TTIC 31190: Natural Language Processing

Podobne dokumenty
deep learning for NLP (5 lectures)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Previously on CSCI 4622

tum.de/fall2018/ in2357

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

13. Statistical Alignment and Machine Translation

Helena Boguta, klasa 8W, rok szkolny 2018/2019

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 7: Structured Prediction 1

Auditorium classes. Lectures

Revenue Maximization. Sept. 25, 2018

Course type* German I BA C 90/120 WS/SS 8/9. German I BA C 30 WS 2. English I BA C 60/90 WS/SS 5/6. English I BA C 30 WS 2. German I BA L 30 WS 4


OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Robotic Arm Assembly Manual

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.


Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN

Hard-Margin Support Vector Machines

Projekt: Mikro zaprogramowane na sukces!

Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Mixed-integer Convex Representability

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

The Lorenz System and Chaos in Nonlinear DEs

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

NOTES ABOUT AUTHORS Walter Rothholz Remigiusz Król Michał Wendland Wojciech Torzewski Krzysztof Przybyszewski Piotr Urbański Wojciech Majka

A DIFFERENT APPROACH WHERE YOU NEED TO NAVIGATE IN THE CURRENT STREAMS AND MOVEMENTS WHICH ARE EMBEDDED IN THE CULTURE AND THE SOCIETY

Wymagania bezpieczeństwa dotyczące elektrycznych przyrządów pomiarowych, automatyki i urządzeń laboratoryjnych Część 1: Wymagania ogólne

GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego

Planning and Cabling Networks

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Patients price acceptance SELECTED FINDINGS

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Cel szkolenia. Konspekt

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

UMOWY WYPOŻYCZENIA KOMENTARZ

g]bbvd`cyw>[ealyb^vwvvzo]^vwp`[[ab]cfwxyzy[v\]^]bvwvazovf

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Kształtując przyszłość, jakiej chcemy. refleksje z raportu podsumowującego Dekadę Edukacji dla Zrównoważonego Rozwoju ( ).

Few-fermion thermometry

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY!

Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University

Programming with Invariants through Targeted Synthesis. John Sarracino

Installation of EuroCert software for qualified electronic signature

Model zaszumionego kanału

MONAA: a Tool for Timed Pattern Matching with Automata-Based Acceleration

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes.

Krok po kroku... (czyli jak stworzyć i wydrukować krzyżówkę)

Adult Education and Lifelong Learning

What kind of. Data Scientist do you need?

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ALA MA KOTA PRESCHOOL URSYNÓW WARSAW POLAND

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

. Natural Language Processing. Jan Daciuk Department of Intelligent Interactive Systems ETI Faculty, Gdańsk University of Technology.

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system

3. AT THE HOTEL W HOTELU. Adam is at the Garden Inn Hotel reception desk. He is checking-in.

KENDO. catalogue : FURNITURE : MARIDEX. Biały, połyskujący kolor frontów nadaje nowoczesny charakter wnętrzu.

Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski)

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska

Instrukcja obsługi User s manual

Zarządzanie sieciami telekomunikacyjnymi

Extraclass. Football Men. Season 2009/10 - Autumn round

Asistenční technologie pro podporu jedinců s dyslexií

Procedure 2(b) (obvious errors in a number of language versions)

Kierunek: Informatyka rev rev jrn Stacjonarny EN 1 / 6

Admission to the first and only in the swietokrzyskie province Bilingual High School and European high School for the school year 2019/2020

No matter how much you have, it matters how much you need

KLASA III MODUŁ 1. Unit 1

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Lab. Efekt 1 - kolokwium wykładowe. Efekt 2, 3 i 4 - samodzielnie rozwiązywane ćwiczenia laboratoryjne.

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Wydział Informtyki i Nauki o Materiałach Kierunek Informatyka

OpenPoland.net API Documentation

Zajęcia z języka angielskiego TELC Gimnazjum Scenariusz lekcji Prowadzący: Jarosław Gołębiewski Temat: Czas Present Perfect - wprowadzenie

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

MODELOWANIE STANÓW CZYNNOŚCIOWYCH W JĘZYKU SIECI BAYESOWSKICH

Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Asking whether there are commission fees when you withdraw money in a certain country

MATLAB Neural Network Toolbox przegląd

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Asking whether there are commission fees when you withdraw money in a certain country

Transkrypt:

TTIC 31190: Natural Language Processing Kevin Gimpel Spring 2018 Lecture 17: Machine TranslaDon; SemanDcs

Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language modeling and word embeddings recurrent/recursive/convoludonal networks in NLP sequence labeling, HMMs, dynamic programming syntax and syntacdc parsing machine transladon semandcs 2

3

Google s NMT System 4

Google s NMT System 5

Google s NMT System they use a procedure that determinis1cally segments any character sequence into wordpieces vocab: 8k- 32k wordpieces they first learn a wordpiece model 6

