Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University
|
|
- Karol Mróz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University Chunting Zhou Junxian He Di Wang, Xuezhe Ma, Daniel Spokoyny, Taylor Berg-Kirkpatrick
2 Learning about Language? 2
3 Learning about Language? Syntactic structure 2
4 Learning about Language? Syntactic structure The cat sat on a green wall 2
5 Learning about Language? Syntactic structure The cat sat on a green wall Parts-of-speech: DT NN VBD IN DT JJ NN 2
6 Learning about Language? Syntactic structure The cat sat on a green wall Parts-of-speech: DT NN VBD IN DT JJ NN Dependency: 2
7 Learning about Language? Syntactic structure The cat sat on a green wall Parts-of-speech: DT NN VBD IN DT JJ NN Dependency: Cross-lingual correspondences 2
8 Learning about Language? Syntactic structure The cat sat on a green wall Parts-of-speech: DT NN VBD IN DT JJ NN Dependency: Cross-lingual correspondences a cat green on sat the wall のは上壁猫緑座った 2
9 Learning about Language? Syntactic structure The cat sat on a green wall Parts-of-speech: DT NN VBD IN DT JJ NN Dependency: Cross-lingual correspondences a cat green on sat the wall のは上壁猫緑座った 2
10 Supervised Approaches X Y 3
11 Supervised Approaches X Supervised Learning Y X Y 4
12 Supervised Approaches X Supervised Learning Y X Y 5
13 Unsupervised Approaches X 6
14 Unsupervised Approaches X Learning language models P(X) 6
15 Unsupervised Approaches X Learning language models P(X) Learning continuous features from language models (e.g. word2vec, skipthought, BERT) 6
16 Unsupervised Approaches X Learning language models P(X) Learning continuous features from language models (e.g. word2vec, skipthought, BERT) But how do we turn this into interpretable structure? 6
17 Unsupervised Approaches X Learning language models P(X) Learning continuous features from language models (e.g. word2vec, skipthought, BERT) But how do we turn this into interpretable structure? How do we do it while taking advantage of continuous features? 6
18 Latent Variable Approaches X Unsupervised Y Y???? X 7
19 Latent Variable Approaches X Unsupervised Y Y???? X 8
20 Density Matching for Bilingual Word Embedding Chunting Zhou, Xuezhe Ma, Di Wang, Graham Neubig (NAACL 2019) 9
21 Bilingual Word Embedding 10
22 Bilingual Word Embedding apple pear professor school canine piazza dog cat basketball planet earth 10
23 Bilingual Word Embedding apple pear professor school 梨梨りんご 学校 教授 canine piazza ピアッツ 犬 dog cat basketball planet earth 猫バスケット 星 地球 10
24 Bilingual Word Embedding apple pear professor school 梨梨 教授 りんご 学校 canine piazza ピアッツ 犬 dog cat basketball planet earth 猫 バスケット 星 地球 Map word embeddings from different languages into a single vector space 10
25 Bilingual Word Embedding apple pear professor school 梨梨 教授 りんご 学校 canine piazza ピアッツ 犬 dog cat basketball planet earth 猫 バスケット 星 地球 Map word embeddings from different languages into a single vector space -Cross-lingual transfer 10
26 Bilingual Word Embedding apple pear professor school 梨梨 教授 りんご 学校 canine piazza ピアッツ 犬 dog cat basketball planet earth 猫 バスケット 星 地球 Map word embeddings from different languages into a single vector space -Cross-lingual transfer -Cross-lingual NLP tasks 10
27 Previous Work on Unsupervised BWE
28 Previous Work on Unsupervised BWE Unsupervised methods of minimization some form of distance between distributions of discrete vector sets:
29 Previous Work on Unsupervised BWE Unsupervised methods of minimization some form of distance between distributions of discrete vector sets:
30 Previous Work on Unsupervised BWE Unsupervised methods of minimization some form of distance between distributions of discrete vector sets: No direct probabilistic interpretation, not a "typical" unsupervised generative model
31 Density Mapping for Bilingual Word Embedding (DeMa-BWE) 12
32 Density Mapping for Bilingual Word Embedding (DeMa-BWE) Japanese Space English Space dog canine mapping function cat bird 12
33 Density Mapping for Bilingual Word Embedding (DeMa-BWE) Japanese Space English Space dog canine mapping function cat bird Mapping function is learned with normalizing flow 12
34 Normalizing Flows 13
35 <latexit sha1_base64="x6e2kl/41zlzrutzrp09f040wuy=">aaab8nicbvbns8naej3ur1q/qh69lbahxkpsbt0wvxisygsgdwwz3brld7nhdyou0j/hxymixv013vw3btsctpxbwoo9gwbmrsln2rjut1naw9/y3cpvv3z29/ypqodhxs0zrwihsc6vh2fnoutoxzddqz8qikxe6wm0vp35j09uasatbznjasjwmgexi9hykfbrtzob2nx/vf+tuq13drrkviluoec7x/3qdstjbe0m4vjrwhnte+zyguy4nvz6maypjmm8piglcrzuh/n85ck6s8oaxvlzsgyaq78nciy0nojidgpsrnrzm4n/eufm4uswz0magzqqxai448hinpsfdziixpcjjzgozm9fziqvjsamvlehemsvr5jus+fdnjr3l7xwtrfhgu7gforgwrw04a7a0aecep7hfd4c47w4787horxkfdph8afo5w+sx5ai</latexit> Normalizing Flows X P (X) 13
