Regulamin Konkursu Matematycznego ZAGIMAK. rok szkolny 2012/13



Podobne dokumenty
Ułamki i działania 20 h

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Lista działów i tematów

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

wymagania programowe z matematyki kl. III gimnazjum

Egzamin gimnazjalny 2015 część matematyczna

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

PYTANIA TEORETYCZNE Z MATEMATYKI

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania edukacyjne klasa pierwsza.

PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna:

Wymagania edukacyjne klasa trzecia.

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Katalog wymagań programowych na poszczególne stopnie szkolne

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

Katalog wymagań programowych na poszczególne stopnie szkolne

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

klasa I Dział Główne wymagania edukacyjne Forma kontroli

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Kryteria ocen z matematyki w klasie I gimnazjum

Plan wynikowy z rozkładem materiału

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac.

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

2. Kryteria oceniania

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Osiągnięcia przedmiotowe

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi:

ZESPÓŁ SZKÓŁ W OBRZYCKU

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania edukacyjne z matematyki

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

WYMAGANIA EDUKACYJNE

NaCoBeZU z matematyki dla klasy 8

Semestr Pierwszy Liczby i działania

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM

Wymagania edukacyjne z matematyki dla klasy I gimnazjum

Lista działów i tematów

Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum.

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

Wymagania szczegółowe z matematyki klasa 7

Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem

Transkrypt:

Regulamin Konkursu Matematycznego ZAGIMAK rok szkolny 2012/13 Organizatorem konkursu jest Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli Oddział w Zamościu i Państwowa Wyższa Szkoła Zawodowa im. Szymona Szymonowica w Zamościu. Honorowy patronat nad konkursem sprawuje Prezydent Miasta Zamościa. 1. Celem konkursu jest: Rozwijanie uzdolnień i zainteresowań matematycznych uczniów gimnazjum. Promocja szkół, nauczycieli i uczniów biorących udział w konkursach 2. Konkursy są trzyetapowe I etap eliminacje szkolne II etap eliminacje międzyszkolne /rejonowe/ III etap finał. 3. Konkurs rozgrywany jest w trzech kategoriach Kategoria I uczniowie do klasy I włącznie Kategoria II uczniowie do klasy II włącznie Kategoria III uczniowie do klasy III włącznie 4. Udział w konkursie jest dobrowolny 5. Opiekę nad uczniami sprawują nauczyciele oddelegowani przez szkołę 6. Do kolejnego etapu konkursu kwalifikują się uczniowie, którzy uzyskali co najmniej 80% punktów. Laureatem konkursu finałowego zostają uczniowie, którzy z części finałowej uzyskali, co najmniej 80% możliwych do zdobycia punktów 7. Wszyscy uczestnicy III etapu dostają dyplomy uczestnictwa a laureaci dyplom laureata. 8. Konkursy przeprowadzają: I etap Szkolna Komisja Konkursowa, co najmniej dwuosobowa powołana przez dyrektora szkoły. II etap Rejonowa Komisja Konkursowa w skład, której wchodzą nauczyciele, których uczniowie biorą udział w danym etapie konkursu. Przewodniczącego komisji powołuje LSCDN w Zamościu. III etap Finałowa Komisja Konkursowa w skład, której wchodzą powołani przez LSCDN w Zamościu. Przewodniczącego komisji powołuje LSCDN w Zamościu.

9. Zadania komisji: Do obowiązków Szkolnej Komisji Konkursowej należy: Organizacja i przeprowadzenie eliminacji I etapu Przewodniczący Szkolnej Komisji Konkursowej odbiera w sekretariacie LSCDN w Zamościu materiały do przeprowadzenia konkursu na trzy dni przed terminem eliminacji szkolnych. Powielenie odpowiedniej ilości zestawów potrzebnych do przeprowadzenia eliminacji. (szkoła otrzymuje po jednym zestawie zadań do poszczególnych klas ) Sprawdzenie prac konkursowych Sporządzenie protokołu i przesłanie go wraz z pracami uczniów, którzy zostali zakwalifikowani do II etapu do LSCDN w Zamościu Do obowiązków Rejonowej Komisji Konkursowej należy: Organizacja i przeprowadzenie eliminacji II etapu Sprawdzenie prac konkursowych Sporządzenie protokołu i przesłanie go wraz z pracami uczniów, którzy zostali zakwalifikowani do III etapu do LSCDN w Zamościu LSCDN w Zamościu umieszcza wyniki II etapu konkursu na stronie internetowej. Do obowiązków Finałowej Komisji Konkursowej należy: Organizacja i przeprowadzenie eliminacji III etapu Sprawdzenie prac konkursowych Sporządzenie protokołu według kolejności zdobytych punktów, Sporządzenie listy laureatów i przesłanie go wraz ze wszystkimi pracami do LSCDN w Zamościu LSCDN w Zamościu zawiadamia laureatów poprzez dyrektorów ich szkół o terminie wręczenia Dyplomu Laureata. 10. Organizacja poszczególnych etapów konkursu: Etap szkolny: Etap szkolny odbywa się we wszystkich szkołach o godzinie 9 00 w dniu ustalonym przez LSCDN w Zamościu. Zestawy zadań powinny być otwarte o godzinie 9 00 w obecności uczestników konkursu w dniu eliminacji. Etap międzyszkolny: Etap międzyszkolny odbywa się w szkołach wytypowanych przez LSCDN w Zamościu Przewodniczący poszczególnych komisji dokonuje kodowania prac pisemnych uczestników

