Nowe wydajne luminofory do oświetleń i koncentratorów słonecznych NEW-LOKS
NEW LOKS Instytut Niskich Temperatur i Badań Strukturalnych im. W. Trzebiatowskiego Polskiej Akademii Nauk (INTiBS PAN) KOORDYNACJA PROJEKTU Uniwersytet Gdański Wydział Chemii oraz Wydział Matematyki i Fizyki Uniwersytet Wrocławski Wydział Chemii
NEW LOKS To potencjał: Finansowy Sprzętowy Kadrowy
Zasoby finansowe Projekt otrzymał wsparcie finansowe w wysokości 16. 4 mln złotych Działanie 1.1 Wsparcie badań naukowych dla budowy gospodarki opartej na wiedzy Poddziałanie 1.1.2 Strategiczne programy badań naukowych i prac rozwojowych
Kadra INTiBS 18 pracowników naukowych i technicznych 6 pracowników administracyjnych Uniwersytet Gdański 8 pracowników naukowych i doktorantów 2 pracowników administracyjnych Uniwersytet Wrocławski 10 pracowników naukowych i doktorantów 2 pracowników administracyjnych - Kilkaset publikacji naukowych - Kilka patentów -Kilka medali na m. narodowych wystawach i nagród ministerialnych
Dorobek INTiBS Tematyka badawcza Instytutu obejmuje badania fizykochemiczne struktury ciała stałego oraz jej wpływu na właściwości fizyczne, chemiczne i spektroskopowe. INTiBS PAN jest jednym z ważniejszych w Europie centrów badań nad materiałami. liczne projekty badawcze, zgłoszenia patentowe i patenty, publikacje naukowe, jak również współpraca międzynarodowa.
Doświadczenia INTiBS cd. dyfraktometria rentgenowska monokryształów i proszków Badania spektroskopii Ramanowskiej i IR Mikroskopia elektronowa (transmisyjna, skaningowa) Pomiary widm absorpcji, w. odbiciowych, luminescencyjnej w zakresie VUV, UV-Vis- IR.
INTiBS doświadczenie cd. doświadczenie w określeniu właściwości spektroskopowych materiałów luminescencyjnych i laserowych pracujących w obszarze widzialnym syntezie materiałów fluorkowych (kryształów), nanomateriałów oraz ceramik, Rozwijano nowoczesne technologie takie jak lasery na ciele stałym pompowane diodą laserową. We współpracy z Instytutem w Lublinie wytworzono własne włókna światłowodowe domieszkowane jonami ziem rzadkich. Zakład OPTEL, dzięki współpracy z INTiBS produkuje i sprzedaje lasery na ciele stałym pompowane diodą laserową.
Wybrane Granty INTiBS 1. Nanokompozytowe materiały krystaliczne związków ziem rzadkich jako cienkowarstwowe luminofory dla źródeł światła 2. "Studia i właściwości spektroskopowe szkieł otrzymanych w procesie zol-żel domieszkowane przez jony ziem rzadkich. 3. "Studia mechanizmów i procesów transferu energii dla jonów aktynowców i ziem rzadkich na przykładzie U3+, Pr3+ w kryształach centro nie centrosymetrycznych. 4. "Nowoczesne Luminofory, proszki i materiały ceramiczne dla zastosowań w radiografii cyfrowej. 5. "Nanomateriały krystaliczne domieszkowane jonami ziem rzadkich 6. "Studia fenomenów down-conversion i opracowanie luminoforów o wydajności kwantowej wyższej niż 100%. 7. Właściwości optyczne i laserowe nano-proszków, ceramik i kryształów perowskitów typu LaAlO3 domieszkowanych jonami ziem rzadkich, 8. Luminofory zwiększające wydajność ogniw słonecznych
U Wr - doświadczenie synteza materiałów luminescencyjnych tj. mikrorozmiarowych proszków, monokryształów, szkieł i szkieł ceramicznych (z wytrąceniami krystalicznymi w matrycy szklanej), jak i w otrzymywaniu proszków nanorozmiarowych i niskim poziomie aglomeracji ziaren. badaniach strukturalno-spektroskopowych. syntezy luminescencyjnych związków kompleksowych, gł. z efektem antenowym, który pozwala na uzyskiwanie wysokich wydajności w układach pełnokoncentracyjnych.