36 Normalizing Flows X P (X) <latexit sha1_base64="x6e2kl/41zlzrutzrp09f040wuy=">aaab8nicbvbns8naej3ur1q/qh69lbahxkpsbt0wvxisygsgdwwz3brld7nhdyou0j/hxymixv013vw3btsctpxbwoo9gwbmrsln2rjut1naw9/y3cpvv3z29/ypqodhxs0zrwihsc6vh2fnoutoxzddqz8qikxe6wm0vp35j09uasatbznjasjwmgexi9hykfbrtzob2nx/vf+tuq13drrkviluoec7x/3qdstjbe0m4vjrwhnte+zyguy4nvz6maypjmm8piglcrzuh/n85ck6s8oaxvlzsgyaq78nciy0nojidgpsrnrzm4n/eufm4uswz0magzqqxai448hinpsfdziixpcjjzgozm9fziqvjsamvlehemsvr5jus+fdnjr3l7xwtrfhgu7gforgwrw04a7a0aecep7hfd4c47w4787horxkfdph8afo5w+sx5ai</latexit> Z N (0, I) <latexit sha1_base64="z/gr+uic+bj4zzxnm516ybitp9q=">aaab9xicbvbnswmxej31s9avqkcvwsjukljbbt0wvehfktgpbnestdm2nmkusvyps/+hfw+kepw/eppfmlz70nyha4/3zpizf0scaeo6387c4tlyympmlbu+sbm1ndvzrekwvorwschd1qiwppxjwjxmcnqifmui4lqedc7hfv2rks1cewegefuf7knwzqqbkz3co5zmat0u3gn0fdto5d2iowgaj15k8pci0s59ttohiqwvhncsddnzi+mnwblgob1lw7gmesyd3knnsyuwvpvj5oororrkb3vdzusanff/tyryad0uge0u2pt1rdcw//oaseme+wmtuwyojnnf3zgje6jxbkjdfcwgdy3brdf7kyj9rdaxnqisdcgbfxme1epf76ryuj3nly/sodkwdwdqaa/ooaxxuieqefdwdk/w5jw5l8678zftxxdsmt34a+fzb7aykk0=</latexit> 13
37 Normalizing Flows X = f 1 (Z) <latexit sha1_base64="/fc4xhzsnc/ymh6xxat25pjhrca=">aaab/3icbvdlsgnbejynrxhfq4ixl4nbiafdbht0igs9eixghpisyxyymwyzftdtk4r1d/6kfw+kepu3vpk3tpi9agjbq1hvtxexgwmuwlk+jdzc4tlysn61sla+sbllbu80vbhlyuo0fkfsuuqxwqnwbw6ctsljio8k1nshv2o/+cck4mfwc6oiot7pb9zjlicwuuzec19g7z45ttnu0oeba5kw7o66zteqwxpgewjnpigy1lrmv6cx0thnavbblgrbvgroqirwklha6mskryqosz+1nq2iz5stto5p8afwetglpa4a8et9pzeqx6mr7+pon8bazxpj8t+vhyn37iq8igjgaz0u8mkbictjmhcps0zbjdqhvhj9k6ydigkfhvlbh2dpvjxpgpwyfvku3jwwq5dzhhm0jw5qcdnodfxrnaqhoqloet2jv/rmpbkvxrvxmw3ngdnmlvod4/mhl4gu7g==</latexit> Z = f (X) <latexit sha1_base64="idq8cdh7ny313/u9s3rzypq+wfi=">aaab+nicbvbns8naen3ur1q/uj16wsxcvzskcnoril48vraf2iay2w7apztn2j0ojfanepggifd/itf/jds2b219mpb4b4azex4suabh+bzyk6tr6xv5zclw9s7unl3cb+oouzq1acqi1fajzojl1gaogrvjxujoc9byr9dtv/xaloarvinxzlyqdcqpocvgpj5dvmexooilxrgyijny+6rnl5ykmwnejm5gsihdvwd/dfsrtuimgqqidcd1yvbsoobtwsafbqjztoiidfjhuelcpr10dvoehxulj4nimzkaz+rvizsewo9d33sgbiz60zuk/3mdbiill+uytobjol8ujajdhkc54d5xjiiyg0ko4uzwtideeqomryijwv18ezk0qxx3tfk9psvvrri48ugqhaeycte5qqebvecnrnejekav6m16sl6sd+tj3pqzspkd9afw5w/cxzmi</latexit> X P (X) <latexit sha1_base64="x6e2kl/41zlzrutzrp09f040wuy=">aaab8nicbvbns8naej3ur1q/qh69lbahxkpsbt0wvxisygsgdwwz3brld7nhdyou0j/hxymixv013vw3btsctpxbwoo9gwbmrsln2rjut1naw9/y3cpvv3z29/ypqodhxs0zrwihsc6vh2fnoutoxzddqz8qikxe6wm0vp35j09uasatbznjasjwmgexi9hykfbrtzob2nx/vf+tuq13drrkviluoec7x/3qdstjbe0m4vjrwhnte+zyguy4nvz6maypjmm8piglcrzuh/n85ck6s8oaxvlzsgyaq78nciy0nojidgpsrnrzm4n/eufm4uswz0magzqqxai448hinpsfdziixpcjjzgozm9fziqvjsamvlehemsvr5jus+fdnjr3l7xwtrfhgu7gforgwrw04a7a0aecep7hfd4c47w4787horxkfdph8afo5w+sx5ai</latexit> Z N (0, I) <latexit sha1_base64="z/gr+uic+bj4zzxnm516ybitp9q=">aaab9xicbvbnswmxej31s9avqkcvwsjukljbbt0wvehfktgpbnestdm2nmkusvyps/+hfw+kepw/eppfmlz70nyha4/3zpizf0scaeo6387c4tlyympmlbu+sbm1ndvzrekwvorwschd1qiwppxjwjxmcnqifmui4lqedc7hfv2rks1cewegefuf7knwzqqbkz3co5zmat0u3gn0fdto5d2iowgaj15k8pci0s59ttohiqwvhncsddnzi+mnwblgob1lw7gmesyd3knnsyuwvpvj5oororrkb3vdzusanff/tyryad0uge0u2pt1rdcw//oaseme+wmtuwyojnnf3zgje6jxbkjdfcwgdy3brdf7kyj9rdaxnqisdcgbfxme1epf76ryuj3nly/sodkwdwdqaa/ooaxxuieqefdwdk/w5jw5l8678zftxxdsmt34a+fzb7aykk0=</latexit> 13
38 Normalizing Flows X = f 1 (Z) <latexit sha1_base64="/fc4xhzsnc/ymh6xxat25pjhrca=">aaab/3icbvdlsgnbejynrxhfq4ixl4nbiafdbht0igs9eixghpisyxyymwyzftdtk4r1d/6kfw+kepu3vpk3tpi9agjbq1hvtxexgwmuwlk+jdzc4tlysn61sla+sbllbu80vbhlyuo0fkfsuuqxwqnwbw6ctsljio8k1nshv2o/+cck4mfwc6oiot7pb9zjlicwuuzec19g7z45ttnu0oeba5kw7o66zteqwxpgewjnpigy1lrmv6cx0thnavbblgrbvgroqirwklha6mskryqosz+1nq2iz5stto5p8afwetglpa4a8et9pzeqx6mr7+pon8bazxpj8t+vhyn37iq8igjgaz0u8mkbictjmhcps0zbjdqhvhj9k6ydigkfhvlbh2dpvjxpgpwyfvku3jwwq5dzhhm0jw5qcdnodfxrnaqhoqloet2jv/rmpbkvxrvxmw3ngdnmlvod4/mhl4gu7g==</latexit> Z = f (X) <latexit sha1_base64="idq8cdh7ny313/u9s3rzypq+wfi=">aaab+nicbvbns8naen3ur1q/uj16wsxcvzskcnoril48vraf2iay2w7apztn2j0ojfanepggifd/itf/jds2b219mpb4b4azex4suabh+bzyk6tr6xv5zclw9s7unl3cb+oouzq1acqi1fajzojl1gaogrvjxujoc9byr9dtv/xaloarvinxzlyqdcqpocvgpj5dvmexooilxrgyijny+6rnl5ykmwnejm5gsihdvwd/dfsrtuimgqqidcd1yvbsoobtwsafbqjztoiidfjhuelcpr10dvoehxulj4nimzkaz+rvizsewo9d33sgbiz60zuk/3mdbiill+uytobjol8ujajdhkc54d5xjiiyg0ko4uzwtideeqomryijwv18ezk0qxx3tfk9psvvrri48ugqhaeycte5qqebvecnrnejekav6m16sl6sd+tj3pqzspkd9afw5w/cxzmi</latexit> X P (X) <latexit sha1_base64="x6e2kl/41zlzrutzrp09f040wuy=">aaab8nicbvbns8naej3ur1q/qh69lbahxkpsbt0wvxisygsgdwwz3brld7nhdyou0j/hxymixv013vw3btsctpxbwoo9gwbmrsln2rjut1naw9/y3cpvv3z29/ypqodhxs0zrwihsc6vh2fnoutoxzddqz8qikxe6wm0vp35j09uasatbznjasjwmgexi9hykfbrtzob2nx/vf+tuq13drrkviluoec7x/3qdstjbe0m4vjrwhnte+zyguy4nvz6maypjmm8piglcrzuh/n85ck6s8oaxvlzsgyaq78nciy0nojidgpsrnrzm4n/eufm4uswz0magzqqxai448hinpsfdziixpcjjzgozm9fziqvjsamvlehemsvr5jus+fdnjr3l7xwtrfhgu7gforgwrw04a7a0aecep7hfd4c47w4787horxkfdph8afo5w+sx5ai</latexit> Z N (0, I) <latexit sha1_base64="z/gr+uic+bj4zzxnm516ybitp9q=">aaab9xicbvbnswmxej31s9avqkcvwsjukljbbt0wvehfktgpbnestdm2nmkusvyps/+hfw+kepw/eppfmlz70nyha4/3zpizf0scaeo6387c4tlyympmlbu+sbm1ndvzrekwvorwschd1qiwppxjwjxmcnqifmui4lqedc7hfv2rks1cewegefuf7knwzqqbkz3co5zmat0u3gn0fdto5d2iowgaj15k8pci0s59ttohiqwvhncsddnzi+mnwblgob1lw7gmesyd3knnsyuwvpvj5oororrkb3vdzusanff/tyryad0uge0u2pt1rdcw//oaseme+wmtuwyojnnf3zgje6jxbkjdfcwgdy3brdf7kyj9rdaxnqisdcgbfxme1epf76ryuj3nly/sodkwdwdqaa/ooaxxuieqefdwdk/w5jw5l8678zftxxdsmt34a+fzb7aykk0=</latexit> Change