Convolution semigroups with linear Jacobi parameters

Podobne dokumenty
Fuss-Catalan numbers in noncommutative probability

Hard-Margin Support Vector Machines

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Revenue Maximization. Sept. 25, 2018

Few-fermion thermometry

Rachunek lambda, zima

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

tum.de/fall2018/ in2357

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Inverse problems - Introduction - Probabilistic approach

OpenPoland.net API Documentation

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Roland HINNION. Introduction

Previously on CSCI 4622

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

O zbiorach małych w polskich grupach abelowych

SNP SNP Business Partner Data Checker. Prezentacja produktu


Gradient Coding using the Stochastic Block Model

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Rev Źródło:

JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Mixed-integer Convex Representability

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Stargard Szczecinski i okolice (Polish Edition)

Symmetry and Geometry of Generalized Higgs Sectors

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SNP Business Partner Data Checker. Prezentacja produktu


DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Knovel Math: Jakość produktu

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Rolki i arkusze stosowane w handlu Commercial rolls and sheets. ko-box.pl

Mathematics A Brief Guide for Engineers and Technologists. Chapter 2. Second. Properties. S is a vector space. Note

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

1. Ile czasu dziennie spędzasz z rodzicami?

Konsorcjum Śląskich Uczelni Publicznych

Physics-Based Animation 4 Mass-spring systems

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach

Has the heat wave frequency or intensity changed in Poland since 1950?

Prices and Volumes on the Stock Market

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

Aerodynamics I Compressible flow past an airfoil

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Plac Powstańców Warszawy Warszawa Polska Warsaw Poland

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

Lecture 18 Review for Exam 1

Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM

Unitary representations of SL(2, R)

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska

Copyright 2013 Zbigniew Płotnicki. Licence allows only a publication on arxiv.org and vixra.org. Beside it all rights reserved.

Modern methods of statistical physics

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Angielski bezpłatne ćwiczenia - gramatyka i słownictwo. Ćwiczenie 4

Karta Katalogowa Catalogue card

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Strings on Celestial Sphere. Stephan Stieberger, MPP München

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition)

F-Theory duals of heterotic K3 orbifolds

DOI: / /32/37

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Curriculum Vitae doktorat z matematyki teoretycznej (za prace pt.,,macierzowy problem momentów ) grant IM PAN dla doktorantów.

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K:

Title: On the curl of singular completely continous vector fields in Banach spaces

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

1. INFORMACJE OGÓLNE

Nonlinear data assimilation for ocean applications

Skale i systemy strojenia. III rok Reżyserii Dźwięku Anna Preis AM_5_2015

2 rzędy zębów kultywatora z zabezpieczeniem sprężynowym (3 w I rzędzie + 4 w II), III rząd talerzy, 2 wały doprawiające.

Permutability Class of a Semigroup

Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13

Algorytm FIREFLY. Michał Romanowicz Piotr Wasilewski

Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych. Warszawa, 15 stycznia 2015 r. Zbigniew Długosz

CPX Cisco Partner Excellence CSPP program partnerski

European Crime Prevention Award (ECPA) Annex I - new version 2014

Transkrypt:

Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011

Jacobi parameters. µ = measure with finite moments, m i = x i dµ(x) <. Jacobi parameters Classical result. µ J(µ) = and all {β i }, {γ i 0} occur. ( β0, β 1, β 2, )... γ 0, γ 1, γ 2,... µ positive all γ i 0,

Jacobi parameters. Definition 1. Tridiagonal matrix. β 0 γ 0 0 0... 1 β 1 γ 1 0.. m n J =. 0 1 β 2 γ.. 2 ; J n =. 0 0 1 β.. 3...............

Jacobi parameters. Definition 2. Cauchy transform 1 G µ (z) = z x dµ(x) = 1 z + m 1 z 2 + m 2 z 3 + m 3 z 4 +.... Then G µ (z) = R z β 0 z β 1 1 γ 0 z β 2 γ 1 γ 2. z β 3 γ 3 z...

