Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav
|
|
- Rafał Piekarski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum
2 At train time, learn A :2 X! Y Supervised Clustering
3 <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit>
4 <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit>
5 <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Select a clustering algorithm Learn a dissimilarity function
6 <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> <latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Supervised Clustering At train time, learn A :2 X! Y At test time, use on new set of points A<latexit sha1_base64="owgj5x0xq+dfya1o3lczk+pidi=">aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=</latexit> Select a clustering algorithm Learn a dissimilarity function Clustering Algorithm Mismatch leads to poor Training Procedure generalization
7 Hierarchical Agglomerative Clustering!3
8 Hierarchical Agglomerative Clustering!3
9 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
10 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
11 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
12 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
13 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
14 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
15 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
16 Hierarchical Agglomerative Clustering Iteratively merge two closest clusters!3
17 Linage Function Inter-Cluster distance given by Linage Function!4
18 Linage Function Single Linage (Minimum Pairwise Dissimilarity) Inter-Cluster distance given by Linage Function!4
19 Linage Function Average Linage (Average Pairwise Dissimilarity) Single Linage!5
20 Linage Function Complete Linage (Maximum Pairwise Dissimilarity) Single Linage Average Linage!6
21 Linage Function Best linage function for a dataset is, a priori, unnown Single Linage Average Linage!7 Complete Linage
22 In this wor: 1. Exponential Linage: Learnable family of linage functions 2. Training objective to jointly optimize linage & dissimilarity function!8
23 Exponential Linage Single Linage Average Linage Complete Linage!9
24 Exponential Linage Single Linage Average Linage Complete Linage 0 Weight 1 Weighted Average with Learnable Parameter!9
25 Exponential Linage Single Linage J(, ) = n 0 X i=1 X C u,v 2P (i) max n o 0, (C u0,v 0) (C u,v) Average Linage Complete Linage Algorithm 1 train ExpLin(X, C?,T, 1, 2) Init:, for t =1,..., T do J 0 T (0) j {x j } 8 x j 2 X for round i =1,...,n 0 do {T (i) }l i HAC-Round({T {C (i) } l i C (i) {C (i) } l i {lvst (i) }l i (i 1) } l i 1 ) P (i) {C u,v 2 C (i) C (i) : C u 6= C v } P (i) + {C u,v 2 P (i) : 9C j? s.t. C u,c v C j?} P (i) P (i) \P (i) + C u 0,v 0 arg min C u,v 2P (i) for C u,v 2 P (i) (C u,v ) 0 + Weight 1 J + max n do 0, (C u0,v 0) (C u,v ) Weighted Average with Learnable o
26 Experimental Setup Entity Resolution REXA AMINER UMIST Faces Noun Phrase Coreference!10
27 Experimental Setup Entity Resolution REXA AMINER UMIST Faces Noun Phrase Coreference Four Linage Functions Single Linage Average Linage Complete Linage Exponential Linage!10
28 Experimental Setup Entity Resolution REXA AMINER UMIST Faces Noun Phrase Coreference Four Linage Functions Single Linage Average Linage Complete Linage Exponential Linage Evaluated using Dendrogram Purity Averaged across 50 different train/test/dev splits!10
29 Results Dataset: Rexa Dendrogram Purity Single Average Complete Exponential Linage Function
30 Results Dataset: Rexa Dendrogram Purity Single Average Complete Exponential Linage Function
31 Summary!12
32 Summary Exponential Linage: Learnable family of linage functions!12