of variable (x) p (x) = pz (f (x)) det( <latexit sha1_base64="st0jwp7pyeca65l8lakjgjqile4=">aaacsnicbvdlsinbfk3oxfd8tbyxbooja8kmdouabgtrjuufszrjh3c7cjsprh5qdvsmbx+fg1ezm49w40kr2uzlazpeovbw6pxz63gcveldrvvbkx0qr6yurw9unre2dz5xd7+0tzjpgs2rqetfbgbqyrhbjenhtaorokdhdxb7pvav71abmcq/ajrin4jblempgkzuq0lay30aikfrv2/we273p4t6ok82fiuhpxc/j1t3qw0i91pqjehxhwdxt78vgr6wgye99ko1t+lowd8sb0zqbiblxvwx309efmfmqoexhc9nqzupdxyki4qfguxb3miao5bgekhp5pmqcv7nkn0ejtqumphenz/iitjmfau2gqenzbi3fv/ndtikj7u5jnommbbti8jmcur4uffelxofqzelils0b+viclyrsu1xbane8pc/kvzb0ztshlx9r52ezepyz/vsk6szjx2xu3bbllmlcfbintkre3oenbfn3fkzjzac2cwew0cp/bffwlqq</latexit> 13
39 Normalizing Flows X = f 1 (Z) <latexit sha1_base64="/fc4xhzsnc/ymh6xxat25pjhrca=">aaab/3icbvdlsgnbejynrxhfq4ixl4nbiafdbht0igs9eixghpisyxyymwyzftdtk4r1d/6kfw+kepu3vpk3tpi9agjbq1hvtxexgwmuwlk+jdzc4tlysn61sla+sbllbu80vbhlyuo0fkfsuuqxwqnwbw6ctsljio8k1nshv2o/+cck4mfwc6oiot7pb9zjlicwuuzec19g7z45ttnu0oeba5kw7o66zteqwxpgewjnpigy1lrmv6cx0thnavbblgrbvgroqirwklha6mskryqosz+1nq2iz5stto5p8afwetglpa4a8et9pzeqx6mr7+pon8bazxpj8t+vhyn37iq8igjgaz0u8mkbictjmhcps0zbjdqhvhj9k6ydigkfhvlbh2dpvjxpgpwyfvku3jwwq5dzhhm0jw5qcdnodfxrnaqhoqloet2jv/rmpbkvxrvxmw3ngdnmlvod4/mhl4gu7g==</latexit> Z = f (X) <latexit sha1_base64="idq8cdh7ny313/u9s3rzypq+wfi=">aaab+nicbvbns8naen3ur1q/uj16wsxcvzskcnoril48vraf2iay2w7apztn2j0ojfanepggifd/itf/jds2b219mpb4b4azex4suabh+bzyk6tr6xv5zclw9s7unl3cb+oouzq1acqi1fajzojl1gaogrvjxujoc9byr9dtv/xaloarvinxzlyqdcqpocvgpj5dvmexooilxrgyijny+6rnl5ykmwnejm5gsihdvwd/dfsrtuimgqqidcd1yvbsoobtwsafbqjztoiidfjhuelcpr10dvoehxulj4nimzkaz+rvizsewo9d33sgbiz60zuk/3mdbiill+uytobjol8ujajdhkc54d5xjiiyg0ko4uzwtideeqomryijwv18ezk0qxx3tfk9psvvrri48ugqhaeycte5qqebvecnrnejekav6m16sl6sd+tj3pqzspkd9afw5w/cxzmi</latexit> X P (X) <latexit sha1_base64="x6e2kl/41zlzrutzrp09f040wuy=">aaab8nicbvbns8naej3ur1q/qh69lbahxkpsbt0wvxisygsgdwwz3brld7nhdyou0j/hxymixv013vw3btsctpxbwoo9gwbmrsln2rjut1naw9/y3cpvv3z29/ypqodhxs0zrwihsc6vh2fnoutoxzddqz8qikxe6wm0vp35j09uasatbznjasjwmgexi9hykfbrtzob2nx/vf+tuq13drrkviluoec7x/3qdstjbe0m4vjrwhnte+zyguy4nvz6maypjmm8piglcrzuh/n85ck6s8oaxvlzsgyaq78nciy0nojidgpsrnrzm4n/eufm4uswz0magzqqxai448hinpsfdziixpcjjzgozm9fziqvjsamvlehemsvr5jus+fdnjr3l7xwtrfhgu7gforgwrw04a7a0aecep7hfd4c47w4787horxkfdph8afo5w+sx5ai</latexit> Z N (0, I) <latexit sha1_base64="z/gr+uic+bj4zzxnm516ybitp9q=">aaab9xicbvbnswmxej31s9avqkcvwsjukljbbt0wvehfktgpbnestdm2nmkusvyps/+hfw+kepw/eppfmlz70nyha4/3zpizf0scaeo6387c4tlyympmlbu+sbm1ndvzrekwvorwschd1qiwppxjwjxmcnqifmui4lqedc7hfv2rks1cewegefuf7knwzqqbkz3co5zmat0u3gn0fdto5d2iowgaj15k8pci0s59ttohiqwvhncsddnzi+mnwblgob1lw7gmesyd3knnsyuwvpvj5oororrkb3vdzusanff/tyryad0uge0u2pt1rdcw//oaseme+wmtuwyojnnf3zgje6jxbkjdfcwgdy3brdf7kyj9rdaxnqisdcgbfxme1epf76ryuj3nly/sodkwdwdqaa/ooaxxuieqefdwdk/w5jw5l8678zftxxdsmt34a+fzb7aykk0=</latexit> Change of variable (x) p (x) = pz (f (x)) det( <latexit sha1_base64="st0jwp7pyeca65l8lakjgjqile4=">aaacsnicbvdlsinbfk3oxfd8tbyxbooja8kmdouabgtrjuufszrjh3c7cjsprh5qdvsmbx+fg1ezm49w40kr2uzlazpeovbw6pxz63gcveldrvvbkx0qr6yurw9unre2dz5xd7+0tzjpgs2rqetfbgbqyrhbjenhtaorokdhdxb7pvav71abmcq/ajrin4jblempgkzuq0lay30aikfrv2/we273p4t6ok82fiuhpxc/j1t3qw0i91pqjehxhwdxt78vgr6wgye99ko1t+lowd8sb0zqbiblxvwx309efmfmqoexhc9nqzupdxyki4qfguxb3miao5bgekhp5pmqcv7nkn0ejtqumphenz/iitjmfau2gqenzbi3fv/ndtikj7u5jnommbbti8jmcur4uffelxofqzelils0b+viclyrsu1xbane8pc/kvzb0ztshlx9r52ezepyz/vsk6szjx2xu3bbllmlcfbintkre3oenbfn3fkzjzac2cwew0cp/bffwlqq</latexit> Intuitively, prevents degenerative mapping of everything to zero vector 13
40 Normalizing Flows X = f 1 (Z) <latexit sha1_base64="/fc4xhzsnc/ymh6xxat25pjhrca=">aaab/3icbvdlsgnbejynrxhfq4ixl4nbiafdbht0igs9eixghpisyxyymwyzftdtk4r1d/6kfw+kepu3vpk3tpi9agjbq1hvtxexgwmuwlk+jdzc4tlysn61sla+sbllbu80vbhlyuo0fkfsuuqxwqnwbw6ctsljio8k1nshv2o/+cck4mfwc6oiot7pb9zjlicwuuzec19g7z45ttnu0oeba5kw7o66zteqwxpgewjnpigy1lrmv6cx0thnavbblgrbvgroqirwklha6mskryqosz+1nq2iz5stto5p8afwetglpa4a8et9pzeqx6mr7+pon8bazxpj8t+vhyn37iq8igjgaz0u8mkbictjmhcps0zbjdqhvhj9k6ydigkfhvlbh2dpvjxpgpwyfvku3jwwq5dzhhm0jw5qcdnodfxrnaqhoqloet2jv/rmpbkvxrvxmw3ngdnmlvod4/mhl4gu7g==</latexit> Z = f (X) <latexit sha1_base64="idq8cdh7ny313/u9s3rzypq+wfi=">aaab+nicbvbns8naen3ur1q/uj16wsxcvzskcnoril48vraf2iay2w7apztn2j0ojfanepggifd/itf/jds2b219mpb4b4azex4suabh+bzyk6tr6xv5zclw9s7unl3cb+oouzq1acqi1fajzojl1gaogrvjxujoc9byr9dtv/xaloarvinxzlyqdcqpocvgpj5dvmexooilxrgyijny+6rnl5ykmwnejm5gsihdvwd/dfsrtuimgqqidcd1yvbsoobtwsafbqjztoiidfjhuelcpr10dvoehxulj4nimzkaz+rvizsewo9d33sgbiz60zuk/3mdbiill+uytobjol8ujajdhkc54d5xjiiyg0ko4uzwtideeqomryijwv18ezk0qxx3tfk9psvvrri48ugqhaeycte5qqebvecnrnejekav6m16sl6sd+tj3pqzspkd9afw5w/cxzmi</latexit> X P (X) <latexit