OCENA POJEMNOŚCI PRZECIWUTLENIAJĄCEJ I STABILNOŚCI OKSYDACYJNEJ WYBRANYCH OLEJÓW ROŚLINNYCH



Podobne dokumenty
PORÓWNANIE JAKOŚCI OLEJU RZEPAKOWEGO TŁOCZONEGO NA ZIMNO I RAFINOWANEGO. Magdalena Zychnowska, Monika Pietrzak, Krzysztof Krygier

S t r e s z c z e n i e

STABILNOŚĆ OKSYDACYJNA I POJEMNOŚĆ PRZECIWUTLENIAJĄCA WYBRANYCH OLEJÓW JADALNYCH

BADAWCZA I DYDAKTYCZNA

Ocena stabilności oksydatywnej wybranych olejów spożywczych tłoczonych na zimno

WPŁYW PRZEESTRYFIKOWANIA ENZYMATYCZNEGO NA JAKOŚCIOWE PARAMETRY ŻYWIENIOWE OLEJÓW ROŚLINNYCH

Lipidy (tłuszczowce)

Charakterystyka wybranych rynkowych olejów roślinnych tłoczonych na zimno

Kraków, dnia 23 maja 2014 r. Prof. dr hab. Władysław Kędzior Uniwersytet Ekonomiczny w Krakowie Katedra Towaroznawstwa Żywności

ANALIZA SKŁADU I JAKOŚCI OLEJÓW LNIANYCH TŁOCZONYCH NA ZIMNO

WPŁYW PRZEESTRYFIKOWANIA ENZYMATYCZNEGO NA STABILNOŚĆ OKSYDATYWNĄ MIESZANINY TŁUSZCZU KURZEGO Z OLEJEM RZEPAKOWYM

SZKOŁA LETNIA. Sekcja Chemii i Technologii Tłuszczów PTTŻ ANALITYKI I TECHNOLOGII OLEJÓW TŁOCZONYCH NA ZIMNO. Poznań,

JAKOŚĆ WYBRANYCH OLEJÓW ROŚLINNYCH DOSTĘPNYCH NA POLSKIM RYNKU

OCENA WPŁYWU WARUNKÓW TŁOCZENIA W PRASIE ŚLIMAKOWEJ NA JAKOŚĆ I SKŁAD CHEMICZNY OLEJÓW RZEPAKOWYCH

OCENA WYBRANYCH WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH TRADYCYJNYCH OLEJÓW ROŚLINNYCH PRODUKOWANYCH NA ZIEMI LUBELSKIEJ

Analiza właściwości i składu kwasów tłuszczowych handlowych olejów pochodzenia roślinnego

Zeszyty Naukowe. Analiza zmian oksydacyjnych i zawartości kwasów tłuszczowych w oleju Kujawski pod wpływem ogrzewania mikrofalowego.

PL B1. Preparat o właściwościach przeciwutleniających oraz sposób otrzymywania tego preparatu. POLITECHNIKA ŁÓDZKA, Łódź, PL

Thermooxidative stability of frying oils and quality of snack products

Monitorowanie stabilności oksydacyjnej oleju rzepakowego na

WARTOŚĆ ŻYWIENIOWA OLEJÓW RZEPAKOWYCH TŁOCZONYCH NA ZIMNO

Zmiany liczby kwasowej i nadtlenkowej tłuszczu produktów rzepakowych przechowywanych w różnych warunkach bez i z dodatkiem przeciwutleniacza

WPŁYW TEMPERATURY PRZECHOWYWANIA NA WYBRANE PARAMETRY JAKOŚCI OLEJÓW Z ORZECHÓW

OCENA PEROKSYDACJI LIPIDÓW W RÓŻNYCH OLEJACH OLIWKOWYCH WZBOGACONYCH W WITAMINĘ E LUB β- KAROTEN

Badanie wpływu zawartości nasion uszkodzonych na jakość oleju rzepakowego tłoczonego na zimno

WPŁYW TEMPERATURY I CZASU PRZECHOWYWANIA NA WYBRANE CECHY JAKOŚCIOWE OLEJU RZEPAKOWEGO, LNIANEGO I LNIANKOWEGO

PROCEDURA OGÓLNA Laboratorium Badania Żywności i Środowiska

PORÓWNANIE STABILNOCI OKSYDATYWNEJ WYBRANYCH OLEJÓW TŁOCZONYCH NA ZIMNO Z OLEJAMI RAFINOWANYMI

Profil kwasów tłuszczowych oliwy z oliwek dostępnej na polskim rynku

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

RECENZJA Pracy doktorskiej mgr Anny Łaszewskiej pt. Wpływ modyfikacji procesu odszlamowania na aktywność przeciwutleniającą oleju rzepakowego

Ćwiczenie nr 12 Lipidy - tłuszcze nasycone i nienasycone. Liczba jodowa, metoda Hanusa ilościowego oznaczania stopnia nienasycenia tłuszczu

WPŁYW OGRZEWANIA MIKROFALOWEGO NA ZMIANY W SKŁADZIE KWASÓW TŁUSZCZOWYCH W OLEJACH ARACHIDOWYM I ARGANOWYM

ROZPORZĄDZENIE KOMISJI (UE) NR

Zmiany wskaźników fizykochemicznych wybranych tłuszczów cukierniczych opartych na oleju rzepakowym w czasie długoterminowego przechowywania

Substancje o Znaczeniu Biologicznym

ZMIANY WARTOŚCI ODŻYWCZEJ OLEJU Z PESTEK WINOGRON POD WPŁYWEM ŚWIEŻEGO ZIELA TYMIANKU

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

Chemia lipidów i białek SYLABUS

WPŁYW CZASU I TEMPERATURY PRZECHOWYWANIA NA WŁAŚCIWOŚCI ORGANOLEPTYCZNE I STABILNOŚĆ TŁUSZCZU W CZEKOLADACH PEŁNOMLECZNYCH