Google s NMT System 7

8

9

Noisy Channel Model from Noah Smith

<latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u9394590/fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> <latexit sha1_base64="hzphb84eohhsi2oxga9qnsqx7tu=">aaa0t3icnvt7c9y2ezf7tnvx0v7zf9hkmtqxpoocp03b8uwu27u7cvtvj7xewqosob4kkqab8hrnhv0o/v79nt0feecsacu5mrffal9dlba7i8vduzkxqq4o/nfrbz/80y9/8tp3frb581/88le/fv+d33wpesvi+irmgrdfr0tsjbx0lwiqo1+xgpi8yuhx0cvdbp9qtovkvhipliu9zulascmliykqs/f/u1nk5estvwufz3izz0ixufp2jl2ub7+50wqpgjtm6ftdjkzv3gqq7wahrpkz+vzbphldhxl0lpczghqbjvgk6lmzxr49o199h4klm3vnc+f4djinsaoxtzizjdcfzxnnc/w1gra8qpkiis2z97co9g/0t+b+tnqpry325/jsg49uhqmpq5wwks6ilcetg1kd1kqofmcuefeslis+ick9gc+c5fse1lqrtbadnukw5ql+fsrqtx2kmurslvmikdlrm2m3yawv7ars009oa1aulajfbdqavlmgeiczeirmwnizjxyqwdcqnyc5ecrwmhebg25kkshcfxwwlfrrhyp5xg5ru0hkgysxw9q8yhqt/hjyg/m5k1lfi2h1nae+vaggtrtmhwqiqmuzbi7kvfq1ysvamow6yirm7c39cddyc8bvfe8hlydoljiroqvbdcqqgzhbrnulpyumhko754kczuenpqlqlg/rzbvnwwqpfid8ucw4qsuogsfownjyi03ajrkuw/zm8nvw0cor00sil2aqooiycta9mnoijyisrhwqym4yq5uywk5ipwzclckruwlmcmqriiqyrzkypexc0aheuhwypstlpwpvh2ctgtkuoh5qr1tljnyfhy9apqj/hjtoipssfnmqpuchqtvpk28qjmdnhuy0zuwtjxcdqqrhcbfqakyzbxoa1ageolo29qhnm36djrhkcfhmfbd/sd0kcscnajpobtcqjini4yjsqoecjnli1mzqcyb35atqwosyxw8yt3myoa1d4zowdxwuvrrhnq2mcoktygss7o19fvzktnxgmktb5dtyotp8ceoiqwqfyq+fb5vwsatm+vbji6uztzneffv0alrcefxo8dwosvf46poeazgntf34aid64okjfpzibg3m+gvcpyd5cqulm04ifyidx+3wxzskbr1ta+gb8fg0q63ox2/2/xmkoq23jg6rqiwje3q6ixt8klspeo3vwshmnwgtme9vbkhqqftb/llwmsigi1vx1tebcstzexopbgw1v5bitavz4jdffkrmwo4s3zwud8fjsjw6zhugbm9plpnfzhoadelmbeicede75hmyncnjhvulqqpnwyklic/qg6km2c6cudkrzgm+x9d3fqjqxa+yz0mswscyprl86+ggm1sw33ri40rgipxclne6bmpzcri6zqxdheggu8hz4ojw8ogzocqlfx9z1qymbculnwit+tibgys8brzqaxhw2zpmtfqrgctetv2e1whl9/yy+c5y3bmbiimhdgkvu9omksyzq2qixkmvikcriouqdonco0wl3l3rtzyrnmc1wwswcczk/i4ciruyrbz3c1unpxfifmfs383is8dudmdtxrkap7cxu8s7bhtbmtm6fmsllaxt4aypdnxlmkplnnumzzdyaoe3qr4+68yb307ropmzttubalnks+cads6mpsi+2n6abi+y9umvjp4dr0z7hdnzc1livkcmaln0562qlx0oowsvpowg5ux4iujatbq3m7ksoj5ysabekrlpogiubcicqc4r0w4dftzgdjtsgtlm9t0l9cbtepbttwz5tyeotusrx3krqa6oasbmt1iukwkoh6goijeaalfpbavajwywnxhqcrkwkzj8ybl7eqfwcdzlqqpp3foxrnh0qswuvjgw92loy4c8yglolayvtvmvjgzbjyribtd5syelgwizxzqvneoog9z7k/0jzr0kbldqq/8llzjoxdmax0agerftt1cm+wl/u9ziot/yjcwvdbymreaegbbhh64dw140gwqfq6g1lul4g5fnzsbgogunbj5fn5/7mifxbrnxjthzlguzfz6n9io1fi34yxy+dd2qpgvkuhnu5ey2gjbb1bny34owqr1ez8mozo4juqj0zbvapj5ya9wbtly2ua7ceru17/jnshsndojabyhzc1zgsq3yauyy+msfri+6hnbrtdpo8peoyhi2cbs1qqzz/1ewsl9pu+7rotjryg3xqmwyhnp4z6h77nnjv+hfrzp10xyxg9h/uw36lkzd1zqeurbwj9sykkwzvqsk2rdvfafwhszkcuchsy+u+bfxmd8fptj3urdpde4njm4+tzfbaw9b2deow3pb2l+dvnkhpdm+mcavuwzzgf/mycw8ojbgoencdsnswdnexkru2gsv64uvke7pzl93tgmur3najbpzwownhbdtukf7jd8bw6drgn80zoqh+7+roywghcobxwfkglet4qljdl6q18i8ybejw2gzy9yxmj92xmjwynvinrpgnstarvz0xmhcd/em/owoh3rb467og/zlcw/0w8cdclrdlz0rqn4d5aq3ck9ijvmfltelkbsmze+tg+s1njm20pxntmhrebugrgbsoe1hfo7o+hp87ggf22pcs4becqx3pd+dlcui02ngpewwumqheok/0zcpndej31qe4syunxqwqboqnfv3gnvn/ubrfyfabujaalye5poqkbaaci9lzr+xovdctgnntodnajtg0xudxc3x+q1yiebk3qmvwgjgr+ute5p7sgsqwlxihjxtjimejc6a4rgujmlujxsszbiwnxvdnazcmsxhxtaycsegzbiwegywryasxq+8evokkju9kpsqmbn1gk/16cvn8urc3y2ieiwweticqkwn0mkitjyxomqdpa7fw3o5ixhg+ylwro5jqnfor1dpjthrzfhsdvstktqvsrjyxkuk5vgsuqmsrho1vzkylerplyzvddk2cozhasbesczsfwdkjqb6tif1pwdnwhixwbm/hppl7gajaljrbeu8oh3sffcyyqgcz5nkyjdnxotsc4w99wuzcgkdxsf7pb4h7xtnoaghgujiw/clhvin0l3zpkgggjaigdr7iu+hun1w11yipybr2y281rdkv+erk1e0omg5mmh0pxu7krv0cwvniotf7velgf0u1f9sdnz8sjuxkfkpvvjm1wax1uxnukt3o4afe5kuvbuwc/yfbim7dizyo+wbqhoqaobqbghz9ojirs1ofbngcwpqekjreois6foubbrpgtfdcrguwmwyqmi6jqilyjg6im6jvvgtg1viiafvwewtf3prppobubjzaoo4j76zwuj3coi92fnwkhjl/vz12ik/tzjphevpku9s0pvc8jymxappbn7klxnwi3e4derhfudjz/xelbqzh/f7o4qi6hqzz6dljpusldkx3q7rk+zyjzjrgdfezd1zpq9kunsnd8o9mm+xu+mzo1t37xzn42e8mctvelsz7ckdu+lj8njhxgwbulvnxqvsqdy5wsqy+vhh8nnyvqmv3qnpgt6zjgbghwwfyqy9cezat5ooi5z6uxrmaneygflgxhxredlahedgqooqhlel7zqd89dh/ed7ya2+r1zkvvhw5kplmrchq/ckjvseetmiwjfe1xqpc4jp49jjgggfewjc+kzgbckcu1guvepat9kvurd2y1frs2wpx4ketjcvomiopehcc0lbwdaed+z2ybddoflptabtb2ds7t6klfh4rbwp9wpluduzbbc7lxm6mbt1snmmwng+idm+aae4jxvmu4jklscem7azaqwjtdxgikdds3raole59gkl3ka/kd6v7dzdwcedxudrfjce9d1rj1gj17loes14bgzrkd6bp/ti5glomeyktjyzwernyvh9vq9yrwzjs+yehyk9tp5f+pswhlzy00dymqmamx/ba9y2pudfcipbeft3zytaoyau8eggywv0iet3q3wx/m6wb29+uwxzapzatitso5afjtvx0cunjswlthuqytms1y8uyms6q/yznslnpm1nnwjnfsl8wbdsyh3bpiqbgp9a6oad+wx4mi9lgynlfewjcv4uslzkqmgkgejp0ver1vsj975tcfhccyo2voy65q2783eksk/zfvpez8fuz2nxvtubjntdl0xqddphic3w2s+0uez3zqunq/mie7j1k77jzoho4mx2vj7b/hvjhfeql4sqo/qbzqirliyxaj5k9sghfhyoev15/+m4bwl42qkel0roggcyxhqsiey1/yef69e6/qef+kmmfizmhcbcrmnsgdgkynfbsd/4x4xuxf30e2/jv8etz53v9bqzslf2w7e9alcmtloa6na7ffgkgv5rbnqmct6eztzoyrj3991rbzkqeh+xj025crxm82stowqwe/vdehhmetwgablx9yxy6gfqgtfzga82yumuc7azkofeuq/mfwz5bigdmlwrxsxrpa1ds4ib7rfsxg6fp3lcb4egarj3ohcjypqvzhlegqldwlrkkjmp7ywlib2yg+ulvjljhbii2ghlxd9r0d6f4dnkdti1bgvcrzsgfvoftog/snqsdnu6mkxf5yhv69iovpdiospq0ij2s+ziesnpb19vgdd5ttkujs9xsyqsbh+gg371yij+ccfnrxjuvg3m+psxquuagwvuguvuhjrdsj6kqj9e1pgdwpzzwsqxkqsqfwt/o932n4myeioguoz1+7upx7yfj5lqdzsna1gpemmlxtkak7bytd7u1q7gmrccrf0se+ch67obnkn47dtbnunyaijjuljoyz6biggow3n7wedd5azv3j7ecj5chthu7e+rybgm29/4rzmt+09k3i8v7+1pdvyn/76/9ekn7z/pvlfxu40/bnzemgz8zeptjacbxxuvnujbp7r14a2pbt2//9f7z/en92cg+onblc1vnwy/99/8h6itpg8=</latexit> <latexit