sha1_base64="x6e2kl/41zlzrutzrp09f040wuy=">aaab8nicbvbns8naej3ur1q/qh69lbahxkpsbt0wvxisygsgdwwz3brld7nhdyou0j/hxymixv013vw3btsctpxbwoo9gwbmrsln2rjut1naw9/y3cpvv3z29/ypqodhxs0zrwihsc6vh2fnoutoxzddqz8qikxe6wm0vp35j09uasatbznjasjwmgexi9hykfbrtzob2nx/vf+tuq13drrkviluoec7x/3qdstjbe0m4vjrwhnte+zyguy4nvz6maypjmm8piglcrzuh/n85ck6s8oaxvlzsgyaq78nciy0nojidgpsrnrzm4n/eufm4uswz0magzqqxai448hinpsfdziixpcjjzgozm9fziqvjsamvlehemsvr5jus+fdnjr3l7xwtrfhgu7gforgwrw04a7a0aecep7hfd4c47w4787horxkfdph8afo5w+sx5ai</latexit> Z N (0, I) <latexit sha1_base64="z/gr+uic+bj4zzxnm516ybitp9q=">aaab9xicbvbnswmxej31s9avqkcvwsjukljbbt0wvehfktgpbnestdm2nmkusvyps/+hfw+kepw/eppfmlz70nyha4/3zpizf0scaeo6387c4tlyympmlbu+sbm1ndvzrekwvorwschd1qiwppxjwjxmcnqifmui4lqedc7hfv2rks1cewegefuf7knwzqqbkz3co5zmat0u3gn0fdto5d2iowgaj15k8pci0s59ttohiqwvhncsddnzi+mnwblgob1lw7gmesyd3knnsyuwvpvj5oororrkb3vdzusanff/tyryad0uge0u2pt1rdcw//oaseme+wmtuwyojnnf3zgje6jxbkjdfcwgdy3brdf7kyj9rdaxnqisdcgbfxme1epf76ryuj3nly/sodkwdwdqaa/ooaxxuieqefdwdk/w5jw5l8678zftxxdsmt34a+fzb7aykk0=</latexit> Change of variable (x) p (x) = pz (f (x)) det( <latexit sha1_base64="st0jwp7pyeca65l8lakjgjqile4=">aaacsnicbvdlsinbfk3oxfd8tbyxbooja8kmdouabgtrjuufszrjh3c7cjsprh5qdvsmbx+fg1ezm49w40kr2uzlazpeovbw6pxz63gcveldrvvbkx0qr6yurw9unre2dz5xd7+0tzjpgs2rqetfbgbqyrhbjenhtaorokdhdxb7pvav71abmcq/ajrin4jblempgkzuq0lay30aikfrv2/we273p4t6ok82fiuhpxc/j1t3qw0i91pqjehxhwdxt78vgr6wgye99ko1t+lowd8sb0zqbiblxvwx309efmfmqoexhc9nqzupdxyki4qfguxb3miao5bgekhp5pmqcv7nkn0ejtqumphenz/iitjmfau2gqenzbi3fv/ndtikj7u5jnommbbti8jmcur4uffelxofqzelils0b+viclyrsu1xbane8pc/kvzb0ztshlx9r52ezepyz/vsk6szjx2xu3bbllmlcfbintkre3oenbfn3fkzjzac2cwew0cp/bffwlqq</latexit> Intuitively, prevents degenerative mapping of everything to zero vector Normalizing Flow: A series of such invertible transformations f <latexit sha1_base64="aj1vrwgqsrqkgqj/blgtstmrk/w=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0mqomeif48t2fpoq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcorenumwyxwmsqe1cngktsgw4edhkfnaoepgtj25n/8irk81jem0mcfkshkoecuwolztgvv9yqowdzjv5okpcj0s9/9qyxsyouhgmqdddze+nnvbnobe5lvvrjqtmydrfrqaqraj+bhzolz1yzkdbwtqqhc/x3reyjrsdrydsjakz62zuj/3nd1itxfszlkhqubleotauxmzl9tqzcitniygllittbcrtrrzmx2zrscn7yy6ukxat6f9va87jsv8njkmijnmi5ehafdbidbrsaacizvmkb8+i8oo/ox6k14oqzx/ahzucpzd+m7g==</latexit> 13
41 DeMa-BWE: Preliminaries Japanese Space English Space dog canine mapping function cat bird 14
42 DeMa-BWE: Preliminaries Japanese Space English Space dog canine mapping function cat bird Notations: 14
43 DeMa-BWE: Preliminaries Japanese Space English Space dog canine mapping function cat bird Notations: x 2 R d, y 2 R d : denote vectors in the src and tgt embedding space 14
44 DeMa-BWE: Preliminaries Japanese Space English Space dog canine mapping function cat bird Notations: x 2 R d, y 2 R d : denote vectors in the src and tgt embedding space x i, y j : denote an actual word in src and tgt vocabularies 14
45 DeMa-BWE: Preliminaries Japanese Space English Space dog canine mapping function cat bird Notations: x 2 R d, y 2 R d : denote vectors in the src and tgt embedding space x i, y j : denote an actual word in src and tgt vocabularies f xy, f yx : denote src->tgt, and tgt-src mapping functions 14
46 Prior Distribution Assumption on the monolingual word embedding space: Gaussian mixture model 鳥 猫 犬 15
47 Prior Distribution Assumption on the monolingual word embedding space: Gaussian mixture model 鳥 猫 犬 15
48 Prior Distribution Assumption on the monolingual word embedding space: Gaussian mixture model 鳥 猫 犬 15
49 DeMa-BWE: Density Matching 16
50 DeMa-BWE: Density Matching Sampling a continuous vector from the GMM 16
51 DeMa-BWE: Density Matching Sampling a continuous vector from the GMM 鳥 猫 x i (x i ) x p(x x i ) 犬 16
52 DeMa-BWE: Density Matching Sampling a continuous vector from the GMM 鳥 猫 x i (x i ) x p(x x i ) 犬 Apply the mapping function vector in the target space. f xy to obtain the transformed 16
53 DeMa-BWE: Density Matching 鳥 猫 Sampling a continuous vector from the GMM xi (xi ) x p (x xi ) Apply the mapping function fxy to obtain the transformed vector in the target space. fxy ( ) = Wxy 犬 dog canine cat bird 16
54 DeMa-BWE: Density Matching 鳥 猫 Sampling a continuous vector from the GMM xi (xi ) x p (x xi ) Apply the mapping function fxy to obtain the transformed vector in the target space. fxy ( ) = Wxy 犬 dog canine cat bird Computing the density of x in the mapped target space 16
55 DeMa-BWE: Density Matching 鳥 猫 Sampling a continuous vector from the GMM xi (xi ) x p (x xi ) Apply the mapping function fxy to obtain the transformed vector in the target space. fxy ( ) = Wxy 犬 dog canine cat bird Computing the density of x in the mapped target space 16
56 DeMa-BWE: Density Matching 鳥 猫 Sampling a continuous vector from the GMM xi (xi ) x p (x xi ) Apply the mapping function fxy to obtain the transformed vector in the target space. fxy ( ) = Wxy 犬 dog canine cat bird Computing the density of x in the mapped target space 16
57 DeMa-BWE: Density Matching 鳥 猫 Sampling a continuous vector from the GMM xi (xi ) x p (x xi ) Apply the mapping function fxy to obtain the transformed vector in the target space. fxy ( ) = Wxy 犬 dog canine cat bird Computing the density of x in the mapped target space Objective: 16