TŁUSZCZE. Technologia gastronomiczna. Zespół Szkół Gospodarczych im Spytka Ligęzy w Rzeszowie

Właściwości przeciwutleniające etanolowych ekstraktów z owoców sezonowych

Rozprawy Naukowe i Monografie Treatises and Monographs. Aneta Cegiełka. SGGW w Warszawie Katedra Technologii Żywności

OPIS PRZEDMIOTU ZAMÓWIENIA OLEJE I TŁUSZCZE ROŚLINNE

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZĘŚĆ I - OLEJE I TŁUSZCZE ROŚLINNE OLEJ RZEPAKOWY

Zadanie nr 13 INSPEKTORAT WSPARCIA SIŁ ZBROJNYCH SZEFOSTWO SŁUŻBY ŻYWNOŚCIOWEJ OPIS PRZEDMIOTU ZAMÓWIENIA OLEJ RZEPAKOWY

Walidacja metod analitycznych Raport z walidacji

WPŁYW EKSTRAKTÓW TYMIANKU I ROZMARYNU NA STABILNOŚĆ OKSYDATYWNĄ OLEJU SŁONECZNIKOWEGO

Zeszyty Naukowe. Zmiany jakościowe wybranych olejów roślinnych przechowywanych w warunkach chłodniczych. Towaroznawstwo

Do wiadomości studentów II roku WNoŻ kierunku Technologia żywności (studia stacjonarne i niestacjonarne) w Zakładzie Oceny Jakości Żywności

Wpływ ogrzewania nasion rzepaku na jakość wytłoczonego oleju

ESTRY METYLOWE POCHODZENIA ZWIERZĘCEGO JAKO PALIWO ROLNICZE. mgr inż. Renata Golimowska ITP Oddział Poznań

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 553

WPŁYW ZWIĄZKÓW CZYNNYCH Z ZIELA TYMIANKU NA WARTOŚĆ ODŻYWCZĄ OLEJU Z PESTEK WINOGRON PODCZAS JEGO OGRZEWANIA

Opracował dr inż. Tadeusz Janiak

Mikrobiologia surowych i białych cukrów trzcinowych

OCENA WYBRANYCH CECH JAKOŚCI MROŻONEK ZA POMOCĄ AKWIZYCJI OBRAZU

SKŁAD KWASÓW TŁUSZCZOWYCH WYBRANYCH OLEJÓW JADALNYCH

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZĘŚĆ 2 - OLEJE I TŁUSZCZE ROŚLINNE OLEJ RZEPAKOWY

(Tekst mający znaczenie dla EOG)

W jaki sposób powinien odżywiać się młody człowiek?

BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU

Instytut Inżynierii Materiałów Polimerowych i Barwników

WYMAGANIA EDUKACYJNE

Jakość olejów jadalnych dostarczanych na rynek krajowy przez Zakłady Tłuszczowe Bielmar w Bielsku-Białej

ANALIZA TŁUSZCZÓW WŁAŚCIWYCH CZ II

OCENA WPŁYWU WSTĘPNEJ OBRÓBKI HYDROTERMICZNEJ NASION RZEPAKU NA JAKOŚĆ FIZYKOCHEMICZNĄ I STABILNOŚĆ OKSYDATYWNĄ WYTŁOCZONEGO OLEJU

WPŁYW PROCESU OBŁUSZCZANIA NASION RZEPAKU NA JAKOŚĆ I WARTOŚĆ ODŻYWCZĄ OLEJÓW RZEPAKOWYCH TŁOCZONYCH NA ZIMNO

Recenzja rozprawy doktorskiej Pani mgr inż. Marty Krajewskiej

1. SACHARYDY W ŻYWNOŚCI - BUDOWA I PRZEKSZTAŁCENIA

WPŁYW WYBRANYCH PRODUKTÓW TŁUSZCZOWYCH NA STABILNOŚĆ CHLOROWODORKU TIAMINY

Kryteria oceniania z chemii kl VII

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

Wykaz metod badawczych stosowanych w Pracowni w Szczecinie:

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

WYMAGANIA EDUKACYJNE Z CHEMII 2013/2014

PORÓWNANIE JAKOŚCI WYBRANYCH SOKÓW MARCHWIOWYCH I POMIDOROWYCH

Zdrowie Sklep Utworzono : 07 lipiec 2016

W rozdziale tym omówione będą reakcje związków nieorganicznych w których pierwiastki nie zmieniają stopni utlenienia. Do reakcji tego typu należą:

Wpływ czasu i warunków przechowywania na zmiany zachodzące we frakcji lipidowej wybranych produktów rzepakowych

TECHNIKI SEPARACYJNE ĆWICZENIE. Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji)

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 439

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

ZASTOSOWANIE FLUORYMETRII SYNCHRONICZNEJ DO WYKRYWANIA ZAFAŁSZOWANIA OLIWY Z OLIWEK WYBRANYMI OLEJAMI Z NASION

Anna Milczarek, Maria Osek

Do wiadomości studentów II roku WNoŻ kierunku Technologia żywności (studia stacjonarne i niestacjonarne) w Zakładzie Oceny Jakości Żywności

Acta Agrophysica, 2011, 18(1),

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

WPŁYW RODZAJU OPAKOWANIA I WARUNKÓW PRZECHOWYWANIA NA WYBRANE CECHY JAKOŚCI OLEJU RZEPAKOWEGO TŁOCZONEGO NA ZIMNO

WPŁYW SUSZONEGO OREGANO NA PEROKSYDACJĘ LIPIDÓW WYBRANYCH OLEJÓW JADALNYCH

Zawartość składników pokarmowych w roślinach

Wpływ kompozycji tokoferoli na zmiany oksydacyjne prób triacylogliceroli oleju słonecznikowego

Wrocław, r.