sha1_base64="3ahrn4ufn5n9i409tvza2imd2fq=">aaa1l3icnvtbc922ezbdw6rekqyvnb6wldtksatqohwascbtklzrd+koii3nylhsgcqodytedidnyob9n33vd+kuwhniaqakrzo2codbxwkxu1hcfbqje3j//7+3bv/oxz/56c/e+fn6l375q1//5t33fvu1yese0pdhnut824aimrcmvprmjvtbglosbgn9jrh8io3ftckxlm+o5akgpymjmzzmizfqdf7erxors4rrx594wc7eipyqbh3rztk7q7zf36m9b17sj3qstwndttucyruel8r0vlp4mkrpkj+b3ijyxkfjxxvfqd2rv9g35xflb5+zeclvrg8dbfttgspqxvspizxdwntqsqxfx9ad+uri788ppj/wocxz82rzuntlnova6/cz13f8lm/knkdc99fdpp6yk7bq5fd6gnry36k7mbjdtaxvxhtf5vzdjf29ffxj2r+j5mnjrfk5on/vw1t+lidlsjmzjksik9f+iu8rwiulewqakwutshhjynocnxljqtitlkhu3hburn445/avk56q7vjujbvikqaatimcclmnk11tj6ucf3xasawojc1c3dg4tdyze2h1xsq4dd1zwacjoqnzpta1maqjtrne66ygcdhmlvegukk6l2gefv3amjniwsj5vzyte8l4puvxhvmuzbhms371oaw+zsb7trsmh3iiqcezbs7fwbi10qw9fubtmult9oz+sootooc3dpe8gqg68szksshvpaheii4xudmjnfoefxwnoafguufttokcpp06uqzjfpujxqnvvffcoml7wbmmheibi43ajpi4h/mzppemoqdgpzmifmaqooiqcta9mnosdoguthwysg4yqyxvw05iksc5x1dcdzjmeyixerkwuyvfqboiorg8opigeuikf2ay8sfae2qoqp2gxiexca2yhl5o8ad61kuhlamzmk1blawdqmqmt7wumzjulr/qmgwvmlymcwgewuraazgmfmxpuvlq6mhrv/s0rbsnimdgivczan/vvtkkytwf+mgyugf1srtjfbifxdvqgdfryep1nq7wjpranx9zxpgn46lprqevr10hpqekkpliqmaevo534m2mvn3dl46endbawhhjihhllochl04tyqinipnb800d/qmhwd98fgh09macqfdpr0zfffgphl+nklwpl6/pkwzpxfepd3uol59y4icxrtbaj1+e1xosfrbwwuoe0mdz4ljpv3hdwqa3tqb9dt6kdqju+fj13n98tsfvxshivryfyvxndxadx/kylmdyryssdzw/4tnohedzbts1lc8yjynsmfi1vs2zpreuzweuzi+h4ocl9i5ig19uuzayyqlnffdt3h0mi2vsk+1qsl03gsziar7rpe83irasglje0z/aob4yk6wqerp4nks4goyjekoqennfefckpaj151l114uazxuguyykohksa4rlkwch1dyweougd0uog1qlu1qpegxny4vomgumczzhjxmeeochbw+fequpkp/evjoyeqwsxqb1ymcfhpynibcvc4idr86znwlzbk4q1fubavhdd3vhfe/n7wxakzefhqyr3amhsbbmitiew6sse9bifkmihngunkjb7yzpg5vw6/okyx6bwrmyfrso2v3mkbo7qangjjgkcgcpb2fxglbbpfb4vodm8fz8z3hhbmmlplv7gjirbwcqnhxrvqocurviu8f07hgl5fam1cnn7tjg22rtnt9tttpdyiasfxywwbm2r8r7mxujzqhtfvzl4bojpwm/jttztjlrcmhkpyv2vgvi1oisondcihzstlgtgqttpds7e4us5ymfa0ckjogkhudzhewj5bihbtfqywjevypjka3p7hmg13glgg+jnuk7orgsxfbwlvmicnbmmzf/wqjyekd9aewzddfai0ndkqbambboxvodyzwisodpht1pw4bdsdhjqo7djrpujaupyqcwwrk4f9m8bmglbttig8gxburehh77yqnz7sovybbkqidjwkwyu9xx0gp3tdeiqywe7vzl9l+gatozcelds8halzfncuoux+wfd9pkh/oerawwfgxjposbsichtgpdxjsbbb9dobeuqxidku1oiezac41qvlg1x7iaixfuslef0dmwdtmxpov2i5uwdfhxa++hhkifowxtdkpyvy2gzxzulvap1za1g+ik38hemkfkpipspdjybauhet2uyxtkqlhio/yt/+x3b4vbhkgj0wuodvyqftsnsvj968kordfbbrvwm0k+egumwxzuowaivf4/yal2n03xhvplogq57qoowrjre28tdj8/e/ws/atrsyqalqyx6n+7qz3fnouagkaxxuorgxaysnaxwdit4pwiae7qmhtu3gfphdi39grmf4mufy4kiqzbqyte2udjxingtqv7znjyj0j5q5vkupdn2iegudkblrviyxymmumhgiwmozd9cjnw9rgxarumwvl1uttfxdxs6s50wmv1doheqw64ulednl13al9zo2adtb3wu9pa8xd/d3wubyrlzjmrjazwplu8tczbcxiamrm5ygrlllpzwkbmxg4y2qpsgtlt28j6wnping4yme0ujoefd/qhezzsiq7bhw97oxs+7jcd6jp2rkbqd5as3cg8isnmf0befenu0de/n3aqv3powe/xx5iirucshxoysis2h/gfpesr8iudfggocc8aoscvusv9bqvcqqxok1yifqnkbiiv3gcaorvzovhrkkdcgongazzvl5wmqx6wuq4eko1vebgn8zjhmk9fw3kcagdusyzsy6zyz3mtdm55ec5avxy8zcbz/xvxa1a8prl3aiqwivfztxfpcy9prjkll4yqs8kkxppred0fg4qkmcqbjquew+jmy7iglt2gxcaygkb2gkqew0knafbvrndrlvdgnlswuknyeykmtw7wtrq9odgeiku7u1scwuiaw1ci7kqydjhwmeaurkfulxgrljcxdjxfujpvffq12uro6snroppysrqoqlgsvejjbourlcqdspi3vdj1ojzkkqas3kmstppexlzm8ehn2ztjwkzujpqrvmfphlr0ba1y7aa4ywdqp8styea1kxphkc9ol3tpvozok8fapblyzzmhibtcyw9dwxpcmkbbya6pq0gzxbmoakickndufyeh/rgw1zwhqoygdaigza7md1godrgrkxeow2jtrlzrw4wt88dkkxpqyb0yjkrsuj1infq5gwzzxmlmqbkmlgiqf9uqaz7zgoku+drckzoyt5iqonxc1bkdwik5tplowosf8wkdfg07fswddg8ghajzq0inghl7rphwfjs+8pc40wsihheincpqlgstbzpg9ja59wpgzhhuzpxg+flpgv0wnteqk1fbkjleuldg5om/vmhtyu1y8invrzwt19lgpjo5wr7mksskczjurnpkxz8noekc66ms61lsmdzkky2ja57c/jqrzcet3ui2qin3hy09cxnrkiu5jn/zuub425t5bl1eszooejbttlixzec2wvqfvd5uap/rovdc3ms4upbrflpchu3y+ap762ged+obislx25p+twmyshedxz4mpg9q3vr3wkulmsnruobmxzichxerhxhhh0hz9jlvnnauzppqmu5amalanbrcxnjnpwuciizjn0eeyzy6ihuocnwils3ciaqgbbn1/vqog3wf2ch3modpjxyc2uos+u3bmrxiyrrbzhoreezsrxe4gjgulh0mihaxgcctbgswiczyi0wwtwj41vsl+8ju6cp6sijusxcfzqlkfbk1j5y7vijy79vjvtk+6rdbj/+xdrtn7uyc27dibt5eku1qvdwsbox6g8t25yrkjk290prxljvvsdyvmwfu4p75lqecrbdn9mxmqeiiew6r4lhxpooxqe0oxdosb6lfqo/xdu5g4jlb4km03xvc6u61w6hw61wwvmy8jrovsg/b034kcjllgcmijoqelntzmf895lyywtrg18w+dkv6zt1z/48n3ls0p4gkruibpj82v7hnc4cspvq08qjvmwmbd0a5xwczoq9rh6zfl/nf/3tthrz5btpmsv5qmreyj0lmngxdq5wsnjbme+wpoucwvj86hxgrrppnedqfgted3qicucvzyufijxufm7iaanxqqqio7bfgqz+w9cyskrsnyvurx9ii5xjtte9nl7qpnn5p2pdtfcd8mhuxxtxxmw/sny8lgxmdn1cnoltmpwuz7o3emjnrumbcqdmma3gg1366xta6a15ohogxmzctg/edz0zfa2u2w9umdt9irnkj+tive6oewpoqackci/qpzbfsq8fvknfhe/fdtpbgz8t7pc+gy5xhgku3hgjvdb9+rl7rup9+qiez6pkw5qolu6zrdekqgivnxv7tfhw6e/xtt7yn/wfpprew06tlwt6ab9x2atzsu84cqspt8eewcfox4amzyvlmdgy7jqvc3bevtulecnyjpztlondozzox5sje7tun6waw5xgaoilf1xfko56pk1zhyxzygmxjniodqqn3kmo1l2hlx0eckkkm1gjeia3v60vcb79g93lw/mnjatpxdmc4h7lruvz8vzbwfkzohkzvqel//capnemvhvwv5zvmppaqwuyrydwzfux9cz6tbppty6yiferdakffwht+u0dhymfpf5lv6xwpk1uaxhksxbzyvrrefp5cpmikbuhlcu0mz0kc0+g5lolqgudpcmmvh4zqlyg4qrwd6rfnutplrcseb+cao+c6o/t1h5jgmvcpkrvmhzafwzjomozatytsfbjt/nnrfkirbne0an7x1xhzcskoekdz2omvpc9yoza0+qsppk2ooru9ejjzhkydlzrgh6u6hjsheo3uwp6pcg+csti/7gce64oeqf1zo8bhbew6a94+qjq/nqmr5vdvmaygze/183c3ruafyngfx9/bg+3vjb7628znhzd/pvpo2h/w/rs2vtza+/vaz2tp147wxq6ft/53e/32+7d/d//39/9x/5/3n2ro7vsnzftrvz/7x/0fykp43q==</latexit> <latexit