58 DeMa-BWE: Density Matching 鳥 猫 Sampling a continuous vector from the GMM xi (xi ) x p (x xi ) Apply the mapping function fxy to obtain the transformed vector in the target space. fxy ( ) = Wxy 犬 dog canine cat bird Computing the density of x in the mapped target space Objective: 16
59 Method Details 17
60 Method Details Weak Orthogonality Constraint: Try to make sure that the transformation is close to orthogonal 17
61 Method Details Weak Orthogonality Constraint: Try to make sure that the transformation is close to orthogonal 17
62 Method Details Weak Orthogonality Constraint: Try to make sure that the transformation is close to orthogonal Weak Supervision w/ Identical Strings: Take advantage of the fact that identical strings are usually the same word in both languages 17
63 Method Details Weak Orthogonality Constraint: Try to make sure that the transformation is close to orthogonal Weak Supervision w/ Identical Strings: Take advantage of the fact that identical strings are usually the same word in both languages 17
64 Method Details Weak Orthogonality Constraint: Try to make sure that the transformation is close to orthogonal Weak Supervision w/ Identical Strings: Take advantage of the fact that identical strings are usually the same word in both languages Alignment Selection Methods: Use cross-domain similarity local scaling (CSLS) 17
65 Method Details Weak Orthogonality Constraint: Try to make sure that the transformation is close to orthogonal Weak Supervision w/ Identical Strings: Take advantage of the fact that identical strings are usually the same word in both languages Alignment Selection Methods: Use cross-domain similarity local scaling (CSLS) 17
66 Dataset and Tasks Experiments Bilingual Lexicon Induction Task: MUSE dataset (Conneau el al., 2017) Cross-lingual Word Similarity Task: SemEval 2017 Languages Baseline languages: en - es, de, fr, ru, zh, ja Morphologically rich languages: en - et, fi, el, hu, pl, tr 18
67 Main Results on BLI (close languages) 85 Procrustes(R) MUSE (U+R) SL-unsup-ID DeMa-BWE en-de de-en en-es es-en 19
68 Main Results on BLI (distant languages) 65 Procrustes(R) MUSE (U+R) DeMa-BWE en-et et-en en-el el-en en-ja ja-en 20
69 Unsupervised Learning of Syntactic Structure w/ Invertible Neural Projections Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick (EMNLP 2018) 21
70 <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> <latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> <latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> <latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> <latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> <latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> HMM for Part-of-Speech Induction z<latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> 1 z<latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> 2 z 3 x 1 x<latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> 2 x 3 The cat sat 22
71 <latexit sha1_base64="fdvj6nkczcq9ytxiasm4aewjuxe=">aaaczhiczvdbbhmxehwww7tqmll1bsrkesevkyo2tbl0ryixnlarhfaqo5xx8szwfvnzs5du8ofwnbzcj/af/az2kgfsjmtnmzkz1pltnvi4kio/nezo3xv3h2xt5w8f7tze7e49+epmaxkfmsonvaio41jopgibkl80llnvsx5exb1p8/nv3dph9bdynhys6fslwjaksvv2j8i8fjg4otbrfgamsv8xhjjkealauprruoq+jp/fvnfv9ars9opbsqx8gwzxoifwcvbudz6siwgt4hqypm5ddosgxp5aeezykjpw8yaykzrllxfqqrgb++v1ab+mnqmujy1pa152/9/wvlkkptjtchuz1afjpothfsxusumbze0wqupxqp9i1txuhhco34690e0lxlovjrqvgaxotukjsjybxeramrxxfmxm1fig0e8nezukeu40/86mulrppjkhnyyeh5bhn4c3vbsnrq8hj4pi03hv9n3a1i30dl1ah2ii3qbt9agdorfi6af6ix6h352/2u62nx2sqflnvbopnij7/g8+brtw</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> <latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> <latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> <latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> <latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> <latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> Gaussian HMM for POS Induction z<latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> 1 z<latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> 2 z 3 x 1 x<latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> 2 x 3 The cat sat x i N (µ zi, zi ) [Lin et al. 2015] 23
72 <latexit sha1_base64="fdvj6nkczcq9ytxiasm4aewjuxe=">aaaczhiczvdbbhmxehwww7tqmll1bsrkesevkyo2tbl0ryixnlarhfaqo5xx8szwfvnzs5du8ofwnbzcj/af/az2kgfsjmtnmzkz1pltnvi4kio/nezo3xv3h2xt5w8f7tze7e49+epmaxkfmsonvaio41jopgibkl80llnvsx5exb1p8/nv3dph9bdynhys6fslwjaksvv2j8i8fjg4otbrfgamsv8xhjjkealauprruoq+jp/fvnfv9ars9opbsqx8gwzxoifwcvbudz6siwgt4hqypm5ddosgxp5aeezykjpw8yaykzrllxfqqrgb++v1ab+mnqmujy1pa152/9/wvlkkptjtchuz1afjpothfsxusumbze0wqupxqp9i1txuhhco34690e0lxlovjrqvgaxotukjsjybxeramrxxfmxm1fig0e8nezukeu40/86mulrppjkhnyyeh5bhn4c3vbsnrq8hj4pi03hv9n3a1i30dl1ah2ii3qbt9agdorfi6af6ix6h352/2u62nx2sqflnvbopnij7/g8+brtw</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="wplw8y/0iqfhjrazcsqahuwq07k=">aaacdxiczvdlsgmxfm34rpvvdekmwaqxpcyioo6kblxwcgyhlswtztrqzdikd8qy9