Jacobi parameters. Definition 3. {P n } = monic orthogonal polynomials with respect to µ. Then xp n (x) = P n+1 (x) + β n P n (x) + γ n 1 P n 1 (x).

Convolution semigroups. Measures frequently come in convolution semigroups {µ t }, µ t µ s = µ t+s, (ν τ)(f) = f(x + y) dν(x) dτ(y). Processes with independent increments. ( ) β0 (t), β J(µ t ) = 1 (t), β 2 (t),... γ 0 (t), γ 1 (t), γ 2 (t),... In general, rational functions of t. But:

Examples. Gaussian semigroup µ t (x) = 1 2πt e x2 /2t. Jacobi parameters β n (t) = 0, γ n (t) = (n + 1)t. Poisson semigroup µ t (x) = e t k=0 1 k! tk δ k (x) Jacobi parameters β n (t) = t + n, γ n (t) = (n + 1)t. Linear in t!

Meixner class. More generally: µ in Meixner class if β n = a + nb, γ n = (n + 1)[c + nd]. Then (not obvious!) for µ t, β n (t) = at + nb, γ n (t) = (n + 1)[ct + nd].

Main result. Question. What are all convolution semigroups with Jacobi parameters polynomial in t? Theorem. Only Meixner. In particular, all linear in t.

Ingredients of the proof. Recall. β 0 γ 0 0 0... 1 β 1 γ 1 0.. J n =. 0 1 β 2 γ.. 2. 0 0 1 β.. 3............... n m n =. Formula for m n in terms of β i, γ i. Viennot-Flajolet: lattice paths. Accardi-Bożejko: non-crossing partitions.

Moment-Jacobi formula. m n = π NC 1,2 (n) V π V =1 β d(v,π) V π V =2 γ d(v,π). NC 1,2 = non-crossing partitions into pairs and singletons. d(v, π) = depth of V in π. m 1 = β 0, m 2 = β0 2 + γ 0, m 3 = β0 3 + 2β 0 γ 0 + β 1 γ 0, m 4 = β0 4 + 3β0γ 3 0 + 2β 0 β 1 γ 0 + β1γ 2 0 + γ0 2 + γ 0 γ 1.

Moment-cumulant formula. m n (µ t ) = complicated. Use cumulants instead. r 1, r 2, r 3,... r n (t) = t r n (linearize convolution). m n = r V. π P(n) V π No simple relation between {r n } and {β n, γ n }.

Indirect proof. β 0 (t)= at, β 1 (t)= at + b, γ 0 (t)= ct, γ 1 (t)= 2ct + d. To show: β 2, γ 2,... the same as for Meixner(a, b, c, d). By induction. m 2n+1 (µ t ) = m 2n+1 (µ M t ) + [β n (µ t ) β n (µ M t )] γ n 1 (t)... γ 1 (t)γ 0 (t). So m k = r k + Q k (r 1, r 2,..., r k 1 ). r 2n+1 (µ t ) = r 2n+1 (µ M t ) + [β n (µ t ) β n (µ M t )] γ n 1 (t)... γ 1 (t)γ 0 (t). Know γ 0 (t) = ct and γ 1 (t) depends on t, the rest of γ i (t) polynomial.

Indirect proof. By induction. m 2n+1 (µ t ) = m 2n+1 (µ M t ) + [β n (µ t ) β n (µ M t )] γ n 1 (t)... γ 1 (t)γ 0 (t). So m k = r k + Q k (r 1, r 2,..., r k 1 ). r 2n+1 (µ t ) = r 2n+1 (µ M t ) + [β n (µ t ) β n (µ M t )] γ n 1 (t)... γ 1 (t)γ 0 (t). Know γ 0 (t) = ct and γ 1 (t) depends on t, the rest of γ i (t) polynomial. β n (µ t ) = β n (µ M t ). Use m 2n+2 to show γ n (µ t ) = γ n (µ M t ).

Other convolutions. Free cumulants and convolution. m n = r V. π NC (n) V π In particular rn (µ t ) = t rn (µ). Boolean cumulants and convolution. m n = r V. π Int(n) V π r n(µ t ) = t r n(µ).