OLEJ Z MIKROGLONÓW SCHIZOCHYTRIUM BOGATY W DHA I EPA

Wpływ wybranych parametrów technologicznych na zawartość estrów glicydylowych w tłuszczach i smażonych produktach

Wpływ obecności wody na zmiany wskaźników jakościowych olejów roślinnych podczas ich ogrzewania mikrofalowego oraz we frytkownicy

BADANIE STABILNOŚCI WŁAŚCIWOŚCI INHIBITOWANYCH KOMPOZYCJI OLEJOWYCH PO TESTACH PRZYSPIESZONEGO UTLENIANIA

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA VOL.LIX, SUPPL. XIV, 98 SECTIO D 2004

CHARAKTERYSTYKA LIPIDÓW STRUKTURYZOWANYCH OTRZYMANYCH NA DRODZE PRZEESTRYFIKOWANIA TŁUSZCZU MLECZNEGO I KONCENTRATU OLEJU RYBIEGO

Transkrypt:

Zeszyty Problemowe Postępów Nauk Rolniczych nr 572, 2013, 43 52 OCENA POJEMNOŚCI PRZECIWUTLENIAJĄCEJ I STABILNOŚCI OKSYDACYJNEJ WYBRANYCH OLEJÓW ROŚLINNYCH Bartosz Kruszewski, Piotr Fąfara, Katarzyna Ratusz, Mieczysław Obiedziński Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Streszczenie. Oleje roślinne cieszą się powszechną popularnością i dużym spożyciem wśród polskich konsumentów. Z tego względu stanowią ważne źródło związków przeciwutleniających oraz NNKT w diecie przeciętnego Polaka. W celu określenia ogólnej pojemności przeciwutleniającej oraz oceny stabilności olejów roślinnych dostępnych na polskim rynku zakupiono i poddano analizie osiem różnych olejów. Przed przystąpieniem do właściwych badań poddano je analizie chemicznej, oznaczając liczby: kwasową, nadtlenkową, anizydynową, i wyliczając wskaźnik Totox. Potencjał przeciwutleniający wyznaczono metodą ORAC, czyli metodą pomiaru zdolności absorpcji rodników tlenowych. Jako czynnik ulegający degradacji zastosowano sól sodową fluoresceiny, a za źródło rodników tlenowych posłużył AAPH. Pomiary wykonano na spektrofluorymetrze RF-1501 firmy Shimadzu. Stabilność oksydacyjną olejów określano, wykorzystując test przyspieszonego utleniania Rancimat w aparacie Metrohm typ 743. Wśród wszystkich przebadanych olejów największą wartość ORAC i czas indukcji miały olej kokosowy oraz olej z orzechów makadamia, wyprzedzając kolejno oleje: rzepakowe, lniany, oliwę z oliwek extra vergine, Carotino. Ponadto między testami ORAC i Rancimat wykazano silną korelację. Słowa kluczowe: oleje roślinne, pojemność przeciwutleniająca, ORAC, stabilność oksydacyjna, test Rancimat WSTĘP Składniki pokarmowe dostarczane wraz z dietą, ich ilość oraz w dużym stopniu jakość warunkują prawidłowe funkcjonowanie naszego organizmu. Wśród nich niezmiernie ważną rolę odgrywają tłuszcze. Stanowią one najbardziej skoncentrowane Adres do korespondencji Corresponding author: Bartosz Kruszewski, Szkoła Główna Gospodarstwa Wiejskiego, Wydział Nauk o Żywności, Katedra Biotechnologii, Mikrobiologii i Oceny Żywności, ul. Nowoursynowska 159c, 02-776 Warszawa, e-mail: bartosz_kruszewski@sggw.pl