b/erx6hk3hrn/gz/ogz6sxseyhck3ppdscniau34lo/zsrq2vrgzmmrvl2zu7dfoth8ncrrlplucaxbatfm8ij5wegwdqwzkyfgrwb8m81bt0wbrqihmmssj8kw4ignbczv7gyyfz72vx6l6tbdvpay8apqruu1+5xf7kdrrliiqcdgddw3hl5knhaq2ltctqylcr2tietygbhjtc/n/u7xqwugoftanghwzv7fsik0ksdikrnm5myza0oju7mqgmmszc/kdzorqs2qtuyktwgwjeb41ut5fcfaijrzesycg8jznnjanamgjhyqqrn9cqyjogkfm2dzzuqtjrim/pp6dd29v6g2boqwsugynaaz5kfl1eb3qil8rjfar+gnvtsvzofz6xznpctosxoe5sr5/gmr950d</latexit> <latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> <latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> <latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> <latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> <latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> <latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="r7rtsvkdbyxircypj9szuinkmva=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucqmcuqu6mzlbccw2qfk0kwbmkyg5i5yhv6dunxvccvu/qy/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gt9m8/usvzjj6gelmfygheqszwwcoti8q6fo0f96v1pygk5e9dnwc1fbrrx71tzeqjbe0askx1l3xicfpsqjgoj1weommmszjpkrdaymsqpbt3o/upjhmwa6lmicco2f/b6ryaifhzjrz03ozjaepua4bfyxe1rjn8rueikaeihomujruc0ygvpjtfsuj0ijmfiqjt0hawtb2gclkge8mweqx8xwbjldcbeycfzoru5jimvdogtcn5/6i1rwpwiqji3smtpglllet3aew8hbbhl2in/ruvvgf1qf1nzowrglnem2v9f0hlzudbq==</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> <latexit sha1_base64="vwypdoevjxkuu912kwmjdymas+e=">aaacchiczvbltsmwfht4lvirsgqtusgxqkoekibdbruwrrbaqy0qx3vaq3yc2s9ijeojefs4byvelltwdg6ak2zb2ydzbzxvnjweiozmg+p8wevlk6tr66wn8ubw9s5uzw//ucteeeoryavqb1htzilqaqno27giwasctolrttzvpvglmyweybxtx+bbxejgmbjq/rl31qtunbqtl70i3ajuuvhnxuw325cketqcwrhwhdejwu+xaky4nzs7iayxjim8ob0diyyo9tpc6sq+nkzfdquyjwi7z/9vpfhogwfolfntm7omasm5rhkvdexwsmfyux6lobaiwizsotrzric89fmwxqnqiex9ham3qdpzlhafkuqajw3ardhzfzsmsciethhlk5e7n8gi8e7rv3xn7rzauc7ckqfddirokisuuapdoibyeeed9ire0lv1yn1yn9bxvlpkftshakas7z/xkzqy</latexit> Gaussian HMM for POS Induction z<latexit sha1_base64="jbtr+w9vprfg2sai7yimoblknik=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucqmcoqu6mzlrccw2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dry0trahhjjeqe2bnoyuobww47cskyhfw2g7gn9m8/usvzjj6gelmfygheqszwwco++e+26/wniatl70m3aluufgtfvw3n5aketqcwrhwxdejwu+xaky4nvz6iayxjmm8pf0diyyo9tpc6tq+mczadquyjwi7z/9vpfhogwfklfntc7omasm5rhsvjetwsmfyu56iob6ieizsotqlric89fmwxqnqimx8ham3qdpzlpaakuqatwzardhzfzumsmiethgvk5g7mmgy8m4avw3n7rzwvc7ckqmjdixokysuubpdohbyeefd9ire0lv1yn1yn9bxtfqyip1dnffw9x/utzqw</latexit> 1 z<latexit sha1_base64="znkure23lzcjmnesh6crgwekxji=">aaacchiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lio4w2qfk0kwbmkyg5i5qh36bunxvccvu/qs/wz8wm52fbs+ee3luuehkbdfnghznxyqtrk6tb5q3k1vbo7t71f2dby0trahhjjeqe2bnoyuobww47cskyhfw+himr7p54xnvmsnohiyx9querixkbioh7p77zx615jscvoxl4baghopq96u/vyekiaarei617rpodh6kftdc6btsszsnmrnjie0aggfbtz/mvqf2iwegdiivorhyoft/i8vccwwjo8yanptldejjdd2oycsylj2t3/vebpva1dor0qfemalhhz+yke6armtmi0y4ddloyrehtfecfgiajoqzr9hkhbumymkrmizcxuswgddsxdac27na66oiq4yo0de6rs46ry10g9riqwqn0st6q+/wi/vhfvpfm2njknyo0vxz33/v75qx</latexit> 2 z 3 x 1 x<latexit sha1_base64="oue9nq3ny9iilmhpu3onq4ttfro=">aaacdxiczvdlsgmxfm3uv62vqks3g0vwucpmedrd0y3lco4ttepjpjk2njkmyr2xdp0hcavf4urc+g1+hn9gzjol214i9+tcc8pjcwlondjoj1vaw9/y3cpvv3z29/ypqodhj1omilcpsc5vn8cachzrdxhw2o0vxslgtbnmbrn554kqzwt0anoy+gkpihyygsfq3x4g0ufzodmo1pygk5e9ctwc1fbr7uh1tz+ujbe0askx1j3xicfpsqjgoj1v+ommmsytpki9aymsqpbt3o/mpjpm0a6lmicco2f/b6ryaifhbjrz0wuzjaepua4bfyxf1rjn8rueiqaeihomujrus0ygvpjtfsuj0ijmfyqjt0hawtb2kclkge8nweqx8xwbjlhcbeycfzoru5zikvcajeugc39ra90uyzxrctpf58hfl6if7labeyggjl7rg3q3xqwp69p6mktlvrfzjbbk+v4dlzmdba==</latexit> 2 x 3 The cat sat x i N (µ zi, zi ) [Lin et al. 2015] 23
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
TTIC 31190: Natural Language Processing
TTIC 31190: Natural Language Processing Kevin Gimpel Spring 2018 Lecture 17: Machine TranslaDon; SemanDcs Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller
MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers
1 z 7 2015-05-14 18:32 Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to teachers Tworzenie ankiety Udostępnianie
Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech
Logistic Regression Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech Outline Review conditional probability and classification Linear parameterization and logistic function Gradient descent Other
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 7: Structured Prediction 1
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 7: Structured Prediction 1 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction (4 lectures)
Label-Noise Robust Generative Adversarial Networks
Label-Noise Robust Generative Adversarial Networks Training data rcgan Noisy labeled Conditioned on clean labels Takuhiro Kaneko1 Yoshitaka Ushiku1 Tatsuya Harada1, 2 1The University of Tokyo 2RIKEN Talk
Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski)
Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski) PWN- Oxford Wielki s ownik polsko> angielski - PWN-Oxford Wielki s ownik polsko>angielski (Great Polish>English) The most comprehensive