33 Summary Exponential Linage: Learnable family of linage functions X J(, ) = n 0 i=1 X C u,v2p (i) max n o 0, (C u0,v 0) (C u,v) Algorithm 1 train ExpLin(X, C?,T, 1, 2) Init:, for t =1,..., T do J 0 T (0) j {x j } 8 x j 2 X for round i =1,...,n 0 do {T (i) }li {C (i) } li C (i) (i 1) HAC-Round({T } li 1 (i) {lvst }li {C (i) } li ) P (i) {C u,v 2 C (i) C (i) : C u 6= C v } P (i) + {C u,v 2 P (i) : 9C j? s.t. C u,c v C j?} P (i) P (i) \P (i) + C u 0,v 0 arg min C u,v2p (C (i) u,v ) + for C u,v 2 P (i) n do o J J + max 0, (C u0,v 0) (C u,v @ Training Objective & Algorithm: Jointly Optimizing Dissimilarity & Linage Function!12
34 Summary Exponential Linage: Learnable family of linage functions X J(, ) = n 0 i=1 X C u,v2p (i) max n o 0, (C u0,v 0) (C u,v) Algorithm 1 train ExpLin(X, C?,T, 1, 2) Init:, for t =1,..., T do J 0 T (0) j {x j } 8 x j 2 X for round i =1,...,n 0 do {T (i) }li {C (i) } li C (i) (i 1) HAC-Round({T } li 1 (i) {lvst }li {C (i) } li ) P (i) {C u,v 2 C (i) C (i) : C u 6= C v } P (i) + {C u,v 2 P (i) : 9C j? s.t. C u,c v C j?} P (i) P (i) \P (i) + C u 0,v 0 arg min C u,v2p (C (i) u,v ) + for C u,v 2 P (i) n do o J J + max 0, (C u0,v 0) (C u,v @ Training Objective & Algorithm: Jointly Optimizing Dissimilarity & Linage Function Effective Empirical Results!12
35 Single Linage Average Linage Thans for listening! Chec out our poster #196 today at 6:30pm in Pacific Ballroom! Complete Linage Exponential Linage Paper: Code: Train Test!13
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Label-Noise Robust Generative Adversarial Networks
Label-Noise Robust Generative Adversarial Networks Training data rcgan Noisy labeled Conditioned on clean labels Takuhiro Kaneko1 Yoshitaka Ushiku1 Tatsuya Harada1, 2 1The University of Tokyo 2RIKEN Talk
Podstawy grupowania danych w programie RapidMiner Michał Bereta
Podstawy grupowania danych w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Grupowanie hierarchiczne Grupowanie (analiza skupieo, ang. clustering) ma na celu automatyczne wykrycie grup istniejących
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
SPIDER + SPIDER + (260 x 255 x h220cm) (260 x 255 x h220cm) fungoo.eu
MODULE MODUŁ + + (260 x 255 x h220cm) (260 x 255 x h220cm) fungoo.eu 003_03290_030815 003_03290_030815 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU WARNINGS! OSTRZEŻENIA! Only for home use. Tylko do użytku
THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University
THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS Alexander Rasskazov & Bence Kocsis Eotvos University Merger rate density of events with e>0.1 in the LIGO band (>10 Hz), Gpc -3 yr -1
MATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
UP&DOWN + UP&DOWN + (260 x 253 x h225cm) (260 x 253 x h225cm) fungoo.eu UP&DOWN _ _
MODULE MODUŁ UP&DOWN + UP&DOWN + (260 x 253 x h225cm) (260 x 253 x h225cm) 00250_12012015 00250_12012015 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU fungoo.eu WARNINGS! OSTRZEŻENIA! Only for home use.
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
4.3 Grupowanie według podobieństwa
4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Agnostic Learning and VC dimension
Agnostic Learning and VC dimension Machine Learning Spring 2019 The slides are based on Vivek Srikumar s 1 This Lecture Agnostic Learning What if I cannot guarantee zero training error? Can we still get
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
FUNNY 3 FUNNY 3. (290 x 73 x h210cm) (290 x 73 x h210cm) FUNNY 3 003_02815_ _02815_241114
PLAYGROUND PLAC ZABAW (290 x 73 x h210cm) (290 x 73 x h210cm) 003_02815_241114 003_02815_241114 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU WARNINGS! OSTRZEŻENIA! Only for home use. Tylko do użytku domowego.