44 B. Kruszewski, P. Fąfara, K. Ratusz, M. Obiedziński źródło energii dostarczane do organizmu wraz z pożywieniem, a także są nośnikiem niezbędnych nienasyconych kwasów tłuszczowych (NNKT) oraz wielu biologicznie aktywnych składników rozpuszczalnych w tłuszczach, m.in. witaminy A, D, E i K [Czerwińska 2003]. Oleje roślinne charakteryzują się zróżnicowanym składem kwasów tłuszczowych, wśród których w dużej ilości mogą występować kwasy nienasycone, mono- i polienowe. Ich obecność powoduje, że oleje roślinne są produktami stosunkowo nietrwałymi, łatwo podlegającymi procesom utleniania. Ulegają wszelkim przemianom prowadzącym do powstania znacznych niekorzystnych zmian jakości określanych jako jełczenie tłuszczu [Krygier 1997]. Takie zmiany mogą mieć zróżnicowany charakter oraz przybierać różną formę. Czynnikami mającymi wpływ na tempo zmian oksydacyjnych w olejach są m.in.: budowa chemiczna kwasów tłuszczowych w cząsteczce triacylogliceroli, ilość i miejsce wiązań nienasyconych oraz obecność substancji o charakterze proutleniającym lub przeciwutleniającym wchodzących w skład frakcji nieglicerolowej [Drozdowski 1994]. Do substancji natywnych, stanowiących tzw. frakcję nieglicerolową o działaniu przeciwutleniającym, można zaliczyć naturalne przeciwutleniacze: tokoferole, fosfolipidy, karotenoidy, sterole, związki fenolowe i skwalen. Spośród syntetycznych przeciwutleniaczy stosowanych do tłuszczy można wyróżnić BHT, BHA, TBHQ i estry kwasu galusowego. Natomiast związki o katalitycznym działaniu na proces utleniania to pierwiastki metali ciężkich, szczególnie miedzi i żelaza, a także barwniki chlorofilowe [Szukalska 2003]. Związki te, mimo że występują w niewielkiej ilości (poniżej 2%), w istotny sposób wpływają na wartość żywieniową oraz trwałość i stabilność olejów [Mińkowski i in. 2011]. Należy również zauważyć, iż efekt proutleniający mogą wykazywać tokoferole, jeśli znajdują się w zbyt dużym stężeniu w zależności od rodzaju oleju [Szukalska 2003]. Niekorzystne zmiany w olejach mogą być spowodowane procesami chemicznymi lub biochemicznymi, zainicjowanymi już w nasionach roślin oleistych. Podczas produkcji są one nieuniknione wysoka temperatura zwiększająca rozpuszczalność tlenu, usunięcie części przeciwutleniaczy (np. podczas rafinacji). W olejach dominują procesy chemiczne zachodzące pod wpływem czynników fizykochemicznych, takich jak: dostępność tlenu i światła, podwyższona temperatura. Dlatego nie bez znaczenia są warunki przechowywania olejów i rodzaj opakowania, w którym się znajdują [Szukalska 2003]. Procesy biochemiczne spowodowane działalnością enzymów nie odgrywają znaczącej roli w procesie jełczenia tłuszczów jadalnych [Drozdowski 2007]. Istnieje wiele metod oceny jakości olejów. Wśród tych badających powstałe zmiany oksydacyjne można wyróżnić: 1) metody instrumentalne chromatografia gazowa (wtórne lotne, krótkołańcuchowe związki organiczne) i cieczowa, NIR, test Rancimat; 2) metody miareczkowe liczby nadtlenkowa czy anizydynowa oraz wyliczany na ich podstawie wskaźnik Totox; 3) metody kolorymetryczne oparte na utlenianiu żelaza (FOX, PeroxySafe TM ). Natomiast stabilność olejów poprzez oznaczenie aktywności przeciwutleniającej zarówno frakcji hydrofilowej, jak i hydrofobowej można wyznaczyć za pomocą często stosowanych metod FRAP i CRA oraz z użyciem odczynników DMPD, DPPH i ABTS. Obecnie rozpowszechniane są metody ORAC i TRAP jako Zeszyty Problemowe Postępów Nauk Rolniczych

Ocena pojemności przeciwutleniającej i stabilności oksydacyjnej... 45 sposób na wyznaczenie całkowitej pojemności przeciwutleniającej badanego materiału [Szukalska 2003; Wołosiak 2009]. Oprócz wyznaczania liczby na przykład nadtlenkowej czy anizydynowej najczęściej w kontroli jakości olejów wykorzystywane są przyspieszone testy stabilności oksydacyjnej: Swifta, termostatowy, manostatyczny, Oxidograph, DSC czy wspomniany wcześniej test Rancimat [Szukalska 2003]. Test Rancimat należy do grupy testów pozwalających w sposób zautomatyzowany oszacować aktywność przeciwutleniaczy zawartych w oleju, a tym samym określić jego stabilność oksydacyjną. Polega na wymuszonym utlenianiu (wysoka temperatura, duże napowietrzanie) materiału badawczego, przez co powstają lotne produkty utleniania przenoszone ze strumieniem powietrza do naczynia zawierającego wodę, której przewodnictwo jest rejestrowane. Koniec tzw. czasu indukcji wyznacza gwałtowny wzrost przewodnictwa wody. Jednakże wysoka temperatura, rzędu 100 120 C, stosowana podczas pomiarów nie zawsze pozwala na wiarygodne prognozowanie skuteczności działania przeciwutleniaczy w niższej temperaturze. Dodatkowo lotne przeciwutleniacze mogą zostać zmiecione z oleju przez strumień powietrza, a zbyt drastyczne warunki procesu wpływają niekorzystnie na działanie i stabilność samych przeciwutleniaczy [Gordon i in. 2001, Shahidi i Zhong 2005]. Naprzeciw powyższym wymaganiom wychodzi bardzo interesująca i stosunkowo mało znana metoda ORAC (Oxygen Radical Absorbance Capacity), czyli metoda pomiaru zdolności absorpcji rodników tlenowych przez związki organiczne o charakterze przeciwutleniaczy. Została ona opracowana przez Cao i innych [1993] i może zostać zastosowana w badaniach jakości tłuszczów. Polega na pomiarze spadku intensywności fluorescencji określonego związku chemicznego w czasie, ulegającego degradacji pod wpływem działania indukowanych termicznie (w temperaturze około 37 C) rodników nadtlenkowych. Degradację opóźniają zawarte w analizowanej próbce przeciwutleniacze. Mierzoną wartością jest pole powierzchni pod krzywą spadku fluorescencji dla badanych próbek oraz wzorca (Troloxu). W metodzie opracowanej przez Cao i innych [1993] związkiem wykazującym fluorescencję jest białko B-fikoerytryna. Jednak ze względu na takie wady, jak wrażliwość na światło oraz reakcja z polifenolami B-fikoerytryna miała ona ograniczone zastosowanie. Ou i inni [2001] zaproponowali w zastępstwie fluoresceinę organiczny związek chemiczny, będący pochodną ksantenu. Fluoresceina, a dokładnie jej sól dwusodowa jest obecnie powszechnie stosowana w metodzie ORAC. Metoda ORAC jest szczególnie ceniona za możliwość pomiaru zdolności antyoksydacyjnych wszystkich substancji znajdujących się w badanej próbce, zarówno wykazujących, jak i niewykazujących opóźnienia w działaniu. Jednak posiada również wady: wymaga kosztownego urządzenia oraz dużo czasu na obróbkę zebranych danych, jest metodą bardzo czułą szczególnie wrażliwą na zmiany ph, a także może wykazywać zmienność uzyskanych danych w zależności od zastosowanego sprzętu [Zulueta i in. 2009]. Obecnie trwają prace, aby metoda ORAC została włączona do standaryzowanych oficjalnych metod analitycznych AOAC International. Celem pracy było porównanie pojemności przeciwutleniającej i stabilności oksydacyjnej wybranych olejów roślinnych oraz próba ustalenia korelacji między nimi. nr 572, 2013