Generalization. Same proof works in the abstract (Hasebe, Saigo) setting if 1 r n (µ t ) = t r n (µ). 2 m n = r n + Q(r 1,..., r n 1 ). 3 γ 1 (t) depends on t. Theorem: if have a 4-parameter Meixner-type family, have no others.

Free case. γ 1 (t) = ct + d. Answer: free Meixner class. If for µ, J(µ) = ( a, a + b, a + b, )... c, c + d, c + d,... then for its free convolution power (not obvious!) ( ) J(µ t at, at + b, at + b,... ) =. ct, ct + d, ct + d,... 4-parameter. The only free convolution semigroups with Jacobi parameters polynomial in t.

Boolean case. γ 1 (t) = d independent of t. General theorem does not apply! In fact, for any µ. J(µ t ) = ( β0 t, β 1, ) β 2,... γ 0 t, γ 1, γ 2,...

Better proof for the free case. Recall m n = π NC 1,2 (n) V π V =1 m n = β d(v,π) π NC (n) V π V π V =2 r V. Both non-crossing. Młotkowksi: direct relation. π NC 1,2 (n). u a labeling of π: Some labelings connected. r n = connected labelings u(v ) {0, 1, 2,..., d(v, π)}. γ d(v,π). (β u(v ) β u(v ) 1 ) (γ u(v ) γ u(v ) 1 ). V π V π V =1 V =2

Free cumulant-jacobi formula. r 1 = β 0, r 2 = γ 0, r 3 = γ 0 [ (β1 β 0 ) ], r 4 = γ 0 [ (β1 β 0 ) 2 + (γ 1 γ 0 ) ], r 5 = γ 0 [ (β1 β 0 ) 3 + 3(γ 1 γ 0 )(β 1 β 0 ) + (γ 1 γ 0 )(β 2 β 1 ) + γ 0 (β 2 β 1 ) ], r 6 = γ 0 [ (β1 β 0 ) 4 + 6(γ 1 γ 0 )(β 1 β 0 ) 2 + 4γ 1 (β 2 β 1 )(β 1 β 0 ) 2 + γ 1 (β 2 β 1 ) 2 + 2(γ 1 γ 0 ) 2 + γ 1 (γ 2 γ 1 ) ]. β 0 (t) = at, γ 0 (t) = ct, β 1 (t) β 0 (t) = b, γ 1 (t) γ 0 (t) = d, β 2 (t) β 1 (t) = 0, γ 2 (t) γ 1 (t) = 0, etc.

Two-state convolution. Two measures ( µ, µ). r n (µ) = free cumulants of µ. Two-state free cumulants R n ( µ, µ) defined via m n ( µ) = R V ( µ, µ) r U (µ). π NC (n) V Outer(π) U Inner(π) Convolution powers: r n (µ t ) = t r n (µ) and R n ( µ t, µ t ) = t R n ( µ, µ). Generalizes both free and Boolean convolution.

Two-state convolution. Theorem. If neither µ nor µ are point masses, Jacobi parameters of µ t polynomial in t if and only if ( ãt, at + J( µ t ) = b, ) at + b, at + b,... ct, ct + d, ct + d, ct + d,... and J(µ t ) = ( ) at, at + b, at + b,.... ct, ct + d, ct + d,... Note: polynomial dependence of the Jacobi parameters of µ t automatic.

Extended Boolean case. Proposition. µ and u arbitrary. ( µ, δ u ) can be extended to a c convolution semigroup ( µ t, δ tu ) with linear Jacobi parameters.

Properties of µ. 1 Satisfy quadratic d µ(x) = + at most 3 atoms. cubic 2 Appear in the two-state free Central and Poisson limit theorems. 3 Appear in the q = 0 case of the Bryc, Matysiak, Wesołowski (2007) quadratic harnesses. 4 Are precisely the measures found by Bożejko and Bryc (2009) to have a two-state free Laha-Lukacs characterization. 5 Satisfy R n+2 ( µ, µ) = b n R n+1 ( µ, µ) + c R k ( µ, µ) r n k (µ). k=2