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav
Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum At train time, learn A :2 X! Y Supervised Clustering aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=
Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0
lectromagnetism lectromagnetic interaction is one of four fundamental interactions in Nature. lectromagnetism is the theory of electromagnetic interactions or of electromagnetic forces. lectric charge
archivist: Managing Data Analysis Results
archivist: Managing Data Analysis Results https://github.com/pbiecek/archivist Marcin Kosiński 1,2, Przemysław Biecek 2 1 IT Research and Development Grupa Wirtualna Polska 2 Faculty of Mathematics, Informatics
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w
Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji
Systemy wbudowane Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Poziomy abstrakcji projektowania systemów HW/SW 12/17/2011 S.Deniziak:Systemy wbudowane 2 1 Model czasu 12/17/2011 S.Deniziak:Systemy
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University
THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS Alexander Rasskazov & Bence Kocsis Eotvos University Merger rate density of events with e>0.1 in the LIGO band (>10 Hz), Gpc -3 yr -1
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
TEORIA CZASU PRESENT SIMPLE I PRESENT CONTINUOUS
TEORIA CZASU PRESENT SIMPLE I PRESENT CONTINUOUS Present Simple-czas teraźniejszy prosty Present Continuous-czas teraźniejszy ciągły UŻYWAMY: gdy mówimy o rutynie gdy mówimy o harmonogramach gdy mówimy
Systemy bierne w podnoszeniu efektywności energetycznej budynków użyteczności publicznej symulacje działania.
Marek WOŁOSZYN 25 Systemy bierne w podnoszeniu efektywności energetycznej budynków użyteczności publicznej symulacje działania. Passive systems in improving the energy efficiency of public buildings -
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
EPS. Erasmus Policy Statement
Wyższa Szkoła Biznesu i Przedsiębiorczości Ostrowiec Świętokrzyski College of Business and Entrepreneurship EPS Erasmus Policy Statement Deklaracja Polityki Erasmusa 2014-2020 EN The institution is located
Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle
Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle Diego Lonardoni FRIB Theory Fellow In collaboration with: S. Gandolfi, LAL J. A. Carlson, LAL A. Lovato, AL & IF F. Pederiva,
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Driver`s hatch details for TIGER I, Ausf.E (for all versions) Detale do włazów kierowcy do Tirysa I - do wszystkich wersji
Driver`s hatch details for TIGER I, Ausf.E (for all versions) Detale do włazów kierowcy do Tirysa I - do wszystkich wersji 1/16 scale update for Tamiya model ABER 16 0 WWW.ABER.NET.PL Made in Poland 01
reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley
reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study of how to use
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
Bayesian graph convolutional neural networks
Bayesian graph convolutional neural networks Mark Coates Collaborators: Soumyasundar Pal, Yingxue Zhang, Deniz Üstebay McGill University, Huawei Noah s Ark Lab February 13, 2019 Montreal 2 / 36 Introduction
Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O
Forested areas in Cracow (1985-2017) evaluation of changes based on satellite images Obszary leśne w Krakowie (1985-2017) szacowanie zmian na podstawie zobrazowań satelitarnych Cracow University of Technology
Nonlinear data assimilation for ocean applications
Nonlinear data assimilation for ocean applications Peter Jan van Leeuwen, Manuel Pulido, Jacob Skauvold, Javier Amezcua, Polly Smith, Met Ades, Mengbin Zhu Comparing observations and models Ensure they
1945 (96,1%) backlinks currently link back. 1505 (74,4%) links bear full SEO value. 0 links are set up using embedded object
Website Backlinks Analysis Report 2023 backlinks from 224 domains Report created: Jan 3, 2015 Website: http://wpisz.stronę.odbiorcy Compared with: 7 day(s) old Domain Statistics The domain seo.zgred.pl
PRESENT TENSES IN ENGLISH by
PRESENT TENSES IN ENGLISH by Present Tenses Present Continuous Zastosowanie Czasu Present Continuous używamy, gdy mówimy: o czynności, którą wykonujemy w momencie mówienia, o czynności, w trakcie wykonywania
Procedure 2(b) (obvious errors in a number of language versions)
099469/EU XXIV. GP Eingelangt am 28/11/12 COUNCIL OF THE EUROPEAN UNION Brussels, 28 November 2012 Interinstitutional File: 2007/0098 (COD) 13038/1/12 REV 1 JUR 442 TRANS 264 CODEC 2005 LEGISLATIVE ACTS
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
METHOD 2 -DIAGNOSTIC OUTSIDE
VW MOTOMETER BOSCH METHOD 1 - OBD 2 METHOD 2 -DIAGNOSTIC OUTSIDE AFTER OPERATION YOU MUST DISCONECT ACU OR REMOVE FUSE FOR RESTART ODOMETER PO ZROBIENIU LICZNIKA ZDJĄĆ KLEMĘ LUB WYJĄĆ 2 BEZPIECZNIKI OD
HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?