sha1_base64="pim2buniwj2/wyvvvvkikbweovg=">aaa0rxicnvtbc922ezz7tdvb0j72ha2kqrrlio7jpjlkpbpfvu1ohfw15dxesqosodyqedmanosz9lf0z/wv9km7am8hcycshm3yiobvf4vf7mjxuvaktmidg//e+8lpf/bzx/zynv+t//o3v/3d79997w9fi7zkix0v5knovw2ioanl6cvjzek/ltglazdqb4lrx9j+zzrywflsvc4kep6sognjfhijvzfv/mcrs4rrj596wc7eipyqbh3rzsw7qlzf79teiy/2ezqw24gu2htb5x3pf2v6wv09gtuxlz9azxg5rkcxrr1voj7vk+yby6vlt89zpje76yfb/psgsprxfsoitxcw9c66n+vzmqaur1++u3gwf6b+pptj1hxsrdu/j5fvfxjpj/kwtgkmw4qicty6kor5rbhkyulrdb8utcdhnynpgxxmjkxivflqq70tqim8cc7hxyy9vdulqegqxcinajksorfmg1a62s5kof7kvgjzuuqahbqjczl4mvdwlryicrh8soapenigsnowa5yeemzsvddnqrkysszvdawsdc7dpc36ttenxysf835twias8xzwrw3zkctimwf96nekfmtm9mspza/lrfkdmwyci7ewaqmz2i+m2mospuwnfx/xw3habxnuezmqdojnyjscbxocieecl6byrmmmcpvqtnnowz6d2pweoun7daimxiw2r4st3qviuutf9ofn6e5cwyonwi6soif5maqpjkehrqczihzgkjjokhewpzjala6iflycmkjumkml78poscknov9qwnc5zbgilxezmfmlrugzikervktymhlmir9nsvlbwhnkked9of4hfwmtshy+apgo+syros2jm5pnqzqmhapqpk+8lpmy1juf0jhllzpcdp8agg8ioabmewrmnkl8nxw0qksdmtbdbkuwyxh4thww/5hzctemjrw6qhtqn0srzidr2funbrizlqxev+ma70gj1pnxryzfmj76bhre+dp1ybqqickpjmrsaev4z97gynvb+/lk6xmjjrwxjii35hj8+plceozwcpifvtjuqzfwmpxno2ojszctrh3/7gzurbh15ohmvkl6fhvljzrl47o6ou6hvnpqiz/egefrpx4rvi9iwsbyyo0tqh/pgeom//j1cypenah0nfgo2qfs59hr/x/7ni6rjzhfqiwkwria7iwgv/jllc+wwglz73p+xkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4qnvjlfgupi5baxpc15f1hmllgntmejttzk6vknuyrtfp0ewihayjrxf0jdoqbsckqeqgb50mei2geodcectfdbhffuopaf15u910i0fwhsmdciprbsqa4fo/gojobft87ymos4ydvwprwqgtd2fiiomyzw8xhegoep97x4ehj515bcso/tdumpgqrizfone9ygshnaqhs5rzi4pexzjq0lajxcoqqukz8hu/2wvvbm+8mqjgrbyzkiu3uqyqlzhfpgmfsyqlojishbmm4v07rohex9i1n+pvlxtdty6wjmb4nh+w+po7z/druy0ccegsw1lezearyrr54pf9a83h7vrvysdvygunwvibozmgzcmddtk8qh1qt0tqxpbveqjm8sfx4etso+lzae83pla32ejgj6wuhbhcu7rhx3ubgahpati++on5+sjttt2rnzkkmgggzrhtrnrdmzfpqqudosnfcigl3qpc0nxrnz2krtxywyacilcsctbaom5apgvwipc0gkkym6hckoax1xqmd9dpuefbttczpryewtqseznieqq6oasbmt1guswkoh6aosyeaadfpoavakwywrxiqc7kgeen8ybd7aqtwcdzmxmhx2fgxqrh0qqwuvlgw93kahwb5yekugaxodvmnjvtbj0vibld5syylewizxyqvnekog1z7o/0rts0kblcqo/8ffzjohbmaxkmger1ptlci+gl/y9ziot/mcytkys0ykkwja2gpd20hhr1oagk+hkjjxvlxbiobnecmtbya1xy1ar5ynupi3gsvcqozlrtmlnwk7uyqlrrw0wbedz2qpnpk2hlu5xobdzvtqlzsm69hagbrsb+diwwclegv2xqwsqtwq/w6kzcpliwwxebtw/7z794kgzhqe6lxhbu4vct2gpkk+tafuyuug91qrtatfcqkgiyt3eynekv8f5af7g+arju0lnquctsvulikoibewui+eh70cv2rubmqmi6mmep/u0gdxttrmojaf8bqerswsrdwl1gye+kcigbo0jh07txn6yqyn/yg5ledffcucikswamexnrnscyp4e0l+85ywcdi+auvsrqql9onhrgymy0b4sscjjldbxosjjmxfqozvvax1wevjsffdb00xt3v7orodmdfbq6iremoulizazzdd2i/cztga7qd8lvawvfw/3dzlawezwstg4wm8kzvplpmwqlygpktowbksyyz2vpg5syognkkbbrzm9vi+ljtyj4ngjntlo6bnw76orm87iquwz8oe6mbpuyqg+o6daygag+qetwopcup5n9g3hrdbta3vzd2kfd6tlhp11+aoq1aricageilnofxpt3rk/cva3xljgnpgjrhfbkr/w6lxekstpncibajsgyil9xngjq1czrx65ja3bjjrgm2vdecjqseslquhintb3m4dfgyxzjpx055agia7rgm7gomcs95k3zuexguql18vgqgc/11dqdwvd57cg4kmirxrbxxqhgpauy5c5emklpjjmat0xndh4oejjnkgy6lhspibmo4hzu9hsxagbpg9hikhsncjqh21utq25vxyj5uslpdchciprco8luavaaxnoirg0vugsfcaftqio5egayr1jbglkyn1jv4ky53mq48x1cavx30ndrq6obj0tqaweq6japrkrxbsqalm5qkhuqsd1xsbai2spkmktypkraaxszwtpbitds7svis7oz0evth6ys69gwnwowcomlnud/llwbanssaysnpajd0376m6cvh2qqs2gwtisg7qmfvxvl6qppaw8goqunim12zdmpigpdq1h2bb/6xsnc8b6qgbgwcim2ezpdqqha4kysrdsno7ubc6lufrfpayisaugadgcsq0ridsdx6hyfmwctc5qgsjc4iqn/ukms+2xjpfpncxcmtsreyqqj13nw5hcccuuzyzlqlbfmcgxrtoxbmhxypibwi2unijyb5e0lx1hy0vvdwunfrcirxcdqj6prre22aypsqofckygyyvgacrvhzarldfjbrkitxwsoyxfc3yoajv75ou8lnwpip1uwce9fzyky6ocmezckrjamsbq56yswfpznphoupkuts0pnc5cmniqoe3p2uk83bld7inqiddx2npxctuziloyzf2vfaenubeqzdrlgtqbcw7bzyl2qnnsfubbw+bmqf6zlqwt5rofd20xyz3j1m2owqe+tohg/jgsepv9uafk8jmeoxg8c+jqypun1a91pfczlj0vkgzmc4gh8xqx14yr9ic/szvttqlmt6udluqdac2p20xmtyzavlaoigsz9hnss2oiibqhdccjutwigqog2zdf76pbt8n9jb9zjnascwhnvqevrtwtk8yskuqcx6exhgbk13uicyli4djohwmyharw4elias2itflrci+nb7jfvcbugqerio1esqn2ai5bqznsece1yooojb44hzpuq3wyf/sq60ze1mnnu3ygu+xpfnar3cem6mehve9uwesiznvdkuczy1b0g2r5sbbuke+t6ngkww5/tmtebcihmokejr16tqmahndl3alg+i30dvt3buyocswecjnn8bwurutcoovutcml5lpcazluhvwdn+jhi9zrgjiiakhczu8zcsvqywrja28twzj0orxlnp3p9za/euzwkgazfqgompzrvu0xygzckvjtzq+25c4b1qzvfbhs5r1chrd8t80f/bladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znz3ccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/i+8fha5fxiiump6vl3kcb7cfu+rq+y33ijtrjlouanvfoxjdcv8+bqrgfl7gdh1r3rgyzzxrdmkhwaysdo8nppt9hgd8sljup9ihoydso+48yoagdndriawe4bysgviv/mzulva0sfii1zyfe/leycffukhcx6ep+jmk09+nnyjuyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdiv3a9c925++om38t/iyefwcnq1tnhb863axojbespzqhw4ht7mik7/kjw1u1nenm5sp2sbu/v2ttajscf3hl/r6mchn0/gmin7u1c3pipblmcbgiz+w18oj3qmrnadj3fgaxapcw52bixcs6rvviqthwdxqkyyuit5hbs+rxdxvf2c3cvhi6dh1aavgybxd3pxoqz4qizhlzjqouyrgjl++ffsatibo7hdyhuztcehgo1wkqtnlcr7ezxb2ftblk1f+isg0ek/gin8z4golcoelisr1zlsvqo0iouku26xqjsi/sk5fsji3mkxfdpnxpa4ptelxbkhbmgf4yzfphqhx0jwuysg1w+bc3xkwfc8dsa1d8f1dw/qpisnyq4eiivmawa+tjdrdqybagnz/3c3+aejliqick5p1fyuq9pm40xq9y7mvacref7kqi1p9vltev6ddgp78ddnovg7x3taj1d1pwhc8dqpht1x5r4ek3b+3cg80bu9ulvmdobp2sp117y9j+e8hjyirprfn8ewgda/8y9mruafyngfxz/yhx3sj/71copzt5o/n3ln7u9rf1nbxhut/w3t87vnaydrr9bctf/d8+7t3hv/4qcpxz30h15o6e/untr/xov9piz/dws7ovw=</latexit> <latexit