46 B. Kruszewski, P. Fąfara, K. Ratusz, M. Obiedziński MATERIAŁ I METODY BADAŃ Materiał badawczy Materiał ten stanowiło 8 olejów handlowych. Zgodnie z deklaracjami producentów były to: Carotino olej z rzepaku canola i owoców palmy oleistej (75 : 25%), olej lniany tłoczony na zimno, pochodzący z gospodarstwa ekologicznego, oleje rzepakowe tłoczone na zimno różnych producentów oznaczone numerami 1, 2, 3, oliwa z oliwek extra vergine, olej kokosowy organiczny i niearomatyzowany oraz olej z orzechów makadamia. Wszystkie oleje zakupiono w jednostkach handlu detalicznego na terenie Warszawy w 2011 roku. Według deklaracji zamieszczonych na etykietach nie były one wzbogacane w substancje przeciwutleniające i znajdowały się w okresie przydatności do spożycia. Przed przystąpieniem do właściwych badań oleje poddano analizie chemicznej, sprawdzając ich przydatność do dalszych analiz. Oznaczono podstawowe liczby charakterystyczne: liczbę kwasową (LK) zgodnie z PN-EN ISO 660:2010, liczbę nadtlenkową (LOO) zgodnie z PN-EN ISO 3960:2009 oraz liczbę anizydynową zgodnie z PN-EN ISO 6885:2001. Obliczono także wskaźnik Totox (TOTOX = 2 LOO + LA). Próbki do badań pobierano niezwłocznie po otwarciu opakowań. Przed analizami oleje przechowywano w temperaturze 4 C, bez dostępu światła. Oznaczanie pojemności przeciwutleniającej metodą ORAC Do badań wykorzystano metodykę opracowaną przez Ninfali i innych [2002] z autorskimi modyfikacjami. Do 5 g oleju dodawano 80-procentowy roztwór metanolu w wodzie (1 : 1 m/obj). Następnie całość mieszano za pomocą mieszadła Vortex przez 2 minuty, w temperaturze pokojowej. Mieszaninę wirowano 10 minut przy prędkości 5000 obr min 1, a supernatant pobierano za pomocą pipety Pasteura. Ekstrakcję prowadzono dwukrotnie. Obydwa supernatanty łączono ze sobą, mieszano i mierzono ich objętość. Ekstrakt rozpuszczano w roztworze 0,075 M (75 mm) buforu fosforanowego (ph 7,0). Jeśli widoczne były osady lub jakakolwiek mętność, to ekstrakt filtrowano przez sączek jakościowy. Tak przygotowane próbki pobierano do oznaczeń. W celu wykonania testu ORAC mieszaninę reakcyjną przygotowywano w kuwecie kwarcowej szerokości 10 mm, do której dodawano: 1300 μl 0,04 μm fluoresceiny dwusodowej w 0,075 M buforu fosforanowego (ph 7,0) oraz 200 μl wcześniej przygotowanego ekstraktu lub 200 μl 20 μm roztworu Troloxu w buforze. W przypadku próby ślepej stosowano 200 μl metanolu rozcieńczonego w 0,075 M buforze fosforanowym (ph 7,0) w stosunku 1 : 20 (obj). Otrzymaną mieszaninę reakcyjną mieszano i następnie przetrzymywano w temperaturze 37 C, bez dostępu światła. Reakcję rozpoczynano, dodając do kuwety 200 μl roztworu 200 mm AAPH (2,2-azobis (2-metylopropionoamidyna) dihydrochlorku) jako źródła rodników nadtlenkowych. Pomiary prowadzono za pomocą spektrofluorymetru RF-1501 firmy Shimadzu przy długości fali wzbudzenia 485 nm i emisji 520 nm. Pierwszy pomiar następował bezpośrednio po dodaniu roztworu AAPH, następne co minutę, aż do spadku intensywności fluorescencji poniżej 5% początkowej wartości [Ou i in. 2001, Zulueta i in. 2009]. Wszystkie roztwory sporządzano w dniu prowadzonych badań. Oznaczenia wykonywano w trzech powtórzeniach. Zeszyty Problemowe Postępów Nauk Rolniczych