Etap finałowy: Zestawy zadań na eliminacje II etapu odbierają przewodniczący Rejonowych Komisji Konkursowych w terminie ustalonym przez LSCDN w Zamościu Zestawy zadań powinny być otwarte w obecności uczestników konkursu w dniu i godzinie eliminacji ustalonym przez LSCDN w Zamościu. Etap finałowy odbywa się w szkołach wytypowanych przez LSCDN w Zamościu Przewodniczący poszczególnych komisji dokonuje kodowania prac pisemnych uczestników Zestawy zadań na eliminacje III etapu odbierają przewodniczący Finałowych Komisji Konkursowych w terminie ustalonym przez LSCDN w Zamościu Zestawy zadań powinny być otwarte w obecności uczestników konkursu w dniu i godzinie finału ustalonym przez LSCDN w Zamościu. 11. Terminy poszczególnych etapów ustala LSCDN w Zamościu Terminy eliminacji w roku szkolnym 2012/13 : etap szkolny 14.12.2012r. etap powiatowy 26.01.2013r. etap finałowy 13.04.2013r. 12. Udział w konkursach należy zgłaszać do 30 listopada 2012r. 13. Wszystkie osoby powołane do organizacji i przeprowadzania konkursu zobowiązane są do zachowania tajemnicy służbowej 14. Wymagania konkursowe na poszczególne etapy ujęte są w aneksach. 15. Sprawy nie ujęte w regulaminie rozstrzyga Kierownik LSCDN w Zamościu.

Aneks do regulaminu Konkursu Matematycznego ZAGIMAK Program merytoryczny konkursu. Klasa I I. Etap szkolny 1. Liczby i działania, procenty 2. Geometria Liczby całkowite: podzielność, NWW, NWD, działania, prawa działań, wartość bezwzględna liczby Ułamki zwykłe i dziesiętne, ułamki okresowe: zamiana, porównywanie, działania. Przybliżenia liczbowe: reguły zaokrąglania. Potęga o wykładniku naturalnym, działania. Obliczenia procentowe: zadania, obliczenia bankowe, stężenia procentowe, promile, stopy. Punkt, prosta, półprosta, odcinek. Kąt, rodzaje kątów, obliczanie kątów. Wielokąty: trójkąty, czworokąty klasyfikacja, własności, obwody i pola powierzchni. Prostokątny układ współrzędnych na płaszczyźnie: wyznaczanie zbiorów punktów, których współrzędne spełniają zadane warunki. Skala i plan. II. Etap okręgowy Obowiązuje zakres materiału określony dla etapu szkolnego, a ponadto: 1. Wyrażenia algebraiczne Budowanie wyrażeń algebraicznych, wartość liczbowa wyrażenia algebraicznego. Jednomian i suma algebraiczna działania. Rozkładanie sum algebraicznych na czynniki. III. Etap finałowy Obowiązuje zakres materiału określony dla etapu II, a ponadto: 1. Równania i nierówności Rozwiązywanie równań i nierówności I stopnia z jedną niewiadomą. Ilustracja rozwiązania nierówności na osi liczbowej. Równanie sprzeczne i tożsamościowe. Zastosowanie równań i nierówności do rozwiązywania zadań tekstowych.

Zapisywanie treści zadania w postaci wyrażenia algebraicznego, równania, lub nierówności. Dowodzenie prostych twierdzeń o treści algebraicznej Proste równania z wartością bezwzględną Figury przystające. Cechy przystawania trójkątów: zadania konstrukcyjne Dowodzenie prostych twierdzeń o treści geometrycznej. W każdym kolejnym etapie stopień trudności zadań będzie wzrastał. Klasa II I. Etap szkolny 1. Algebra 2. 2. Geometria Liczby całkowite: podzielność, NWW, NWD, działania, prawa działań, wartość bezwzględna liczby Ułamki zwykłe i dziesiętne, ułamki okresowe: zamiana, porównywanie, działania. Obliczenia procentowe: zadania, obliczenia bankowe, diagramy, promile. Przybliżenia liczbowe: reguły zaokrąglania. Potęga o wykładniku całkowitym: twierdzenia, działania. Pierwiastek arytmetyczny: twierdzenia, wyłączanie czynnika przed i włączanie czynnika pod znak pierwiastka, działania na pierwiastkach. Budowanie wyrażeń algebraicznych, wartość liczbowa wyrażenia algebraicznego. Jednomian i suma algebraiczna działania. Rozkładanie sum algebraicznych na czynniki. Rozwiązywanie równań i nierówności I stopnia z jedną niewiadomą. Ilustracja rozwiązania nierówności na osi liczbowej. Równanie sprzeczne i tożsamościowe. Zastosowanie równań i nierówności do rozwiązywania zadań tekstowych. Zapisywanie treści zadania w postaci wyrażenia algebraicznego, równania, lub nierówności. Dowodzenie prostych twierdzeń o treści algebraicznej Punkt, prosta, półprosta, odcinek. Kąt, rodzaje kątów, obliczanie kątów. Wielokąty: trójkąty, czworokąty klasyfikacja, własności, obwody i pola powierzchni. Pole koła i długość okręgu, długość łuku i pole wycinka koła. Symetria osiowa i środkowa. Oś symetrii i środek symetrii figury. Symetria w układzie współrzędnych.