Wybrane granty UW 1. Nanoceramiczne scyntylatory dla rentgenowskiej i nuklearnej diagnostyki medycznej, 2. Opracowanie technologii wytwarzania nanostrukturalnych ortowanadanów(v) lantanowców konwertorów promieniowania podczerwonego, ultrafioletowego i rentgenowskiego na widzialne, 3. Opracowanie technologii wytwarzania wydajnych konwerterów promieniowania podczerwonego na widzialne na bazie ABO37 (A=Y,Lu; B=Nb,Ta) aktywowanych Er, Ho, Tm, Yb i ich charakterystyka spektroskopowo strukturalna 4. Nanokrystaliczne luminofory dla wysokorozdzielczych ekranów wzmacniających sygnał w cyfrowej, planarnej diagnostyce medycznej 5. Optymalizacja składu i technologii wytwarzania luminoforu o długotrwałej fosforescencji LuO:Tb,M (M=Ca, Sr, Ba, Sc) 6. Optycznie przezroczyste polikrystaliczne spieki LuO:Eu i LuO2:Tb jako nowoczesne detektory promieniowania rentgenowskiego 7. Zbadanie zjawiska down-konwersji (quantum-cutting) i otrzymywanie luminoforów o wydajności kwantowej większej niż 100% 8. Badania transferu energii między jonami uranu a jonami lantanowców i metalami przejściowymi w matrycach halogenkowych 9. Nowoczesne luminofory, proszki i przezroczyste materiały ceramiczne do zastosowań w radiografii cyfrowej 10. Nanostructured phosphors for scintillator and laser applications.
Doswiadczenie UG Spektroskopia luminoforów w wysokich ciśnieniach hydrostatycznych w komorach z kowadłami diamentowymi Modelowanie procesów bezpromienistej konwersji wewnętrznej Modele prawdopodobieństw przejść międzykonfiguracyjnych 4f n-1 5d 1-4f n w jonach ziem rzadkich oraz przejść d-d w jonach metali przejściowych Opracowanie kwantowo mechanicznego modelu ekscytonu związanego z jonami ziem rzadkich w kryształach
Wybrane Granty UG 1. Badanie przejść d-f w jonach ziem rzadkich w wybranych kryształach dielektryków metodami spektroskopii wysokociśnieniowej, 2. Własności przejść d f w jonach ziem rzadkich w matrycach stałych, 3. Badanie transferu energii pomiędzy jonami Tb i Ce w fosforach typu YAG: Tb, Ce, Gd metodą czasowo-rozdzielczej spektroskopii wysokociśnieniowej. 4. Badanie procesów relaksacyjnych oraz luminescencji anomalnej w wybranych kryształach domieszkowanych jonami ziem rzadkich,
Zasoby Sprzętowe NEW-LOKS 1. Dyfraktometry 2. Mikroskopy elektronowe 3. Aparatura do pomiarów widm Ramanowskich i Podczerwieni 4. Aparatura do pomiarów widm Elektronowych 5. Aparatura do syntezy nanoproszków, cienkich warstw, hodowli kryształów
Wybrane zasoby sprzętowe INTIBS Proszkowy dyfraktometr rentgenowski DRON-3 do analiz fazowych; Piec Morris Reseach do syntez wysokociśnieniowych w obecności tlenu lub innych gazów, maksymalna temperatura 1400 K, maksymalne ciśnienie 1000 bar; Spektrometr impulsowy magnetycznego rezonansu jądrowego NMR; Magnetic Property Measurement, System firmy Quantum Design: magnetometr DC wyposażony w czujnik SQUID: pole magnetyczne do 5.5 T, zakres temperatur 2-800 K; Kalorymetr adiabatyczny własnej konstrukcji do badań próbek proszkowych (zakres temperatur 4-280 K); Spektrometr fourierowski Bruker IFS-88 na podczerwień Spektrometr Ramana firmy Jobin-Yvon Ramanor U-1000 (zakres pracy: 4000-10 cm-1; zakres temparatur: 13-500 K; rozdzielczość: 0.15 cm-1); Spektrometr Ramana DFS-24 (zakres pracy: 4000-20 cm-1; zakres temperatur: 4-300 K); Spektrometr zakresu podczerwieni M80 Specord (zakres spektralny: 4000-200 cm-1; zakres temperatur 4-300 K);