sha1_base64="wu5pkq/f1oibhpdr2sfc7aj8t44=">aaa0t3icnvt7c9y2ezf7tnvx0v7zf9hkmtqxpoocp03b8uwu27u7cvtvj7xewqosob4kkqab8hrnhv0o/v79nt0feecsacu5mrffal9dlba7i8vduzkxqq4o/nfrbz/80y9/8tp3frb581/88le/fv+d33wpesvi+irmgrdfr0tsjbx0lwiqo1+xgpi8yuhx0cvdbp9qtovkvhipliu9zulascmliykqs/f/u1nk5estvwufz3izz0ixufp2jl2ub7+50wqpgjtm6ftdjkzv3gqq7wahrpkz+vzbphldhxl0lpczghqbjvgk6lmzxr49o199h4klm3vnc+f4djinsaoxtzizjdcfzxnnc1w9gra8qpkiis2z97co9g/0t+b+tnqpry325/jsg49uhqmpq5wwks6ilcetg1kd1kqofmcuefeslis+ick9gc+c5fse1lqrtbadnukw5ql+fsrqtx2kmurslvmikdlrm2m3yawv7ars009oa1aulajfbdqavlmgeiczeirmwnizjxyqwdcqnyc5ecrwmhebg25kkshcfxwwlfrrhyp5xg5ru0hkgysxw9q8yhqt/hjyg/m5k1lfi2h1nae+vaggtrtmhwqiqmuzbi7kvfq1ysvamow6yirm7c39cddyc8bvfe8hlydoljiroqvbdcqqgzhbrnulpyumhko754kczuenpqlqlg/rzbvnwwqpfid8ucw4qsuogsfownjyi03ajrkuw/zm8nvw0cor00sil2aqooiycta9mnoijyisrhwqym4yq5uywk5ipwzclckruwlmcmqriiqyrzkypexc0aheuhwypstlpwpvh2ctgtkuoh5qr1tljnyfhy9apqj/hjtoipssfnmqpuchqtvpk28qjmdnhuy0zuwtjxcdqqrhcbfqakyzbxoa1ageolo29qhnm36djrhkcfhmfbd/sd0kcscnajpobtcqjini4yjsqoecjnli1mzqcyb35atqwosyxw8yt3myoa1d4zowdxwuvrrhnq2mcoktygss7o19fvzktnxgmktb5dtyotp8ceoiqwqfyq+fb5vwsatm+vbji6uztzneffv0alrcefxo8dwosvf46poeazgntf34aid64okjfpzibg3m+gvcpyd5cqulm04ifyidx+3wxzskbr1ta+gb8fg0q63ox2/2/xmkoq23jg6rqiwje3q6ixt8klspeo3vwshmnwgtme9vbkhqqftb/llwmsigi1vx1tebcstzexopbgw1v5bitavz4jdffkrmwo4s3zwud8fjsjw6zhugbm9plpnfzhoadelmbeicede75hmyncnjhvulqqpnwyklic/qg6km2c6cudkrzgm+x9d3fqjqxa+yz0mswscyprl86+ggm1sw33ri40rgipxclne6bmpzcri6zqxdheggu8hz4ojw8ogzocqlfx9z1qymbculnwit+tibgys8brzqaxhw2zpmtfqrgctetv2e1whl9/yy+c5y3bmbiimhdgkvu9omksyzq2qixkmvikcriouqdonco0wl3l3rtzyrnmc1wwswcczk/i4ciruyrbz3c1unpxfifmfs383is8dudmdtxrkap7cxu8s7bhtbmtm6fmsllaxt4aypdnxlmkplnnumzzdyaoe3qr4+68yb307ropmzttubalnks+cads6mpsi+2n6abi+y9umvjp4dr0z7hdnzc1livkcmaln0562qlx0oowsvpowg5ux4iujatbq3m7ksoj5ysabekrlpogiubcicqc4r0w4dftzgdjtsgtlm9t0l9cbtepbttwz5tyeotusrx3krqa6oasbmt1iukwkoh6goijeaalfpbavajwywnxhqcrkwkzj8ybl7eqfwcdzlqqpp3foxrnh0qswuvjgw92loy4c8yglolayvtvmvjgzbjyribtd5syelgwizxzqvneoog9z7k/0jzr0kbldqq/8llzjoxdmax0agerftt1cm+wl/u9ziot/yjcwvdbymreaegbbhh64dw140gwqfq6g1lul4g5fnzsbgogunbj5fn5/7mifxbrnxjthzlguzfz6n9io1fi34yxy+dd2qpgvkuhnu5ey2gjbb1bny34owqr1ez8mozo4juqj0zbvapj5ya9wbtly2ua7ceru17/jnshsndojabyhzc1zgsq3yauyy+msfri+6hnbrtdpo8peoyhi2cbs1qqzz/1ewsl9pu+7rotjryg3xqmwyhnp4z6h77nnjv+hfrzp10xyxg9h/uw36lkzd1zqeurbwj9sykkwzvqsk2rdvfafwhszkcuchsy+u+bfxmd8fptj3urdpde4njm4+tzfbaw9b2deow3pb2l+dvnkhpdm+mcavuwzzgf/mycw8ojbgoencdsnswdnexkru2gsv64uvke7pzl93tgmur3najbpzwownhbdtukf7jd8bw6drgn80zoqh+7+roywghcobxwfkglet4qljdl6q18i8ybejw2gzy9yxmj92xmjwynvinrpgnstarvz0xmhcd/em/owoh3rb467og/zlcw/0w8cdclrdlz0rqn4d5aq3ck9ijvmfltelkbsmze+tg+s1njm20pxntmhrebugrgbsoe1hfo7o+hp87ggf22pcs4becqx3pd+dlcui02ngpewwumqheok/0zcpndej31qe4syunxqwqboqnfv3gnvn/ubrfyfabujaalye5poqkbaaci9lzr+xovdctgnntodnajtg0xudxc3x+q1yiebk3qmvwgjgr+ute5p7sgsqwlxihjxtjimejc6a4rgujmlujxsszbiwnxvdnazcmsxhxtaycsegzbiwegywryasxq+8evokkju9kpsqmbn1gk/16cvn8urc3y2ieiwweticqkwn0mkitjyxomqdpa7fw3o5ixhg+ylwro5jqnfor1dpjthrzfhsdvstktqvsrjyxkuk5vgsuqmsrho1vzkylerplyzvddk2cozhasbesczsfwdkjqb6tif1pwdnwhixwbm/hppl7gajaljrbeu8oh3sffcyyqgcz5nkyjdnxotsc4w99wuzcgkdxsf7pb4h7xtnoaghgujiw/clhvin0l3zpkgggjaigdr7iu+hun1w11yipybr2y281rdkv+erk1e0omg5mmh0pxu7krv0cwvniotf7velgf0u1f9sdnz8sjuxkfkpvvjm1wax1uxnukt3o4afe5kuvbuwc/yfbim7dizyo+wbqhoqaobqbghz9ojirs1ofbngcwpqekjreois6foubbrpgtfdcrguwmwyqmi6jqilyjg6im6jvvgtg1viiafvwewtf3prppobubjzaoo4j76zwuj3coi92fnwkhjl/vz12ik/tzjphevpku9s0pvc8jymxappbn7klxnwi3e4derhfudjz/xelbqzh/f7o4qi6hqzz6dljpusldkx3q7rk+zyjzjrgdfezd1zpq9kunsnd8o9mm+xu+mzo1t37xzn42e8mctvelsz7ckdu+lj8njhxgwbulvnxqvsqdy5wsqy+vhh8nnyvqmv3qnpgt6zjgbghwwfyqy9cezat5ooi5z6uxrmaneygflgxhxredlahedgqooqhlel7zqd89dh/ed7ya2+r1zkvvhw5kplmrchq/ckjvseetmiwjfe1xqpc4jp49jjgggfewjc+kzgbckcu1guvepat9kvurd2y1frs2wpx4ketjcvomiopehcc0lbwdaed+z2ybddoflptabtb2ds7t6klfh4rbwp9wpluduzbbc7lxm6mbt1snmmwng+idm+aae4jxvmu4jklscem7azaqwjtdxgikdds3raole59gkl3ka/kd6v7dzdwcedxudrfjce9d1rj1gj17loes14bgzrkd6bp/ti5glomeyktjyzwernyvh9vq9yrwzjs+yehyk9tp5f+pswhlzy00dymqmamx/ba9y2pudfcipbeft3zytaoyau8eggywv0iet3q3wx/m6wb29+uwxzapzatitso5afjtvx0cunjswlthuqytms1y8uyms6q/yznslnpm1nnwjnfsl8wbdsyh3bpiqbgp9a6oad+wx4mi9lgynlfewjcv4uslzkqmgkgejp0ver1vsj975tcfhccyo2voy65q2783eksk/zfvpez8fuz2nxvtubjntdl0xqddphic3w2s+0uez3zqunq/mie7j1k77jzoho4mx2vj7b/hvjhfeql4sqo/qbzqirliyxaj5k9sghfhyoev15/+m4bwl42qkel0roggcyxhqsiey1/yef69e6/qef+kmmfizmhcbcrmnsgdgkynfbsd/4x4xuxf30e2/jv8etz53v9bqzslf2w7e9alcmtloa6na7ffgkgv5rbnqmct6eztzoyrj3991rbzkqeh+xj025crxm82stowqwe/vdehhmetwgablx9yxy6gfqgtfzga82yumuc7azkofeuq/mfwz5bigdmlwrxsxrpa1ds4ib7rfsxg6fp3lcb4egarj3ohcjypqvzhlegqldwlrkkjmp7ywlib2yg+ulvjljhbii2ghlxd9r0d6f4dnkdti1bgvcrzsgfvoftog/snqsdnu6mkxf5yhv69iovpdiospq0ij2s+ziesnpb19vgdd5ttkujs9xsyqsbh+gg371yij+ccfnrxjuvg3m+psxquuagwvuguvuhjrdsj6kqj9e1pgdwpzzwsqxkqsqfwt/o932n4myeioguoz1+7upx7yfj5lqdzsna1gpemmlxtkak7bytd7u1q7gmrccrf0se+ch67obnkn47dtbnunyaijjuljoyz6biggow3n7wedd5azv3j7ecj5chthu7e+rybgm29/4rzmt+09k3i8v7+1pdvyn/76/9ekn7z/pvlfxu40/bnzemgz8zeptjacbxxuvnujbp7r14a2pbt2//9f7z/en92cg+onblc1vnwy/99/8h25tpg4=</latexit> Noisy Channel Model for TranslaDng French (x) to English (y) from Noah Smith