(381 x 136 x h303cm) (381 x 136 x h303cm)
PLAYGROUND PLAC ZABAW (381 x 136 x h303cm) (381 x 136 x h303cm) 00555_161214 00555_161214 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU fungoo.eu WARNINGS! OSTRZEŻENIA! Only for home use. Tylko do użytku
(381 x 136 x h303cm) (381 x 136 x h303cm)
PLAYGROUND PLAC ZABAW (381 x 136 x h303cm) (381 x 136 x h303cm) 00555_16112015 00555_16112015 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU fungoo.eu WARNINGS! OSTRZEŻENIA! Only for home use. Tylko do użytku
Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia.
Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia. Kod Rozmiar Bie nik LI SI RF FR Opony do samochodów osobowych - seria 80 13" 0362001000 135/80R13 rallye 680 70
CAROL 1 CAROL 1. (121 x 310 x h290cm) (121 x 310 x h290cm) INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU OSTRZEŻENIA! WARNINGS!
PLAYGROUND PLAC ZABAW (121 x 310 x h290cm) (121 x 310 x h290cm) fungoo.eu 003_03030_291014 003_03030_291014 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU WARNINGS! OSTRZEŻENIA! Only for home use. Tylko
(327 x 112 x h290cm) (327 x 112 x h290cm)
PLAYGROUND PLAC ZABAW (327 x 112 x h290cm) (327 x 112 x h290cm) 00980_02012015 00980_02012015 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU fungoo.eu WARNINGS! OSTRZEŻENIA! Only for home use. Tylko do użytku
EN 71. (389 x 410 x h272cm) (389 x 410 x h272cm) fungoo.eu FLEPPI
PLAYGROUND PLAC ZABAW (389 x 410 x h272cm) (389 x 410 x h272cm) 003_04630_06082019 003_04630_06082019 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU Warranty period - 2 years from purchase date Okres gwarancji
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Analiza skupień (Cluster analysis)
Analiza skupień (Cluster analysis) Analiza skupień jest to podział zbioru obserwacji na podzbiory (tzw. klastry) tak, że obiekty (obserwacje) w tym samym klastrze były podobne (w pewnym sensie). Jest to
CAROL 2 CAROL 2. (285 x 395 x h290cm) (285 x 395 x h290cm) fungoo.eu CAROL 2 003_03020_ _03020_291014
PLAYGROUND PLAC ZABAW (285 x 395 x h290cm) (285 x 395 x h290cm) fungoo.eu 003_03020_291014 003_03020_291014 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU WARNINGS! OSTRZEŻENIA! Only for home use. Tylko
WARNINGS! OSTRZEŻENIA!
PLAYGROUND PLAC ZABAW (226 x 372 x h277cm) 003_03435_050216 fungoo.eu INSTALLATION INSTRUCTIONS (226 x 372 x h277cm) 003_03435_050216 INSTRUKCJA MONTAŻU WARNINGS! OSTRZEŻENIA! Only for home use. Tylko
FUNNY 2 FUNNY 2. (330 x 317 x h265cm) (330 x 317 x h265cm) FUNNY 2 003_02800_ _02800_
PLAYGROUND PLAC ZABAW FUNNY 2 FUNNY 2 (330 x 317 x h265cm) (330 x 317 x h265cm) 003_02800_10022015 003_02800_10022015 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU WARNINGS! OSTRZEŻENIA! Only for home use.