Ocena pojemności przeciwutleniającej i stabilności oksydacyjnej... 47 Pola powierzchni liczono według wzoru: AUC = 1 + f 1 /f 0 +... + f n+1 /f 0 gdzie: AUC pole powierzchni pod krzywą spadku intensywności fluorescencji, f n intensywność fluorescencji w czasie n, f 0 początkowa intensywność fluorescencji. Pojemność przeciwutleniającą ORAC obliczano według następującego wzoru: ORAC M TEg CTrolox AUC 1 próbka AUClepa k AUC Trolox AUC gdzie: ORAC pojemność przeciwutleniająca materiału badawczego [μm TE g 1 ], C Trolox stężenie roztworu Troloxu (20 μm), AUC pole powierzchni pod krzywą spadku intensywności fluorescencji dla próbek, próby ślepej i roztworu Troloxu, k współczynnik rozcieńczenia właściwy dla każdej próbki, a stosunek objętości metanolu do masy oleju. Oznaczanie stabilności oksydacyjnej za pomocą testu Rancimat Stabilność oksydacyjną olejów określano, wykorzystując test przyspieszonego utleniania Rancimat, według PN-ISO 6886:2009, w aparacie Metrohm typ 743. Badania prowadzono w temperaturze 120 C przy przepływie powietrza 20 l h 1. Wyznaczony czas indukcji wyrażano w godzinach [h]. Oznaczenie wykonano dwukrotnie w dwóch powtórzeniach. Otrzymane wyniki opracowano statystycznie za pomocą programu Statgraphics 5.1 oraz Microsoft Excel 2010. Dla uzyskanych uśrednionych wyników wyznaczono odchylenia standardowe. Ocenę istotności różnic przeprowadzono metodą analizy wariancji. Celem oszacowania statystycznie istotnych różnic między średnimi wartościami zastosowano test Tukey a. lepa a WYNIKI I DYSKUSJA Podstawowe liczby charakterystyczne badanych olejów zestawiono w tabeli 1. Jakość fizykochemiczna wszystkich badanych olejów była dobra. Uzyskane wartości liczb charakterystycznych nie przekraczały wartości zalecanych dla olejów tłoczonych na zimno zawartych w Codex Alimentarius Codex Stan 210 (LOO 15 meq O 2 kg 1, LK 4 mg KOH g 1, 10 mg KOH g 1 dla oleju palmowego). Liczba kwasowa (LK), charakteryzująca stopień zmian hydrolitycznych, wahała się w przedziale od 0,56 mg KOH g 1 w oleju kokosowym do 2,79 mg KOH g 1 w oleju rzepakowym nr 3. Natomiast liczba nadtlenkowa (LOO), mówiąca o zawartości pierwotnych produktów utleniania, mieściła się w przedziale od 1,22 mg KOH g 1 w oleju kokosowym do 3,79 mg KOH g 1 w oleju rzepakowym nr 3. Należy zauważyć, iż olej kokosowy i rzepakowy nr 3 cecho- nr 572, 2013

48 B. Kruszewski, P. Fąfara, K. Ratusz, M. Obiedziński Tabela 1. Liczby charakterystyczne badanych olejów Table 1. Studied oils characteristic numbers Typ oleju Type of oil Cecha Feature Carotino Lniany Linseed Kokosowy Coconut Oliwa Olive Rzepakowy 1 Rapeseed 1 Rzepakowy 2 Rapeseed 2 Rzepakowy 3 Rapeseed 3 Makadamia Macadamia Liczba kwasowa (LK) Acid value [mg KOH g 1 ] Liczba nadtlenkowa (LOO) Peroxide value [meq O 2 kg 1 ] Liczba anizydynowa (LA) Anisidine value 2,21 ab 1,42 ab 0,56 a 1,35 ab 2,09 ab 1,59 ab 2,79 b 1,05 ab 3,69 b 2,67 ab 1,22 a 3,13 ab 1,95 ab 1,96 ab 3,79 b 1,28 ab 3,21 b 4,44 c 1,05 a 0,89 a 0,72 a 0,54 a 0,73 a 0,61 a Totox 10,59 d 9,78 d 3,49 ab 7,15 bcd 4,62 abc 4,46 ab 8,31 cd 3,17 a Wartości oznaczone tą samą literą w wierszu nie różnią się istotnie statystycznie przy α 0,05. Values marked by the same letter in a row are not different at α 0.05. wały się skrajnymi wartościami omawianych liczb, co można powiązać z rezultatami testu Rancimat i ORAC. Rozpatrując liczbę anizydynową (LA), określającą ilość wtórnych produktów utleniania, obserwuje się jej małe wartości w olejach rzepakowych, oliwie z oliwek extra vergine oraz olejach kokosowym i z orzechów makadamia. Duże wartości LA wykazują oleje Carotino i lniany. Podobny poziom LK, LOO i LA w olejach tłoczonych na zimno uzyskały w swych badaniach Wroniak i Ratusz [2011]. W olejach rzepakowych nie zauważono zbyt dużej rozpiętości wyników, z wyjątkiem liczby LOO, która była prawie dwa razy większa w oleju rzepakowym nr 3 niż w oleju nr 1 i 2. Olej Carotino, mimo że jest w 75% olejem rzepakowym, nie odpowiada liczbami LK, LOO i LA charakterystyce olejów rzepakowych i ma wyraźnie gorszą jakość. W celu określenia przyczyn takiego stanu rzeczy należy wykonać dodatkowe badania, m.in. wyznaczyć profile kwasów tłuszczowych oraz przeciwutleniaczy. Oznaczenie LOO i LA umożliwiło dodatkowo określenie wskaźnika Totox, który w sposób umowny wyraża ogólny stopień utlenienia olejów. Wartość tego wskaźnika wahała się w szerokim zakresie od 3,17 w oleju z orzechów makadamia do 10,59 w oleju Carotino (tab. 1). Graniczny poziom wyznaczający dobrą jakość olejów jadalnych to wartość wskaźnika Totox równa 10 [Wroniak i in. 2006]. Spośród badanego materiału olej Carotino nieznacznie przekroczył ten poziom, a olej lniany prawie go osiągnął. Zatem uzyskane w pracy duże wartości wskaźnika Totox świadczą o niskiej jakości tych olejów. Można przewidywać, że stopień ich utlenienia jeszcze bardziej pogłębił się w dalszym okresie deklarowanego terminu przydatności do spożycia. Analizowane oleje charakteryzowały się dużą rozpiętością stabilności oksydacyjnej (tab. 2) oraz dużym zróżnicowaniem potencjału przeciwutleniającego (rys. 1). Wyniki obu testów są podobne do wyników uzyskanych przez innych autorów [Ninfali i in. 2001, Szydłowska i in. 2008]. Zeszyty Problemowe Postępów Nauk Rolniczych