Modeling for the Noisy Channel we need to model two probability distribudons: should favor fluent transladons should favor accurate/faithful transladons <latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u9394590/fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> <latexit sha1_base64="pim2buniwj2/wyvvvvkikbweovg=">aaa0rxicnvtbc922ezz7tdvb0j72ha2kqrrlio7jpjlkpbpfvu1ohfw15dxesqosodyqedmanosz9lf0z/wv9km7am8hcycshm3yiobvf4vf7mjxuvaktmidg//e+8lpf/bzx/zynv+t//o3v/3d79997w9fi7zkix0v5knovw2ioanl6cvjzek/ltglazdqb4lrx9j+zzrywflsvc4kep6sognjfhijvzfv/mcrs4rrj596wc7eipyqbh3rzsw7qlzf79teiy/2ezqw24gu2htb5x3pf2v6wv09gtuxlz9azxg5rkcxrr1voj7vk+yby6vlt89zpje76yfb/psgsprxfsoitxcw9c66n+vzmqaur1++u3gwf6b+pptj1hxsrdu/j5fvfxjpj/kwtgkmw4qicty6kor5rbhkyulrdb8utcdhnynpgxxmjkxivflqq70tqim8cc7hxyy9vdulqegqxcinajksorfmg1a62s5kof7kvgjzuuqahbqjczl4mvdwlryicrh8soapenigsnowa5yeemzsvddnqrkysszvdawsdc7dpc36ttenxysf835twias8xzwrw3zkctimwf96nekfmtm9mspza/lrfkdmwyci7ewaqmz2i+m2mospuwnfx/xw3habxnuezmqdojnyjscbxocieecl6byrmmmcpvqtnnowz6d2pweoun7daimxiw2r4st3qviuutf9ofn6e5cwyonwi6soif5maqpjkehrqczihzgkjjokhewpzjala6iflycmkjumkml78poscknov9qwnc5zbgilxezmfmlrugzikervktymhlmir9nsvlbwhnkked9of4hfwmtshy+apgo+syros2jm5pnqzqmhapqpk+8lpmy1juf0jhllzpcdp8agg8ioabmewrmnkl8nxw0qksdmtbdbkuwyxh4thww/5hzctemjrw6qhtqn0srzidr2funbrizlqxev+ma70gj1pnxryzfmj76bhre+dp1ybqqickpjmrsaev4z97gynvb+/lk6xmjjrwxjii35hj8+plceozwcpifvtjuqzfwmpxno2ojszctrh3/7gzurbh15ohmvkl6fhvljzrl47o6ou6hvnpqiz/egefrpx4rvi9iwsbyyo0tqh/pgeom//j1cypenah0nfgo2qfs59hr/x/7ni6rjzhfqiwkwria7iwgv/jllc+wwglz73p+xkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4qnvjlfgupi5baxpc15f1hmllgntmejttzk6vknuyrtfp0ewihayjrxf0jdoqbsckqeqgb50mei2geodcectfdbhffuopaf15u910i0fwhsmdciprbsqa4fo/gojobft87ymos4ydvwprwqgtd2fiiomyzw8xhegoep97x4ehj515bcso/tdumpgqrizfone9ygshnaqhs5rzi4pexzjq0lajxcoqqukz8hu/2wvvbm+8mqjgrbyzkiu3uqyqlzhfpgmfsyqlojishbmm4v07rohex9i1n+pvlxtdty6wjmb4nh+w+po7z/druy0ccegsw1lezearyrr54pf9a83h7vrvysdvygunwvibozmgzcmddtk8qh1qt0tqxpbveqjm8sfx4etso+lzae83pla32ejgj6wuhbhcu7rhx3ubgahpati++on5+sjttt2rnzkkmgggzrhtrnrdmzfpqqudosnfcigl3qpc0nxrnz2krtxywyacilcsctbaom5apgvwipc0gkkym6hckoax1xqmd9dpuefbttczpryewtqseznieqq6oasbmt1guswkoh6aosyeaadfpoavakwywrxiqc7kgeen8ybd7aqtwcdzmxmhx2fgxqrh0qqwuvlgw93kahwb5yekugaxodvmnjvtbj0vibld5syylewizxyqvnekog1z7o/0rts0kblcqo/8ffzjohbmaxkmger1ptlci+gl/y9ziot/mcytkys0ykkwja2gpd20hhr1oagk+hkjjxvlxbiobnecmtbya1xy1ar5ynupi3gsvcqozlrtmlnwk7uyqlrrw0wbedz2qpnpk2hlu5xobdzvtqlzsm69hagbrsb+diwwclegv2xqwsqtwq/w6kzcpliwwxebtw/7z794kgzhqe6lxhbu4vct2gpkk+tafuyuug91qrtatfcqkgiyt3eynekv8f5af7g+arju0lnquctsvulikoibewui+eh70cv2rubmqmi6mmep/u0gdxttrmojaf8bqerswsrdwl1gye+kcigbo0jh07txn6yqyn/yg5ledffcucikswamexnrnscyp4e0l+85ywcdi+auvsrqql9onhrgymy0b4sscjjldbxosjjmxfqozvvax1wevjsffdb00xt3v7orodmdfbq6iremoulizazzdd2i/cztga7qd8lvawvfw/3dzlawezwstg4wm8kzvplpmwqlygpktowbksyyz2vpg5syognkkbbrzm9vi+ljtyj4ngjntlo6bnw76orm87iquwz8oe6mbpuyqg+o6daygag+qetwopcup5n9g3hrdbta3vzd2kfd6tlhp11+aoq1aricageilnofxpt3rk/cva3xljgnpgjrhfbkr/w6lxekstpncibajsgyil9xngjq1czrx65ja3bjjrgm2vdecjqseslquhintb3m4dfgyxzjpx055agia7rgm7gomcs95k3zuexguql18vgqgc/11dqdwvd57cg4kmirxrbxxqhgpauy5c5emklpjjmat0xndh4oejjnkgy6lhspibmo4hzu9hsxagbpg9hikhsncjqh21utq25vxyj5uslpdchciprco8luavaaxnoirg0vugsfcaftqio5egayr1jbglkyn1jv4ky53mq48x1cavx30ndrq6obj0tqaweq6japrkrxbsqalm5qkhuqsd1xsbai2spkmktypkraaxszwtpbitds7svis7oz0evth6ys69gwnwowcomlnud/llwbanssaysnpajd0376m6cvh2qqs2gwtisg7qmfvxvl6qppaw8goqunim12zdmpigpdq1h2bb/6xsnc8b6qgbgwcim2ezpdqqha4kysrdsno7ubc6lufrfpayisaugadgcsq0ridsdx6hyfmwctc5qgsjc4iqn/ukms+2xjpfpncxcmtsreyqqj13nw5hcccuuzyzlqlbfmcgxrtoxbmhxypibwi2unijyb5e0lx1hy0vvdwunfrcirxcdqj6prre22aypsqofckygyyvgacrvhzarldfjbrkitxwsoyxfc3yoajv75ou8lnwpip1uwce9fzyky6ocmezckrjamsbq56yswfpznphoupkuts0pnc5cmniqoe3p2uk83bld7inqiddx2npxctuziloyzf2vfaenubeqzdrlgtqbcw7bzyl2qnnsfubbw+bmqf6zlqwt5rofd20xyz3j1m2owqe+tohg/jgsepv9uafk8jmeoxg8c+jqypun1a91pfczlj0vkgzmc4gh8xqx14yr9ic/szvttqlmt6udluqdac2p20xmtyzavlaoigsz9hnss2oiibqhdccjutwigqog2zdf76pbt8n9jb9zjnascwhnvqevrtwtk8yskuqcx6exhgbk13uicyli4djohwmyharw4elias2itflrci+nb7jfvcbugqerio1esqn2ai5bqznsece1yooojb44hzpuq3wyf/sq60ze1mnnu3ygu+xpfnar3cem6mehve9uwesiznvdkuczy1b0g2r5sbbuke+t6ngkww5/tmtebcihmokejr16tqmahndl3alg+i30dvt3buyocswecjnn8bwurutcoovutcml5lpcazluhvwdn+jhi9zrgjiiakhczu8zcsvqywrja28twzj0orxlnp3p9za/euzwkgazfqgompzrvu0xygzckvjtzq+25c4b1qzvfbhs5r1chrd8t80f/bladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znz3ccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/i+8fha5fxiiump6vl3kcb7cfu+rq+y33ijtrjlouanvfoxjdcv8+bqrgfl7gdh1r3rgyzzxrdmkhwaysdo8nppt9hgd8sljup9ihoydso+48yoagdndriawe4bysgviv/mzulva0sfii1zyfe/leycffukhcx6ep+jmk09+nnyjuyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdiv3a9c925++om38t/iyefwcnq1tnhb863axojbespzqhw4ht7mik7/kjw1u1nenm5sp2sbu/v2ttajscf3hl/r6mchn0/gmin7u1c3pipblmcbgiz+w18oj3qmrnadj3fgaxapcw52bixcs6rvviqthwdxqkyyuit5hbs+rxdxvf2c3cvhi6dh1aavgybxd3pxoqz4qizhlzjqouyrgjl++ffsatibo7hdyhuztcehgo1wkqtnlcr7ezxb2ftblk1f+isg0ek/gin8z4golcoelisr1zlsvqo0iouku26xqjsi/sk5fsji3mkxfdpnxpa4ptelxbkhbmgf4yzfphqhx0jwuysg1w+bc3xkwfc8dsa1d8f1dw/qpisnyq4eiivmawa+tjdrdqybagnz/3c3+aejliqick5p1fyuq9pm40xq9y7mvacref7kqi1p9vltev6ddgp78ddnovg7x3taj1d1pwhc8dqpht1x5r4ek3b+3cg80bu9ulvmdobp2sp117y9j+e8hjyirprfn8ewgda/8y9mruafyngfxz/yhx3sj/71copzt5o/n3ln7u9rf1nbxhut/w3t87vnaydrr9bctf/d8+7t3hv/4qcpxz30h15o6e/untr/xov9piz/dws7ovw=</latexit>

