, magnezu, żelaza i in. Minerał w kolorach czarnym, brunatnym, żółtym, zielonym. Piezoelektryk o właściwościach zbliżonych do kwarcu, lecz znacznie od niego droższy.
Porównanie własności najważniejszych piezoelektryków Największy efekt piezoelektryczny występuje w soli Seignette a. Efekt piezoelektryczny w kwarcu jest dużo słabszy, lecz znacznie większa trwałość kwarcu, mniejsza wrażliwość na zmianę temperatury i duża dobroć elektrycznego obwodu zastępczego powoduje powszechne stosowanie kwarcu do stabilizacji częstotliwości generatorów. Turmalin jest podobny do kwarcu w swych właściwościach, lecz rzadziej stosowany ze względu na większą cenę.
Cechy kryształu kwarcu: budowa hexagonalna ostrosłupowe ścięcia z obu końców wyodrębnione osie: - jedna optyczna, oznaczona literą Z - trzy elektryczne, oznaczone literą X - trzy mechaniczne, oznaczone literą Y
Budowa kryształu kwarcu (bez górnego wierzchołka)
Oś optyczna Z to prosta, łącząca oba zaostrzone wierzchołki w krysztale kwarcu. Naprężenia mechaniczne, przyłożone do kryształu wzdłuż tej osi nie powodują zjawiska piezoelektrycznego.
Oś elektryczna X to prosta, która łączy przeciwległe wierzchołki sześciokąta, będącego przekrojem kryształu kwarcu w płaszczyźnie prostopadłej do osi optycznej Z
Oś mechaniczna Y to prosta, która łączy środki przeciwległych boków sześciokąta, będącego przekrojem kryształu kwarcu w płaszczyźnie prostopadłej do osi optycznej Z.
Cięciem w przypadku kwarcu nazywamy operację polegającą na wycięciu z kryształu kwarcu płytki odpowiednio usytuowanej względem osi X, Y i Z.
Jeżeli np. wytniemy z kryształu kwarcu cienką płytkę w ten sposób, że jej płaszczyzna jest prostopadła do do osi elektrycznej X, to mamy do czynienia z tzw. cięciem X. W takim przypadku naprężenia mechaniczne, przykładane do tej płytki wzdłuż osi Y będą powodowały powstawanie ładunku elektrycznego na jej ściankach, czyli wystąpi zjawisko piezoelektryczne. Proces ten zachodzi także w kierunku odwrotnym tzn. umieszczenie takiej płytki w polu elektrycznym powoduje powstawanie w niej naprężeń mechanicznych, czyli jej odkształcanie się.
Cięcie X w krysztale kwarcu
Wymiary płytki rezonatora 430kHz (przykład)
Drgania zginania Typ podstawowy
Drgania zginania Typ harmoniczny drugi
Drgania długościowe Typ podstawowy
Drgania długościowe Typ harmoniczny drugi
Drgania ścinania m.cz. Typ podstawowy
Drgania ścinania m.cz. Typ harmoniczny drugi
Drgania ścinania m.cz. wyższego rzędu
Drgania ścinania w.cz. Typ podstawowy
Drgania ścinania w.cz. Typ harmoniczny drugi
Podsumowanie wiadomości na temat kwarcu Jest najbardziej rozpowszechnionym minerałem Posiada własności piezoelektryczne Charakteryzuje się wieloma rodzajami drgań mechanicznych Nie każdy rodzaj drgań wywołuje w nim efekt piezoelektryczny Między poszczególnymi typami drgań występują sprzężenia mechaniczne, tzn. drgania jednego rodzaju powodują jednocześnie występowanie drgań innego rodzaju (tzw. drgania wtórne).
Podsumowanie wiadomości na temat kwarcu Częstotliwość drgań wtórnych może niekiedy leżeć w pobliżu częstotliwości podstawowej rezonatora, co jest zjawiskiem szkodliwym, zakłócającym drgania podstawowe. Można to zobrazować na wykresie:
Widmo częstotliwości cienkiej płytki kwarcowej
Podsumowanie wiadomości na temat kwarcu Szkodliwe częstotliwości drgań wtórnych można eliminować poprzez: właściwy dobór rozmiarów płytki odpowiednie cięcie odpowiednie mocowanie płytki w oprawce
Podsumowanie wiadomości na temat kwarcu Częstotliwość rezonansowa danego typu drgań mechanicznych zależy także od temperatury. Zależność tę określamy współczynnikiem cieplnym częstotliwości. Jego wielkość zależy od: typu drgań mechanicznych rozmiarów płytki zorientowania krawędzi płytki w stosunku do osi kryształu
Podsumowanie wiadomości na temat kwarcu Niektóre rodzaje drgań mają dodatni współczynnik cieplny, inne ujemny. Można więc wyciąć płytkę w taki sposób, aby wystąpiło w niej elastyczne (mechaniczne) sprzężenie między tymi dwoma typami drgań. W ten sposób współczynnik dodatni jednego typu drgań można skompensować współczynnikiem ujemnym innego typu drgań w danym zakresie temperatur. Tak uzyskamy rezonator kwarcowy o zerowym współczynniku cieplnym częstotliwości, co uniezależnia jego częstotliwość drgań od temperatury.