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
FUNNY3 ROOFI FUNNY3 ROOFI
PLAYGROUND PLAC ZABAW FUNNY3 ROOFI FUNNY3 ROOFI (345 x 284 x h247cm) (345 x 284 x h247cm) 003_03880_07082017 003_03880_07082017 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU WARNINGS! OSTRZEŻENIA! Only
Boosting. Sewoong Oh. CSE/STAT 416 University of Washington
Boosting Sewoong Oh CSE/STAT 416 University of Washington Ensemble classifier: Aggregating weak classifiers!2 Consider a scenario where we train many weak classifiers on a given data f 1 (x) aaab73icbva9twjbej3dl8qv1njmi5hgq+6w0jjoy4mjfcrwixvlhmzy3tt394zkwp+wsdayw/+onf/gba5q8cwtvlw3k5l5qcyznq777etw1jc2t/lbhz3dvf2d4ufrs0ejirrjih6ptoa15uzspmgg006skbybp+1gfdpz249uarbjezojqs/wulkqewys1cmhfa/ydf7uf0tu1z0drriviyxi0ogxv3qdicscskm41rrrubhxu6wmi5xoc71e0xitmr7srqusc6r9dh7vfj1zzydcsnmsbs3v3xmpflpprga7btyjveznxp+8bmlckz9lmk4mlwsxkew4mhgapy8gtffi+mqstbsztyiywgotyymq2bc85zdxsatw9s6qtbtaqx6dxzghezifcnhwcxw4hqy0gqchz3ifn+fbexheny9fa87jzo7hd5zph03vjtm=
3.7 Novelty & Diversity
3.7 Novelty & Diversity Redundancy in returned results (e.g., near duplicates) has a negative effect on retrieval effectiveness No benefit in showing relevant yet redundant results Bernstein and Zobel
Relaxation of the Cosmological Constant
Relaxation of the Cosmological Constant with Peter Graham and David E. Kaplan The Born Again Universe + Work in preparation + Work in progress aaab7nicdvbns8nafhypx7v+vt16wsycp5kioseifw8ekthwaepzbf7apztn2n0ipfrhepggifd/jzf/jzs2brudwbhm5rhvtzakro3rfjqlpewv1bxyemvjc2t7p7q719zjphi2wcisdr9qjyjlbblubn6ncmkccoweo6vc7zyg0jyrd2acoh/tgeqrz9ryqdo7sdgq9qs1t37m5ibu3v2qqvekpqyfmv3qry9mwbajnexqrbuemxp/qpxhtoc00ss0ppsn6ac7lkoao/yns3wn5mgqiykszz80zkz+n5jqwotxhnhktm1q//zy8s+vm5nowp9wmwygjzt/fgwcmitkt5oqk2rgjc2hthg7k2fdqigztqgklwfxkfmfte/qnuw3p7xgzvfhgq7gei7bg3nowdu0oqumrvaiz/dipm6t8+q8zamlp5jzhx9w3r8agjmpzw==
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
TTIC 31190: Natural Language Processing
TTIC 31190: Natural Language Processing Kevin Gimpel Spring 2018 Lecture 17: Machine TranslaDon; SemanDcs Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM
Rodzaj obliczeń Data Nazwa klienta Ref Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/2007 10:53:55 PM Rodzaj obciążenia, parametry pracy Calculation Units SI Units (N, mm, kw...)
IEEE 1284 - Centronics
IEEE 1284 - Centronics Interfejs Centronics w wersji oryginalnej - łącze jednokierunkowe przesyłające informacje od komputera do drukarki przeznaczony jedynie do tego zadania, co wynikało z braku potrzeby
BULLETIN 2 II TRAINING CAMP POLISH OPEN MTBO CHAMPIONSHIPS 19-22.06.2014 MICHAŁOWO 23-29.06.2014 TRAINING CAMP WORLD MTB ORIENTEERING CHAMPIONSHIPS
BULLETIN 2 II TRAINING CAMP POLISH OPEN MTBO CHAMPIONSHIPS 19-22.06.2014 MICHAŁOWO 23-29.06.2014 TRAINING CAMP WORLD MTB ORIENTEERING CHAMPIONSHIPS MASTERS WORLD MTB ORIENTEERING CHAMPIONSHIPS MTB ORIENTEERING
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
P R A C A D Y P L O M O W A
POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu P R A C A D Y P L O M O W A Autor: inż. METODA Ε-CONSTRAINTS I PRZEGLĄDU FRONTU PARETO W ZASTOSOWANIU DO ROZWIĄZYWANIA PROBLEMU OPTYMALIZACJI
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