Zasoby sprzętowe INTIBS cd. Spektrofotometr absorpcyjny Cary 2300 UV-VIS-NIR (zakres spektralny: 185-3100 nm; rozdzielczość 0.07 nm dla zakresu widzialnego i nadfioletu oraz 0.35 nm dla podczerwieni; zakres temperatur: 4-300 K); Kalorymetr skaningowy Perkin-Elmer DSC-7 z wyposażeniem (CCA-7) na zakres niskich temperatur (100-725 K); 2 monokrystaliczne dyfraktometry czterokołowe KM-4 wyposażone w przystawki wysoko- i niskotemperaturowe (77-700 K), jeden z nich wyposażony w rentgenowski detektor 2-wymiarowym CCD; Monokrystaliczny dyfraktometr czterokołowy KM-4 przystosowany do precyzyjnych pomiarów parametrów sieci metodą Bonda w zakresie temperatur 77-700 K; Dyfraktometr proszkowy STOE wyposażony w licznik pozycyjny. Służy do szybkich analiz fazowych; - Dyfraktometr proszkowy Siemens D5000 z helową przystawką niskotemperaturową, - - Transmisyjny mikroskop elektronowy Philips CM-20 Super Twin: napięcie przyspieszające 200 kv, liniowa zdolność rozdzielcza 0.14 nm; - Transmisyjny mikroskop elektronowy Tesla BC 500: napięcie przyspieszające 90 kv, zdolność rozdzielcza 1 nm, zakres temperatur do 1100 K; - Sorptometr Sorptomatic 1900 Fisons Instruments do pomiarów powierzchni
Wybr. zasoby sprzęt. UWr
Wybr. zasoby sprzęt. U Gd
Cele projektu opracowaniem nowoczesnych luminoforów, do oświetleń i koncentratorów słonecznych energooszczędnych, tanich, przyjaznych dla środowiska o widmie emisji zbliżonym do widma światła słonecznego, poprawiających wydajność ogniw słonecznych
ZADANIA 1. Wytworzenie luminoforów o wydajności kwantowej większej niż 100%. 2. Wytworzenie wydajnych energetycznie luminoforów o wysokim CRI. 3. Wytworzenie luminoforów o efekcie antenowym. 4. Wytworzenie luminoforów do poprawy wydajności energetycznej ogniw słonecznych. 5. Zakończenie i ocena realizacji projektu.
Nowe wydajne luminofory do oświetleń i koncentratorów słonecznych 1 rok 2 rok 3 rok 4 rok 5 rok Lp. Nazwa etapu / nr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 kwartału 1 Modelowanie luminoforów fluorkowych - Uniw. Gdańsk 2 Przygotowanie i synteza luminoforów fluorkowych INTiBS PAN 3 Analiza strukturalna luminoforów fluorkowych INTiBS PAN 4 Diagnostyka metodami spektroskopii wysokociśnieniowej luminoforów fluorkowych - Uniw. Gdańsk 5 Analiza właściwości emisyjnych i absorpcyjnych luminoforów fluorkowych - INTiBS PAN 6. Wyselekcjonowanie materiałów o parametrach spełniających podstawowe wymagania luminoforów fluorkowych Uniw. Gdańsk, INTiBS PAN, Uniw. Wrocław 7. Modelowanie luminoforów tlenkowych o szerokopasmowej emisji w zakresie widzialnym - Uniw. Gdańsk 8. Przygotowanie i synteza luminoforów luminoforów tlenkowych o szerokopasmowej emisji w zakresie widzialnym - Uniw. Wroclaw 9. Analiza strukturalna luminoforów tlenkowych o szerokopasmowej emisji w zakresie widzialnym INTiBS PAN 10. Diagnostyka metodami spektroskopii wysokociśnieniowej luminoforów tlenkowych o szerokopasmowej emisji w zakresie widzialnym - Uniw. Gdańsk 11. Analiza właściwości emisyjnych i absorpcyjnych luminoforów tlenkowych o szerokopasmowej emisji w zakresie widzialnym INTiBS PAN 12. Wyselekcjonowanie najbardziej wydajnych luminoforów o szerokopasmowej emisji w zakresie widzialnym - Uniw. Gdańsk, INTiBS PAN, Uniw. Wrocław 13. Modelowanie luminoforów organicznych o efekcie antenowym domieszkowanych lantanowcami Uniw. Gdańsk 14. Przygotowanie i synteza materiałów