<latexit sha1_base64="pim2buniwj2/wyvvvvkikbweovg=">aaa0rxicnvtbc922ezz7tdvb0j72ha2kqrrlio7jpjlkpbpfvu1ohfw15dxesqosodyqedmanosz9lf0z/wv9km7am8hcycshm3yiobvf4vf7mjxuvaktmidg//e+8lpf/bzx/zynv+t//o3v/3d79997w9fi7zkix0v5knovw2ioanl6cvjzek/ltglazdqb4lrx9j+zzrywflsvc4kep6sognjfhijvzfv/mcrs4rrj596wc7eipyqbh3rzsw7qlzf79teiy/2ezqw24gu2htb5x3pf2v6wv09gtuxlz9azxg5rkcxrr1voj7vk+yby6vlt89zpje76yfb/psgsprxfsoitxcw9c66n+vzmqaur1++u3gwf6b+pptj1hxsrdu/j5fvfxjpj/kwtgkmw4qicty6kor5rbhkyulrdb8utcdhnynpgxxmjkxivflqq70tqim8cc7hxyy9vdulqegqxcinajksorfmg1a62s5kof7kvgjzuuqahbqjczl4mvdwlryicrh8soapenigsnowa5yeemzsvddnqrkysszvdawsdc7dpc36ttenxysf835twias8xzwrw3zkctimwf96nekfmtm9mspza/lrfkdmwyci7ewaqmz2i+m2mospuwnfx/xw3habxnuezmqdojnyjscbxocieecl6byrmmmcpvqtnnowz6d2pweoun7daimxiw2r4st3qviuutf9ofn6e5cwyonwi6soif5maqpjkehrqczihzgkjjokhewpzjala6iflycmkjumkml78poscknov9qwnc5zbgilxezmfmlrugzikervktymhlmir9nsvlbwhnkked9of4hfwmtshy+apgo+syros2jm5pnqzqmhapqpk+8lpmy1juf0jhllzpcdp8agg8ioabmewrmnkl8nxw0qksdmtbdbkuwyxh4thww/5hzctemjrw6qhtqn0srzidr2funbrizlqxev+ma70gj1pnxryzfmj76bhre+dp1ybqqickpjmrsaev4z97gynvb+/lk6xmjjrwxjii35hj8+plceozwcpifvtjuqzfwmpxno2ojszctrh3/7gzurbh15ohmvkl6fhvljzrl47o6ou6hvnpqiz/egefrpx4rvi9iwsbyyo0tqh/pgeom//j1cypenah0nfgo2qfs59hr/x/7ni6rjzhfqiwkwria7iwgv/jllc+wwglz73p+xkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4qnvjlfgupi5baxpc15f1hmllgntmejttzk6vknuyrtfp0ewihayjrxf0jdoqbsckqeqgb50mei2geodcectfdbhffuopaf15u910i0fwhsmdciprbsqa4fo/gojobft87ymos4ydvwprwqgtd2fiiomyzw8xhegoep97x4ehj515bcso/tdumpgqrizfone9ygshnaqhs5rzi4pexzjq0lajxcoqqukz8hu/2wvvbm+8mqjgrbyzkiu3uqyqlzhfpgmfsyqlojishbmm4v07rohex9i1n+pvlxtdty6wjmb4nh+w+po7z/druy0ccegsw1lezearyrr54pf9a83h7vrvysdvygunwvibozmgzcmddtk8qh1qt0tqxpbveqjm8sfx4etso+lzae83pla32ejgj6wuhbhcu7rhx3ubgahpati++on5+sjttt2rnzkkmgggzrhtrnrdmzfpqqudosnfcigl3qpc0nxrnz2krtxywyacilcsctbaom5apgvwipc0gkkym6hckoax1xqmd9dpuefbttczpryewtqseznieqq6oasbmt1guswkoh6aosyeaadfpoavakwywrxiqc7kgeen8ybd7aqtwcdzmxmhx2fgxqrh0qqwuvlgw93kahwb5yekugaxodvmnjvtbj0vibld5syylewizxyqvnekog1z7o/0rts0kblcqo/8ffzjohbmaxkmger1ptlci+gl/y9ziot/mcytkys0ykkwja2gpd20hhr1oagk+hkjjxvlxbiobnecmtbya1xy1ar5ynupi3gsvcqozlrtmlnwk7uyqlrrw0wbedz2qpnpk2hlu5xobdzvtqlzsm69hagbrsb+diwwclegv2xqwsqtwq/w6kzcpliwwxebtw/7z794kgzhqe6lxhbu4vct2gpkk+tafuyuug91qrtatfcqkgiyt3eynekv8f5af7g+arju0lnquctsvulikoibewui+eh70cv2rubmqmi6mmep/u0gdxttrmojaf8bqerswsrdwl1gye+kcigbo0jh07txn6yqyn/yg5ledffcucikswamexnrnscyp4e0l+85ywcdi+auvsrqql9onhrgymy0b4sscjjldbxosjjmxfqozvvax1wevjsffdb00xt3v7orodmdfbq6iremoulizazzdd2i/cztga7qd8lvawvfw/3dzlawezwstg4wm8kzvplpmwqlygpktowbksyyz2vpg5syognkkbbrzm9vi+ljtyj4ngjntlo6bnw76orm87iquwz8oe6mbpuyqg+o6daygag+qetwopcup5n9g3hrdbta3vzd2kfd6tlhp11+aoq1aricageilnofxpt3rk/cva3xljgnpgjrhfbkr/w6lxekstpncibajsgyil9xngjq1czrx65ja3bjjrgm2vdecjqseslquhintb3m4dfgyxzjpx055agia7rgm7gomcs95k3zuexguql18vgqgc/11dqdwvd57cg4kmirxrbxxqhgpauy5c5emklpjjmat0xndh4oejjnkgy6lhspibmo4hzu9hsxagbpg9hikhsncjqh21utq25vxyj5uslpdchciprco8luavaaxnoirg0vugsfcaftqio5egayr1jbglkyn1jv4ky53mq48x1cavx30ndrq6obj0tqaweq6japrkrxbsqalm5qkhuqsd1xsbai2spkmktypkraaxszwtpbitds7svis7oz0evth6ys69gwnwowcomlnud/llwbanssaysnpajd0376m6cvh2qqs2gwtisg7qmfvxvl6qppaw8goqunim12zdmpigpdq1h2bb/6xsnc8b6qgbgwcim2ezpdqqha4kysrdsno7ubc6lufrfpayisaugadgcsq0ridsdx6hyfmwctc5qgsjc4iqn/ukms+2xjpfpncxcmtsreyqqj13nw5hcccuuzyzlqlbfmcgxrtoxbmhxypibwi2unijyb5e0lx1hy0vvdwunfrcirxcdqj6prre22aypsqofckygyyvgacrvhzarldfjbrkitxwsoyxfc3yoajv75ou8lnwpip1uwce9fzyky6ocmezckrjamsbq56yswfpznphoupkuts0pnc5cmniqoe3p2uk83bld7inqiddx2npxctuziloyzf2vfaenubeqzdrlgtqbcw7bzyl2qnnsfubbw+bmqf6zlqwt5rofd20xyz3j1m2owqe+tohg/jgsepv9uafk8jmeoxg8c+jqypun1a91pfczlj0vkgzmc4gh8xqx14yr9ic/szvttqlmt6udluqdac2p20xmtyzavlaoigsz9hnss2oiibqhdccjutwigqog2zdf76pbt8n9jb9zjnascwhnvqevrtwtk8yskuqcx6exhgbk13uicyli4djohwmyharw4elias2itflrci+nb7jfvcbugqerio1esqn2ai5bqznsece1yooojb44hzpuq3wyf/sq60ze1mnnu3ygu+xpfnar3cem6mehve9uwesiznvdkuczy1b0g2r5sbbuke+t6ngkww5/tmtebcihmokejr16tqmahndl3alg+i30dvt3buyocswecjnn8bwurutcoovutcml5lpcazluhvwdn+jhi9zrgjiiakhczu8zcsvqywrja28twzj0orxlnp3p9za/euzwkgazfqgompzrvu0xygzckvjtzq+25c4b1qzvfbhs5r1chrd8t80f/bladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znz3ccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/i+8fha5fxiiump6vl3kcb7cfu+rq+y33ijtrjlouanvfoxjdcv8+bqrgfl7gdh1r3rgyzzxrdmkhwaysdo8nppt9hgd8sljup9ihoydso+48yoagdndriawe4bysgviv/mzulva0sfii1zyfe/leycffukhcx6ep+jmk09+nnyjuyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdiv3a9c925++om38t/iyefwcnq1tnhb863axojbespzqhw4ht7mik7/kjw1u1nenm5sp2sbu/v2ttajscf3hl/r6mchn0/gmin7u1c3pipblmcbgiz+w18oj3qmrnadj3fgaxapcw52bixcs6rvviqthwdxqkyyuit5hbs+rxdxvf2c3cvhi6dh1aavgybxd3pxoqz4qizhlzjqouyrgjl++ffsatibo7hdyhuztcehgo1wkqtnlcr7ezxb2ftblk1f+isg0ek/gin8z4golcoelisr1zlsvqo0iouku26xqjsi/sk5fsji3mkxfdpnxpa4ptelxbkhbmgf4yzfphqhx0jwuysg1w+bc3xkwfc8dsa1d8f1dw/qpisnyq4eiivmawa+tjdrdqybagnz/3c3+aejliqick5p1fyuq9pm40xq9y7mvacref7kqi1p9vltev6ddgp78ddnovg7x3taj1d1pwhc8dqpht1x5r4ek3b+3cg80bu9ulvmdobp2sp117y9j+e8hjyirprfn8ewgda/8y9mruafyngfxz/yhx3sj/71copzt5o/n3ln7u9rf1nbxhut/w3t87vnaydrr9bctf/d8+7t3hv/4qcpxz30h15o6e/untr/xov9piz/dws7ovw=</latexit> <latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u9394590/fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> Modeling for the Noisy Channel we need to model two probability distribudons: should favor fluent transladons should favor accurate/faithful transladons let s start with <latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u9394590/fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> how do we compute the probability of an English sentence? language modeling is an important part of MT