No matter how much you have, it matters how much you need
CSR STRATEGY KANCELARIA FINANSOWA TRITUM GROUP SP. Z O.O. No matter how much you have, it matters how much you need Kancelaria Finansowa Tritum Group Sp. z o.o. was established in 2007 we build trust among
Planning and Cabling Networks
Planning and Cabling Networks Network Fundamentals Chapter 10 Version 4.0 1 Projektowanie okablowania i sieci Podstawy sieci Rozdział 10 Version 4.0 2 Objectives Identify the basic network media required
2 nd ClimMani EU COST Action Meeting Poznań, Poland 28-30 September, 2015
nd ClimMani EU COST Action Meeting, oland 8-30 September, 015 Venue HOTEL MERCURE**** - OZNAŃ Address: ul. Roosvelta 0, 60-89, oland Tel. +48 61 855 80 00 e-mail: H3393@accor.com mercure-poznan-centrum.com
Volcano MC-GM4 OPTICAL MOUSE USER S MANUAL MODECOM
Volcano MC-GM4 OPTICAL MOUSE USER S MANUAL MODECOM Volcano MC-GM4 OPTICAL MOUSE PL Wymagania systemowe Komputer zgodny z systemem operacyjnym Windows Port USB Zawartość opakowania Myszka instrukcja obsługi
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller
MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
Volcano MC-GMX4 OPTICAL MOUSE USER S MANUAL MODECOM
Volcano MC-GMX4 OPTICAL MOUSE USER S MANUAL MODECOM Volcano MC-GMX4 OPTICAL MOUSE Wymagania systemowe Komputer zgodny z systemem operacyjnym Windows Port USB Zawartość opakowania Myszka instrukcja obsługi
Maximum A Posteriori Chris Piech CS109, Stanford University
Maximum A Posteriori Chris Piech CS109, Stanford University Previously in CS109 Game of Estimators Estimators Maximum Likelihood Non spoiler alert: this didn t happen in game of thrones aaab7nicbva9swnbej2lxzf+rs1tfomqm3anghywarvlcoydkjpsbfasjxt7x+6cei78cbslrwz9pxb+gzfjfzr4yodx3gwz84jecoou++0u1ty3nrek26wd3b39g/lhucveqwa8ywiz605adzdc8sykllytae6jqpj2ml6d+e0nro2i1qnoeu5hdkhekbhfk7u7j1lvne/75ypbc+cgq8tlsqvynprlr94gzmneftjjjel6boj+rjukjvm01esntygb0yhvwqpoxi2fzc+dkjordegya1skyvz9pzhryjhjfnjoiolilhsz8t+vm2j47wdcjslyxralwlqsjmnsdziqmjoue0so08lestiiasrqjlsyixjll6+s1kxnc2ve/wwlfpphuyqtoiuqehafdbidbjsbwrie4rxenmr5cd6dj0vrwclnjuepnm8fuskpig==
Configuring and Testing Your Network
Configuring and Testing Your Network Network Fundamentals Chapter 11 Version 4.0 1 Konfigurowanie i testowanie Twojej sieci Podstawy sieci Rozdział 11 Version 4.0 2 Objectives Define the role of the Internetwork
The impact of the global gravity field models on the orbit determination of LAGEOS satellites
models on the Satelitarne metody wyznaczania pozycji we współczesnej geodezji i nawigacji, Poland 2-4.06.2011 Krzysztof Sośnica, Daniela Thaller, Adrian Jäggi, Rolf Dach and Gerhard Beutler Astronomical
YAKY, YAKYżo 0,6/1 kv. Kable elektroenergetyczne z izolacją PVC. Norma IEC - 60502-1:2004. Konstrukcja. Zastosowanie. Właściwości
Kable elektroenergetyczne z izolacją PVC Power cables with PVC insulation YKY, YKYżo 0,6/1 kv Norma Standard IEC - 60502-1:2004 3 2 1 Konstrukcja Construction Żyła przewodząca aluminiowa luminium Izolacja
MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r
MAGNESY KATALOG design produce deliver MAGNET 0,4 / 0,75MM owal, prostokąt, koło, kwadrat od 50 sztuk Flexible magnet 0.4 = strength example: able to hold one A4 sheet. 0.75 = strength example: able to
ALA MA KOTA PRESCHOOL URSYNÓW WARSAW POLAND