luminoforów organicznych o efekcie antenowym domieszkowanych lantanowcami Uniw. Wrocław 15. Analiza strukturalna luminoforów luminoforów organicznych o efekcie antenowym domieszkowanych lantanowcami INTiBS PAN, 16. Analiza właściwości emisyjnych i absorpcyjnych luminoforów organicznych o efekcie antenowym domieszkowanych lantanowcami INTiBS PAN, 17. Wybór luminoforów organicznych o efekcie antenowym domieszkowanych lantanowcami posiadających najlepsze właściwości emisyjne- Uniw. Gdańsk, INTiBS PAN, Uniw. Wrocław 18. Modelowanie luminoforów o wąskopasmowej emisji w zakresie 1.0-1.4 ev - Uniw. Gdańsk 19. Przygotowanie i synteza luminoforów o wąskopasmowej emisji w zakresie 1.0-1.4 ev - Uniw. Wrocław 20. Analiza strukturalna luminoforów o wąskopasmowej emisji w zakresie 1.0-1.4 ev - INTiBS PAN 21. Diagnostyka metodami spektroskopii wysokociśnieniowej luminoforów o wąskopasmowej emisji w zakresie 1.0-1.4 ev - Uniw. Gdańsk 22. Analiza właściwości emisyjnych i absorpcyjnych luminoforów o wąskopasmowej emisji
Zespół projektowy 1) Koordynator projektu (INTiBS) doc. dr hab. Przemysław Dereń 1) Lider ds. wdrażania projektu (Uniwersytet Gdański) prof. dr hab. Marek Grinberg 1) Lider ds. wdrażania projektu (Uniwersytet Wrocławski) prof. dr hab. Eugeniusz Zych Specjalista ds. monitoringu Wnioskodawcy i podmiotów współpracujących mgr Joanna Lorenc Specjalista ds. finansowych Wnioskodawcy i podmiotów współpracujących - mgr Paweł Sip Specjalista ds. promocji mgr Andrzej Koczarski
Wyjątek ze studium wykonalności Wnioskodawca i podmioty współpracujące zapewnią dostęp do wszystkich kluczowych danych realizacji projektu. Uzyskane wyniki będą udostępniane wszystkim zainteresowanym podmiotom nieodpłatnie. Zakłada się, iż Wnioskodawca rozszerzy współpracę z przedsiębiorstwami, powstającymi Parkami Naukowo- Technologicznymi, Inkubatorami oraz Centrami Transferu Technologii w celu rozpowszechniania rezultatów projektu.
Dodatkowo Wnioskodawca i podmioty współpracujące zaoferuje specjalistyczną pomoc przedsiębiorcom wdrażającym opracowaną technologię - wzmacniając współpracę jednostek naukowych z przemysłem. Rozpowszechnienie wyników w kraju i zagranicą Planowane jest podpisanie umów współpracy z przedsiębiorstwami wyrażającymi chęć wdrożenia wyników projektu Informacje zostaną udostępnione na stronie internetowej oraz przedstawione na konferencjach i targach branżowych, które przyciągają potencjalnych odbiorców.
Promocja NEW LOKS, Współpraca z Przemysłem utworzenie interaktywnej strony internetowej projektu W ramach projektu dopuszcza się także tworzenie zdalnych miejsc pracy wykorzystujących możliwości Internetu i sieci telekomunikacyjnych. utworzenie internetowej bazy materiałów opracowywanych w laboratoriach. Celem tego działania jest ułatwienie współpracy z przemysłem i naukowcami oraz wprowadzenie nowych możliwości zarządzania opracowanymi technologiami. Informacje zawarte w bazie będą obejmowały metody wytwarzania materiałów oraz ich właściwości. wyniki badań mogą być przekazywane w wersji elektronicznej, Wnioskodawca planuje wykorzystanie istniejących baz danych. zbieranie danych, ich analiza, jak również archiwizacja będzie prowadzona w profesjonalny sposób. Uzyskane wyniki będą gromadzone, a następnie przetwarzane statystycznie i graficznie przy użyciu specjalistycznego oprogramowania organizację spotkań i konferencji dla grupy docelowej