Figury przystające. Cechy przystawania trójkątów: zadania konstrukcyjne i zadania na dowodzenie. Prostokątny układ współrzędnych na płaszczyźnie: wyznaczanie zbiorów punktów, których współrzędne spełniają zadane warunki. Skala i plan. Dowodzenie prostych twierdzeń o treści geometrycznej. II. Etap okręgowy Obowiązuje zakres materiału określony dla etapu szkolnego, a ponadto: Liczby całkowite: dzielenie z resztą. Zadania na prędkość, drogę i czas przeliczanie jednostek. Stopy, syropy, roztwory zadania. Pierwiastek arytmetyczny: pozbywanie się niewymierności w mianowniku. Stosunek i proporcjonalność: własności stosunku i proporcji, zastosowanie do zadań tekstowych. III. Etap finałowy Obowiązuje zakres materiału określony dla etapu II, a ponadto: Twierdzenie Pitagorasa i twierdzenie odwrotne zastosowania w zadaniach Prostopadłościan, sześcian, graniastosłup opis, siatka, pole powierzchni i objętość - zadania..okrąg i koło, figury w kole: kąt środkowy i kąt wpisany twierdzenia, ramiona kąta styczne do okręgu twierdzenia, trójkąt wpisany w okrąg i opisany na okręgu. Proste równania i nierówności z wartością bezwzględną Wzory skróconego mnożenia W każdym kolejnym etapie stopień trudności zadań będzie wzrastał. Klasa III I. Etap szkolny 1. Algebra Liczby całkowite: podzielność, NWW, NWD, działania, prawa działań, wartość bezwzględna liczby Obliczenia procentowe: zadania, obliczenia bankowe, diagramy, promile. Potęga o wykładniku całkowitym: twierdzenia, działania. Pierwiastek arytmetyczny: twierdzenia, wyłączanie czynnika przed i włączanie czynnika pod znak pierwiastka, działania na pierwiastkach. Budowanie wyrażeń algebraicznych, wartość liczbowa wyrażenia algebraicznego. Wzory skróconego mnożenia.

2. Geometria 3. Funkcja Rozkładanie sum algebraicznych na czynniki. Rozwiązywanie równań i nierówności I stopnia z jedną niewiadomą. Ilustracja rozwiązania nierówności na osi liczbowej. Rozwiązywanie układów równań liniowych, interpretacja geometryczna Zastosowanie równań, nierówności i układów równań do rozwiązywania zadań tekstowych. Zapisywanie treści zadania w postaci wyrażenia algebraicznego, równania, nierówności. lub układów równań Dowodzenie twierdzeń o treści algebraicznej Kąt, rodzaje kątów, obliczanie miar kątów Twierdzenie Pitagorasa i twierdzenie odwrotne zastosowania w zadaniach Wielokąty: trójkąty, czworokąty klasyfikacja, własności, obwody i pola powierzchni..okrąg i koło, figury w kole: kąt środkowy i kąt wpisany twierdzenia, ramiona kąta styczne do okręgu twierdzenia, trójkąt wpisany w okrąg i opisany na okręgu. Pole koła i długość okręgu, długość łuku,pole wycinka i odcinka koła. Symetria osiowa i środkowa. Oś symetrii i środek symetrii figury. Figury przystające. Cechy przystawania trójkątów: zadania konstrukcyjne i zadania na dowodzenie. Dowodzenie twierdzeń o treści geometrycznej. Pojęcie funkcji, dziedzina, zbiór wartości, wykres funkcji, własności, miejsce zerowe, monotoniczność. Wielkości wprost i odwrotnie proporcjonalne II. Etap okręgowy Obowiązuje zakres materiału określony dla etapu szkolnego, a ponadto: Podobieństwo figur. Cechy podobieństwa figur III. Etap finałowy Obowiązuje zakres materiału określony dla etapu II, a ponadto: Prostopadłościan, sześcian, graniastosłup, ostrosłup opis, siatka, pole powierzchni i objętość - zadania. Równania i nierówności z wartością bezwzględną Funkcja liniowa - zadania. Bryły obrotowe opis, pole powierzchni i objętość W każdym kolejnym etapie stopień trudności zadań będzie wzrastał.