ALA MA KOTA PRESCHOOL URSYNÓW WARSAW POLAND Ala ma kota is a network of non-public education preschools which are entered into the register of non-public schools and institutions of the Capital City of
Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle
Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle Diego Lonardoni FRIB Theory Fellow In collaboration with: S. Gandolfi, LAL J. A. Carlson, LAL A. Lovato, AL & IF F. Pederiva,
II wariant dwie skale ocen II alternative two grading scales
Kryteria przeliczania uzyskanych przez kandydata ocen na punkty do listy rankingowej University Criteria for converting candidates grades into the points for the Ranking List Wymagane przedmioty : fizyka,
USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian
1 / 9 Content list / Spis Treści 1. Hardware and software requirements, preparing device to upgrade Wymagania sprzętowe i programowe, przygotowanie urządzenia do aktualizacji 2. Installing drivers and
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems
Typ VFR FOR THE RELIABLE BALANCING OF VOLUME FLOW RATES Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems Each flow adjustment
CEE 111/211 Agenda Feb 17
CEE 111/211 Agenda Feb 17 Tuesday: SW for project work: Jetstream, MSP, Revit, Riuska, POP, SV On R: drive; takes time to install Acoustics today: \\cife server\files\classes\cee111\presentations Thursday:
USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian
1 / 12 Content list / Spis Treści 1. Hardware and software requirements, preparing device to upgrade Wymagania sprzętowe i programowe, przygotowanie urządzenia do aktualizacji 2. Installing drivers needed
WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel
Sprawozdanie z Badań Nr Strona/Page 2/24 WYKAZ PRÓB / SUMMARY OF TESTS STRONA PAGE Próba uszkodzenia przy przepięciach dorywczych TOV failure test 5 Próby wykonał / The tests were carried out by: mgr ing.
Nauka Przyroda Technologie
Nauka Przyroda Technologie ISSN 1897-7820 http://www.npt.up-poznan.net Dział: Rolnictwo Copyright Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu 2010 Tom 4 Zeszyt 4 ALICJA SZABELSKA 1, MICHAŁ SIATKOWSKI
Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym
tom XLI(2011), nr 1, 59 64 Władysław Nowak AleksandraBorsukiewicz-Gozdur Roksana Mazurek Zachodniopomorski Uniwersytet Technologiczny Wydział Inżynierii Mechanicznej i Mechatroniki Katedra Techniki Cieplnej
MDK-Plus. Licencja Node-Locked 8260 EUR 5740 EUR 3340 EUR gratis 3300 EUR 2300 EUR 1330 EUR 650 EUR 3970 EUR 2760 EUR 1600 EUR
Ceny Pakietów ARM Professional Plus Essential SPANSION TOSHIBA Lite Licencja Node-Locked 8260 EUR 5740 EUR 3340 EUR gratis Licencja Node-Locked 1-roczna 3300 EUR 2300 EUR 1330 EUR 650 EUR Licencja Flex
LIGHT ART SP. Z O.O. 1133-523. Bezterminowo (without the date)
NR W/037/20 NO W/037/20) (We declare under our sole responsibility that the product types, to wich this declaration relates is in conformity with the Oprawy oświetleniowe CASSINI 4 230V/12V, 50 Hz, max
Ćwiczenia 2 IBM DB2 Data Studio
Ćwiczenia 2 IBM DB2 Data Studio Temat: Aplikacje w Data Studio 1. Projekty Tworzenie procedur, UDF, trygerów zaczynamy od utworzenia projektu File -> New -> Project wybieramy Data Development Project.