Noisy Channel

Noisy Channel predicted transladon source sentence

Noisy Channel assumes we have the right model, and that we esdmate it perfectly

Noisy Channel assumes we have the right model, and that we esdmate it perfectly

Noisy Channel assumes we have the right model, and that we esdmate it perfectly extra parameters to tune, can tune to opdmize BLEU

Noisy Channel assumes we have the right model, and that we esdmate it perfectly extra parameters to tune, can tune to opdmize BLEU tuning

Noisy Channel à Linear Model? since we re not using idealized decoding rule anymore, why not add more feature funcdons? word count feature :

Noisy Channel à Linear Model? since we re not using idealized decoding rule anymore, why not add more feature funcdons? word count feature :

Noisy Channel à Linear Model? since we re not using idealized decoding rule anymore, why not add more feature funcdons? word count feature : reverse transladon model feature :

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score model score

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score African NaDonal Congress opposidon sancdons against Zimbabwe African sancdoning to Zimbabwe s opposing predicted transladon opposidon to sancdons against Zimbabwe African NaDonal Congress model score

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 BLEU score Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe learning moves transla1ons leb or right in this plot model score

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score ideal model model score

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score Where s the gold standard transla1on? model score

African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score Issue: gold standard transla1on is oben unreachable by the model Why? limited transla1on rules, free transla1ons, noisy data model score

Free TranslaDons Machine transla1on: Sharon's office said, leader of the main opposidon Labor Party has admifed defeat and congratulatory telephone calls to Sharon. Human- generated transla1on: According to a representadve of Sharon's office, the leader of the main opposidon Labor Party has admifed defeat and made the obligatory congratuladng telephone call to Sharon.

Free TranslaDons Even if gold standard transla1on was Machine reachable transla1on: by model, we might not Sharon's office said, leader of the main opposidon Labor Party has want admifed to defeat learn and from congratulatory it directly telephone calls to Sharon. Human- generated Applicable transla1on: to other tasks: According to a representadve of Sharon's office, the leader of the main opposidon summariza1on Labor Party has admifed defeat and made the obligatory congratuladng telephone call to Sharon. image cap1on genera1on

Loss FuncDons name loss where used cost ( 0-1 ) issue: gold standard transla1on is oben unreachable by the model intractable, but underlies direct error minimizadon perceptron hinge log perceptron algorithm (Rosenblaf, 1958) support vector machines, other large- margin algorithms logisdc regression, condidonal random fields, maximum entropy models 33

Loss FuncDons name loss where used cost ( 0-1 ) intractable, but it doesn t need to compute model score of gold standard! intractable, but underlies direct error minimizadon perceptron hinge log perceptron algorithm (Rosenblaf, 1958) support vector machines, other large- margin algorithms logisdc regression, condidonal random fields, maximum entropy models 34

MERT, Och (2003)

Minimum Error Rate Training (MERT) minimize the cost of the decoder output how bad are these transladons? e.g., negadve BLEU intractable in general how can we solve it? set of source sentences references decoder outputs

Minimum Error Rate Training (MERT) minimize the cost of the decoder output how bad are these transladons? e.g., negadve BLEU intractable in general how can we solve it? set of source sentences generate k- best lists of transladons, approximately references minimize cost decoder on k- best lists, outputs repeat with new parameters (pool k- best lists across iterates)

BLEU model score

BLEU each point is a transla1on for the same sentence Arabic- English, phrase- based model score

BLEU 10,000- best list, default Moses weights 1- best: 28 BLEU model score

BLEU same sentence, 10,000- best list aber MERT 1- best: 34 BLEU model score

BLEU another sentence, default Moses weights 1- best: 46 BLEU model score

BLEU same sentence, aber MERT 1- best: 62 BLEU model score

Why are there horizontal bands? BLEU model score

Why are there horizontal bands? BLEU latent deriva1ons, different transla1ons with same BLEU model score

Minimum Error Rate Training (MERT) What are some issues with this loss funcdon? DisconDnuous & non- convex opdmizadon relies on randomized search No regularizadon leads to overfinng As a result, MERT is only effecdve for very small models (<40 parameters)

Many researchers tried to improve MERT: Regulariza+on and Search for MERT (Cer et al., 2008) Random Restarts in MERT for MT (Moore & Quirk, 2008) Stabilizing MERT (Foster & Kuhn, 2009) Issues remain: Be;er Hypothesis Tes+ng for Sta+s+cal MT: Controlling for Op+mizer Instability (Clark et al., 2011) They suggest running MERT 3-5 Dmes due to its instability

Perceptron Loss BLEU score reference model score

Perceptron Loss BLEU score reference model predicdon model score

Perceptron Loss for MT? (Collins, 2002) BLEU score reference model predicdon model score

k- Best Perceptron for MT (Liang et al., 2006) BLEU score model predicdon model score

k- Best Perceptron for MT (Liang et al., 2006) BLEU score model predicdon model score

k- Best Perceptron for MT (Liang et al., 2006) BLEU score BLEU oracle on k- best list model predicdon model score

Ramp Loss MinimizaDon BLEU score model score

Ramp Loss MinimizaDon BLEU score model predicdon model score

Ramp Loss MinimizaDon BLEU score model predicdon fear transladon model score

Fear Ramp Loss (Do et al., 2008) BLEU score model predicdon fear transladon model score

Fear Ramp Loss (Do et al., 2008) BLEU score model predicdon gold standard fear transladon model score

Hope Ramp Loss (McAllester & Keshet, 2011; Liang et al., 2006) BLEU score model predicdon model score

Hope Ramp Loss (McAllester & Keshet, 2011; Liang et al., 2006) BLEU score hope transladon model predicdon model score

Hope- Fear Ramp Loss (Chiang et al., 2008; 2009; Cherry & Foster, 2012; Chiang, 2012) BLEU score hope transladon fear transladon model score

Hope- Fear Ramp Loss (Chiang et al., 2008; 2009; Cherry & Foster, 2012; Chiang, 2012) BLEU score hope transladon fear transladon model score

Experiments (Gimpel, 2012) averages over 8 test sets across 3 language pairs Moses Hiero (%BLEU) (%BLEU) MERT 35.9 37.0 Fear Ramp (away from bad) 34.9 34.2 Hope Ramp (toward good) 35.2 36.0 Hope- Fear Ramp (toward good + away from bad) 35.7 37.0

Pairwise Ranking OpDmizaDon (Hopkins & May, 2011) BLEU score model score

Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language modeling and word embeddings recurrent/recursive/convoludonal networks in NLP sequence labeling, HMMs, dynamic programming syntax and syntacdc parsing machine transladon semandcs 67

SemanDcs we talked a lot about lexical semandcs: word sense, WordNet, word embeddings/clusters how about semandcs beyond the word level?

ComposiDonal SemanDcs how should the meanings of words combine to create the meaning of something larger? there s currently a lot of work in producing vector representadons of sentences and documents simplest case: how should two word vectors be combined to create a vector for a bigram? lots of work in this area in the neural era, but earlier work began ~2007 69

EvaluaDng ComposiDonal SemanDcs compute similarity of two bigrams under your model, then compute correladon with human judgments: BigramSim BigramPara television programme tv set 5.8 1.0 training programme educadon course 5.7 5.0 bedroom window educadon officer 1.3 1.0 (Mitchell and Lapata, 2010) 70

71

Bigram ComposiDon FuncDons 72

Bigram Similarity Results 73

Why does muldplicadon work? these vectors are built from co- occurrence counts (like in the first part of Assignment 1) so element- wise muldplicadon is like performing an AND operadon on context counts when using skip- gram word vectors (or other neural network- derived vectors), addidon oven works befer 74

75

Results SDS = simple distribudonal semandc NLM = neural language model 76

currently there is a lot of work on designing funcdonal architectures for bigram, phrase, and sentence similarity e.g., word averaging, recurrent neural networks, LSTMs, recursive neural networks, etc. our recent results find that, for sentence similarity, word averaging is a surprisingly strong baseline 77

on similar data to training data, LSTM does best 78