Ocena pojemności przeciwutleniającej i stabilności oksydacyjnej... 49 Tabela 2. Długość czasu indukcji badanych olejów mierzona testem Rancimat Table 2. Induction time length of tested oils measured by Rancimat test Próbka oleju Oil sample Czas indukcji Induction time [h] Próbka oleju Oil sample Czas indukcji Induction time [h] Carotino Carotino 2,83 a ±0,04 Rzepakowy 3 Rapeseed 3 7,01 a ±0,09 Lniany Linseed 3,40 a ±0,08 Oliwa Olive 7,33 a ±0,10 Rzepakowy 1 Rapeseed 1 4,35 a ±0,13 Kokosowy Coconut 26,97 b ±0,23 Rzepakowy 2 Rapeseed 2 4,39 a ±0,11 Makadamia Macadamia 22,50 b ±0,18 Wartości oznaczone tą samą literą nie różnią się istotnie statystycznie przy α 0,05. Values marked by the same letter are not different at α 0,05. 10 9,2b 9 7,7b 8 ORAC [μm TE g 1 ] 7 6 5 4 3 2 1,2a 1,0a 1,4a 1,6a 2,2a 2,5a 1 Carotino Lniany/Linseed Rzepakowy 1/Rapeseed 1 Rzepakowy 2/Rapeseed 2 Rzepakowy 3/Rapeseed 3 Oliwa/Olive Kokosowy/Coconut Makadamia/Macadamia Rys. 1. Pojemność przeciwutleniająca badanych olejów roślinnych wyrażona w μm TE g 1 Fig. 1. Antioxidant capacity of analyzed plant oils expressed in μm TE g 1 Szybkość utleniania tłuszczów (test Rancimat) była uwarunkowana w dużej mierze charakterystyką składu kwasów tłuszczowych (według danych literaturowych olej kokosowy zawiera najwięcej nasyconych kwasów tłuszczowych spośród poddanych badaniom). Pojemność przeciwutleniająca (ORAC) i stabilność oksydacyjna plasowały się w następującej kolejności: Carotino < olej lniany < olej rzepakowy nr 1 < olej rzepakowy nr 2 < olej rzepakowy nr 3 < oliwa z oliwek extra vergine < olej z orzechów makadamia < olej kokosowy. Kolejność powyższych olejów jest podobna do zestawień uzyskanych przez Ninfali i innych [2001] oraz Szydłowską i innych [2008]. Autorzy wskazują na odmianę roślin oraz rok zbiorów nasion jako prawdopodobne czynniki wpływające na pojemność przeciwutleniającą olejów. nr 572, 2013

50 B. Kruszewski, P. Fąfara, K. Ratusz, M. Obiedziński Wśród olejów rzepakowych najmniejszą stabilnością i wartością ORAC cechował się olej rzepakowy nr 3, co koreluje z LOO i wskaźnikiem Totox w tym oleju. Oleje rzepakowe nr 1 i 2 różnych producentów wykazywały niemal identyczną stabilność oksydacyjną. Duża wartość LOO i LA oraz wskaźnika Totox w dwóch olejach (Carotino i lnianym) wpłynęła istotnie na krótszy czas indukcji w teście Rancimat oraz małą pojemność przeciwutleniającą (ORAC). Metodą pomiaru zdolności absorpcji rodników tlenowych (ORAC) wyznaczono pojemność przeciwutleniającą frakcji hydrofilowej olejów, na którą składają się przede wszystkim foliany, polifenole, fitoestrogeny i glukozynolany. Ze względu na małą zawartość wody w olejach tłoczonych na zimno (do 0,5%) przeciwutleniacze hydrofilowe stanowią niewielki udział w profilu ilościowym przeciwutleniaczy ogółem [Szydłowska i in. 2008]. Jednak jak pokazują badania, w istotny sposób wpływają na stabilność oksydacyjną olejów. Na podstawie uzyskanych wyników, po poddaniu ich analizie statystycznej, stwierdzono istnienie bardzo silnej korelacji (r 2 = 0,9981) między okresem indukcji procesu autooksydacji, wyznaczonym za pomocą testu Rancimat, a pojemnością przeciwutleniającą wyznaczoną metodą ORAC. Statystycznie istotne, lecz nie tak silne powiązanie obu metod uzyskali również Ninfali i inni [2002]. Może to wynikać z faktu, iż na proces autooksydacji wpływa, oprócz składu kwasów tłuszczowych oraz miejsca i rodzaju wiązań w nich występujących, także skład jakościowy i ilościowy zawartych grup przeciwutleniaczy [Mińkowski i in. 2011]. Metoda ORAC może być uzupełnieniem istniejących testów do oceny jakości tłuszczów, gdyż jest dobrym sposobem pomiaru wydajności działania istotnych w procesach utleniania związków. WNIOSKI 1. Metoda pomiaru zdolności absorpcji rodników tlenowych (ORAC) jest stosunkowo prostą metodą wyznaczania pojemności przeciwutleniającej olejów roślinnych. Wyniki uzyskane w pracy są porównywalne z wynikami uzyskanymi przez innych autorów. 2. Uzyskane wyniki jednoznacznie wskazują, że metoda ORAC może stanowić uzupełnienie testu Rancimat, zwiększając możliwości prognozowania niekorzystnych zmian oksydacyjnych zachodzących w olejach. LITERATURA Cao G., Alessio H.M., Cutler R.C., 1993. Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine 14 (3), 303 311. Czerwińska D., 2003. Charakterystyka żywieniowa różnych gatunków olejów. Dla wszystkich i do wszystkiego. Przegląd Gastronomiczny 4, 6 10, 12 13. Drozdowski B., 1994. Lipidy. W: Z. Sikorski (red.) Chemiczne i funkcjonalne właściwości składników żywności. WNT, Warszawa, 167 233. Drozdowski B., 2007. Lipidy. Charakterystyka ogólna tłuszczów jadalnych. W: Z. Sikorski (red.) Chemia żywności, sacharydy, lipidy, białka. WNT, Warszawa, 73 166. Zeszyty Problemowe Postępów Nauk Rolniczych