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w
MS Visual Studio 2005 Team Suite - Performance Tool
MS Visual Studio 2005 Team Suite - Performance Tool przygotował: Krzysztof Jurczuk Politechnika Białostocka Wydział Informatyki Katedra Oprogramowania ul. Wiejska 45A 15-351 Białystok Streszczenie: Dokument
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian
1 / 8 Content list / Spis Treści 1. Hardware and software requirements, preparing device to upgrade Wymagania sprzętowe i programowe, przygotowanie urządzenia do aktualizacji 2. Installing drivers and
Learning to find good correspondences
Learning to find good correspondences K.M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua CVPR 2018 (Salt Lake City, UT, USA) Local features matter Keypoints provide us with a robust way to match
Macromolecular Chemistry
Macromolecular Chemistry Mn = MiNi Ni Mw = WiMi = Wi NiMi 2 NiMi PI = M M w n Lecture 6 Molecular Weight Distribution in Polymeric Materials Polymer% Molecular weight adical Chain Growth Polymerization
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS Temat: Funkcja logarytmiczna (i wykładnicza)/ Logarithmic (and exponential) function Typ lekcji: Lekcja ćwiczeniowa/training
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
What our clients think about us? A summary od survey results
What our clients think about us? A summary od survey results customer satisfaction survey We conducted our audit in June 2015 This is the first survey about customer satisfaction Why? To get customer feedback
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)
AIP VFR POLAND VFR ENR 2.4-1 VFR ENR 2.4 STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT) 1. INFORMACJE OGÓLNE 1. GENERAL 1.1 Konkretne przebiegi tras MRT wyznaczane są według punktów sieci
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Debugger/programator z interfejsem JTAG oraz SWD dla mikrokontrolerów ARM zgodny z KEIL ULINK 2. Gotronik
Informacje o produkcie Utworzono 28-06-2016 Debugger/programator z interfejsem JTAG oraz SWD dla mikrokontrolerów ARM zgodny z KEIL ULINK 2 Cena : 99,00 zł Nr katalogowy : LCT-131 Dostępność : Dostępny
Klasyfikacja naiwny Bayes
Klasyfikacja naiwny Bayes LABORKA Piotr Ciskowski NAIWNY KLASYFIKATOR BAYESA wyjaśnienie Naiwny klasyfikator Bayesa żródło: Internetowy Podręcznik Statystyki Statsoft dane uczące 2 klasy - prawdopodobieństwo
Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech
Logistic Regression Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech Outline Review conditional probability and classification Linear parameterization and logistic function Gradient descent Other
LED PAR 56 7*10W RGBW 4in1 SLIM
LED PAR 56 7*10W RGBW 4in1 SLIM USER MANUAL Attention: www.flash-butrym.pl Strona 1 1. Please read this specification carefully before installment and operation. 2. Please do not transmit this specification
Effective Governance of Education at the Local Level
Effective Governance of Education at the Local Level Opening presentation at joint Polish Ministry OECD conference April 16, 2012, Warsaw Mirosław Sielatycki Ministry of National Education Doskonalenie
Home Software Hardware Benchmarks Services Store Support Forums About Us
1 z 8 2013-03-08 11:49 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» Intel Core i5-2310 @ 2.90GHz CPU Benchmarks Video Card Benchmarks
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
Horicky TRUBADUR Horice Results. Page 1of 1
Results License Club 1. 2. 3. 4. 5. 6. 7. 8. Points 1 4 Fusek Petr CZE 1 968,23 1 994,47 1 936,44 1 951,47 0,00 0,00 0,00 0,00 0 7 850,60 100,00 2 20 Drzymala Wojciech POL 1 886,45 1 938,85 1 832,75 1
Grupa Pancerniki ARMADILLOS
Plan nauczania języka angielskiego w Pijarskim Przedszkolu w Warszawie 2016/2017 Grupa Pancerniki ARMADILLOS English Teacher: Diana Kozińska Play, learn and grow together! Plan nauczania języka angielskiego
Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu
IONS-14 / OPTO Meeting For Young Researchers 2013 Khet Tournament On 3-6 July 2013 at the Faculty of Physics, Astronomy and Informatics of Nicolaus Copernicus University in Torun (Poland) there were two
KOMUNIKAT 2. The 44 th International Biometrical Colloquium and IV Polish-Portuguese Workshop on Biometry. Conference information:
AT 1 KOMUNIKAT 2 The 44 th International Biometrical Colloquium and IV Polish-Portuguese Workshop on Biometry Conference information: AT 1 PLACE OF CONFERENCE Address: ACH - DS "Krakowiak" 30-150 Kraków
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Temporal Difference learning Uczenie oparte na różnicach czasowych Problemy predykcyjne (wieloetapowe) droga do