GREAT BARRIERS IN PLANET FORMATION, PALM COVE 26/07/2019 HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS? CAN ALL THESE STRUCTURES TELL US SOMETHING ABOUT THE (GAS) DISC MASS? BENEDETTA
Estimation and planing. Marek Majchrzak, Andrzej Bednarz Wroclaw, 06.07.2011
Estimation and planing Marek Majchrzak, Andrzej Bednarz Wroclaw, 06.07.2011 Story points Story points C D B A E Story points C D 100 B A E Story points C D 2 x 100 100 B A E Story points C D 2 x 100 100
Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX
UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
* Złożenie Karty zgłoszeniowej osobiście w sekretariacie Szkoły lub przesłanie pocztą, lub na adres
Zasady rekrutacji do pierwszej i jedynej w województwie świętokrzyskim Dwujęzycznej Szkoły Podstawowej oraz do Europejskiej Szkoły Podstawowej na rok szkolny 2019/2020 do klasy I oraz oddziału "0" Admission
2 nd ClimMani EU COST Action Meeting Poznań, Poland 28-30 September, 2015
nd ClimMani EU COST Action Meeting, oland 8-30 September, 015 Venue HOTEL MERCURE**** - OZNAŃ Address: ul. Roosvelta 0, 60-89, oland Tel. +48 61 855 80 00 e-mail: H3393@accor.com mercure-poznan-centrum.com
Aerodynamics I Compressible flow past an airfoil
Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
Wyk lad 8: Leniwe metody klasyfikacji
Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:
Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE
Machie Learig for Data Sciece (CS4786) Lecture 8 Kerel PCA & Isomap + TSNE LINEAR PROJECTIONS X d W = Y K d K Works whe data lies i a low dimesioal liear sub-space KERNEL TRICK ( ) ( ) We have have ice
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
Kształtując przyszłość, jakiej chcemy. refleksje z raportu podsumowującego Dekadę Edukacji dla Zrównoważonego Rozwoju ( ).
Kształtując przyszłość, jakiej chcemy refleksje z raportu podsumowującego Dekadę Edukacji dla Zrównoważonego Rozwoju (2005-2014). W jaki sposób pomóc ludziom wydobyć się z ubóstwa i znaleźć dobrą pracę,
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Typ VME FOR THE MEASUREMENT OF VOLUME FLOW RATES IN DUCTS
Typ VME FOR THE MEASUREMENT OF VOLUME FLOW RATES IN DUCTS Rectangular volume flow rate measuring units for the recording or monitoring of volume flow rates Manual volume flow rate measuring Permanent volume
Wymagania bezpieczeństwa dotyczące elektrycznych przyrządów pomiarowych, automatyki i urządzeń laboratoryjnych Część 1: Wymagania ogólne
POPRAWKA do POLSKIEJ NORMY ICS 19.080; 71.040.10 PN-EN 61010-1:2011/AC Wprowadza EN 61010-1:2010/A1:2019/AC:2019-04, IDT IEC 61010-1:2010/A1:2016/AC1:2019, IDT Wymagania bezpieczeństwa dotyczące elektrycznych
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Analiza Sieci Społecznych Pajek
Analiza Sieci Społecznych Pajek Dominik Batorski Instytut Socjologii UW 25 marca 2005 1 Wprowadzenie Regularności we wzorach relacji często są nazywane strukturą. Analiza sieci społecznych jest zbiorem
Teaching activities. improving methods of teaching. improving social students skills. respect to each other. communication through games -
Evaluation Raport after Transnational Teaching Learning Activity in Project: HIH Hands in Hands Erasmus+ KA2 Project number: 2016-1-RO01-KA219 024388 in Portugal (06-10.03.2017) W pierwszym TTLA wzieło
Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)
112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
NOTES ABOUT AUTHORS Walter Rothholz Remigiusz Król Michał Wendland Wojciech Torzewski Krzysztof Przybyszewski Piotr Urbański Wojciech Majka
NOTES ABOUT AUTHORS Walter Rothholz Professor of Szczecin University, Szczecin, Remigiusz Król Professor of Theology, parist-priest in Ciosaniec, Michał Wendland Doctor of Philosophy Adam Mickiewicz University
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc
Raport bieżący: 44/2018 Data: 2018-05-23 g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Zawiadomienie o zmianie udziału w ogólnej liczbie głosów w Serinus Energy plc Podstawa prawna: Inne
CEE 111/211 Agenda Feb 17
CEE 111/211 Agenda Feb 17 Tuesday: SW for project work: Jetstream, MSP, Revit, Riuska, POP, SV On R: drive; takes time to install Acoustics today: \\cife server\files\classes\cee111\presentations Thursday:
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Selection of controller parameters Strojenie regulatorów
Division of Metrology and Power Processes Automation Selection of controller parameters Strojenie regulatorów A-9 Automatics laboratory Laboratorium automatyki Developed by//opracował: mgr inż. Wojciech
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta www.michalbereta.pl 1. Przekształcenia atrybutów (ang. attribute reduction / transformation, feature extraction). Zamiast wybierad częśd atrybutów
DELTA 600 corner left with TÜV certi ed
DELTA 600 corner left with TÜV certi ed DELTA/L/600/TUV Price: 1 03 EAN: 5903950175383 Horizontal, corner bio replace open on the left side is an ideal solution for tting in the nook. Shipping in package
DELTA 600 corner right with TÜV certi ed
DELTA 600 corner right with TÜV certi ed DELTA/P/600/TUV Price: 1 03 EAN: 5903950175420 Horizontal, corner bio replace open on the right side is an ideal solution for tting in the nook. Shipping in package
Kartograficzne opisanie świata. - modelowanie informacji geograficznej w czasach Marco Polo i w dobie Google Earth.
Kartograficzne opisanie świata - modelowanie informacji geograficznej w czasach Marco Polo i w dobie Google Earth Robert Olszewski Dobry kartograf musi być zarówno uczonym, jak i artystą. Musi posiadać
SG-MICRO... SPRĘŻYNY GAZOWE P.103
SG-MICRO... SG-MICRO 19 SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 32 SG-MICRO 32H SG-MICRO 32R SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 45 SG-MICRO SG-MICRO SG-MICRO 75 SG-MICRO 95 SG-MICRO 0 cylindra body
Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d
NOVUS IP CAMERAS CLASSIC CAMERAS Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. Resolution Bitrate FPS GOP Resolution Bitrate FPS GOP Audio Motion detection NVIP 5000
USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian
1 / 12 Content list / Spis Treści 1. Hardware and software requirements, preparing device to upgrade Wymagania sprzętowe i programowe, przygotowanie urządzenia do aktualizacji 2. Installing drivers needed
DeePattern: Layout Pattern Generation with Transforming Convolutional Auto-Encoder
DeePattern: Layout Pattern Generation with Transforming Convolutional Auto-Encoder Haoyu Yang 1, Piyush Pathak 2, Frank Gennari 2, Ya-Chieh Lai 2, Bei Yu 1 1 The Chinese University of Hong Kong 2 Cadence
Grupa Pancerniki ARMADILLOS
Plan nauczania języka angielskiego w Pijarskim Przedszkolu w Warszawie 2016/2017 Grupa Pancerniki ARMADILLOS English Teacher: Diana Kozińska Play, learn and grow together! Plan nauczania języka angielskiego
Before Adam starts work he needs to know where everything is. Maria shows him around the restaurant.
9. PLACE OF WORK MIEJSCE PRACY Before Adam starts work he needs to know where everything is. Maria shows him around the restaurant. Zanim Adam rozpocznie pracę, musi wiedzieć gdzie wszystko jest. Maria