Ocena pojemności przeciwutleniającej i stabilności oksydacyjnej... 51 Gordon M., Pokorny J., Yanishlieva N., 2001. Antioxidants in Food: Practical Applications. Woodhead Publishing, Ltd., Cambridge, England, 71 84. Krygier K., 1997. Współczesne roślinne tłuszcze jadalne. Przemysł Spożywczy 4, 11. Mińkowski K., Grześkiewicz S., Jerzewska M., 2011. Ocena wartości odżywczej olejów roślinnych o dużej zawartości kwasów linolenowych na podstawie składu kwasów tłuszczowych, tokoferoli i steroli. Żywność. Nauka. Technologia. Jakość 2 (75), 124 135. Ninfali P., Aluigi G., Bacchiocca M., Magnani M., 2001. Antioxidant Capacity of Extra-Virgin Olive Oils. J. Am. Oil Chem. Soc. 3 (78), 243 247. Ninfali P., Bacchioccaa M., Biagiottia E., Servilib M., Montedorob G., 2002. Validation of the Oxygen Radical Absorbance Capacity (ORAC) Parameter as a New Index of Quality and Stability of Virgin Olive Oil. J. Am. Oil Chem. Soc. 10 (79), 977 982. Ou B., Hampsch-Woodill M., Prior R.L., 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescence probe. J. Agric. Food Chem. 49, 4619 4626. PN-EN ISO 3960:2009. Oleje i tłuszcze roślinne oraz zwierzęce. Oznaczanie liczby nadtlenkowej. Jodometryczne (wizualne) oznaczanie punktu końcowego. PN-EN ISO 660:2010. Oleje i tłuszcze roślinne oraz zwierzęce. Oznaczanie liczby kwasowej i kwasowości. PN-EN ISO 6885:2001. Oleje i tłuszcze roślinne oraz zwierzęce. Oznaczanie liczby anizydynowej. PN-ISO 6886:2009. Oleje i tłuszcze roślinne oraz zwierzęce. Oznaczanie stabilności oksydatywnej (test przyspieszonego utleniania). Shahidi F., Zhong Y., 2005. Lipid Oxidation: Measurement Methods in Bailey s Industrial Oil and Fat Products. Six Volume Set. (ed.) F. Shahidi. Szukalska E., 2003. Wybrane zagadnienia utleniania tłuszczów. Tłuszcze Jadalne 38, 42 61. Szydłowska-Czerniak A., Karlovits G., Dianoczki C., Recseg K., Szłyk E., 2008. Comparison of Two Analytical Methods for Assessing Antioxidant Capacity of Rapeseed and Olive Oils. J. Am. Oil Chem. Soc. 85, 141 149. Wołosiak R., 2009. Metody badania właściwości przeciwutleniających. W: M. Obiedziński (red.) Wybrane zagadnienia z analizy żywności. Wydawnictwo SGGW, Warszawa, 149 161. Wroniak M., Ratusz K., 2011. Wpływ dodatku oleożywic rozmarynu i oregano na zmiany oksydacyjne olejów tłoczonych na zimno w teście termostatowym. Zeszyty Problemowe Postępów Nauk Rolniczych 558, 301 309. Wroniak M., Kwatkowska M., Krygier K., 2006. Charakterystyka wybranych olejów tłoczonych na zimno. Żywność. Nauka. Technologia. Jakość 2 (47), 46 58. Zulueta A., Esteve M.J., Frigola A., 2009. ORAC and TEAC assays comparision to measure the antioxidant capacity of food products. Food Chemistry 114, 310 316. ANTIOXIDANT CAPACITY AND OXIDATION STABILITY ASSESSMENT OF SELECTED PLANT OILS Summary. Plant oils are universally popular and they consumption is high among Polish consumers. For this reason, they are an important source of antioxidant compounds and EFA in the average Pole diet. In order to determine the total antioxidant capacity and stability evaluation of plant oils available on the Polish market were purchased and analyzed eight different oils. Prior to the proper tests, oils were chemically analyzed by numbers determining: acid, peroxide, anisidine value and by calculating Totox index. Antioxidant potential was determined by ORAC measuring the absorption capacity of oxygen radicals. As a degradable agent and a source of oxygen radicals respectively sodium fluorescein nr 572, 2013

52 B. Kruszewski, P. Fąfara, K. Ratusz, M. Obiedziński and AAPH was used. Measurements were performed on spectrofluorometer RF-1501 Shimadzu. Oxidative stability of the oils was determined using the accelerated oxidation test Rancimat in the Metrohm type 743 device. Among all commercial tested oils, a coconut oil and macadamia nuts oil have the highest ORAC value and induction time followed by rapeseed oil, linseed oil, olive oil extra virgin, Carotino. In addition, between the ORAC and Rancimat tests a strong correlation has been shown. Key words: plant oils, antioxidant capacity, ORAC, oxidative stability, Rancimat test Zeszyty Problemowe Postępów Nauk Rolniczych