Kosmologia. Elementy fizyki czastek elementarnych. Wykład X. Prawo Hubbla

Podobne dokumenty
Kosmologia. Elementy fizyki czastek elementarnych. Wykład VIII. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata

Wszechświat czastek elementarnych

Ciemna strona wszechświata

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata

Ciemna strona Wszechświata

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

Elementy kosmologii. D. Kiełczewska, wykład 15

Ciemna strona Wszechświata

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

Kinematyka relatywistyczna

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

Ewolucja Wszechświata

Historia Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków

Neutrina z supernowych. Elementy kosmologii

Wszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie

Podstawy astrofizyki i astronomii

oraz Początek i kres

Galaktyka. Rysunek: Pas Drogi Mlecznej

Ekspansja Wszechświata

Ewolucja Wszechświata

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Elementy kosmologii. Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza

Metody badania kosmosu

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN

Odległość mierzy się zerami

Fizyka 3. Konsultacje: p. 329, Mechatronika

Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW

Mechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty

Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi?

Wszechświat. Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła

Podsumowanie. Fizyka I (Mechanika) Wykład XIV: Czastki elementarne Ewolucja Wszechświata Ciemna materia. Informacje o egzaminie

Czarne dziury. Grażyna Karmeluk

1100-3Ind06 Astrofizyka

Dr Tomasz Płazak. CIEMNA ENERGIA DOMINUJĄCA WSZECHŚWIAT (Nagroda Nobla 2011)

Materia i jej powstanie Wykłady z chemii Jan Drzymała

- Cząstka Higgsa - droga do teorii wszystkiego

[C [ Z.. 1 ]

Zderzenia relatywistyczne

- mity, teorie, eksperymenty

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Szczególna teoria względności

Od wielkiego wybuchu do gwiazd neutronowych fizyka relatywistycznych zderzeń ciężkojonowych

Efekt Dopplera. dr inż. Romuald Kędzierski

NIEPRZEWIDYWALNY WSZECHŚWIAT

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

MODEL WIELKIEGO WYBUCHU

To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki

Tworzenie protonów neutronów oraz jąder atomowych

Ciemna materia i ciemna energia. Andrzej Oleś

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Wstęp do Optyki i Fizyki Materii Skondensowanej

Promieniowanie jonizujące

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

STRUKTURA MATERII PO WIELKIM WYBUCHU

Oddziaływania fundamentalne

Wczoraj, dziś i jutro Wszechświata. Tomasz Bulik

[C [ Z.. 2 ]

Zderzenia relatywistyczne

Dział: 7. Światło i jego rola w przyrodzie.

Soczewki grawitacyjne narzędziem Kosmologii

Ewolucja w układach podwójnych

Wpływ wyników misji Planck na obraz Wszechświata

Kinematyka relatywistyczna

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Kosmografia. czyli rozkład obiektów w przestrzeni

Zderzenia relatywistyczne

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

Spróbujmy więc poznać bliŝej wielkoskalową strukturę oraz ewolucję WSZECHŚWIATA

Dynamika relatywistyczna

Energetyka konwencjonalna odnawialna i jądrowa

Wstęp do astrofizyki I

Wszechświat cząstek elementarnych WYKŁAD 5

Kinematyka relatywistyczna

Astrofizyka teoretyczna II. Równanie stanu materii gęstej

Analiza spektralna widma gwiezdnego

Szczególna teoria względności

LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia

Rozmycie pasma spektralnego

Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ)

Dziwny jest ten świat: czastki elementarne

PROJEKT KOSMOLOGIA PROJEKT KOSMOLOGIA. Aleksander Gendarz Mateusz Łukasik Paweł Stolorz

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Skala jasności w astronomii. Krzysztof Kamiński

Wykłady z Geochemii Ogólnej

Wszechświat. Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja

Zderzenie galaktyki Andromedy z Drogą Mleczną

Wielki Wybuch Autor tekstu: Paweł Dudek

FIZYKA IV etap edukacyjny zakres podstawowy

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

Ciemna materia w sferoidalnych galaktykach karłowatych. Ewa L. Łokas Centrum Astronomiczne PAN, Warszawa

Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW

Promieniowanie jonizujące

Transkrypt:

Kosmologia Wykład X Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?...

Efekt Dopplera Przypadek (klasyczny) A: Prawo Hubbla źródło dźwięku o częstości f poruszajace się z prędkościa v względem ośrodka w którym prędkość dźwięku wynosi c. Przypadek (klasyczny) B: obserwator porusza się z prędkościa v względem ośrodka i źródła dźwięku Mierzona częstość długość fali: ( f = f 1 v ) c Częstość dźwięku i długość fali mierzona przez obserwatora nieruchomego względem ośrodka: f = f 1 + v c ( λ = λ 1 + v c ) λ = λ 1 v c Wyrażenia uzyskane w podejściu klasycznym sa różne dla przypadków A i B. Istotny jest ruch względem ośrodka. A jak to będzie dla światła? A.F.Żarnecki Wykład X 1

Prawo Hubbla Efekt Dopplera - przypadek relatywistyczny Aby zaobserwować efekt Dopplera dla światła, źródło i/lub obserwator musi się poruszać z prędkościa porównywalna z prędkościa światła. 1 należy uwzględnić dylatację czasu γ = = 1 1 β 2 (1 β)(1 + β) Ruchome źródło Poruszajace się źródło drga z częstościa γ razy mniejsza: f = f/γ 1 + β = f 1 β 1 + β Pełna symetria! Ruchomy obserwator Dla poruszajacego się obserwatora czas biegnie wolniej, mierzona częstość jest γ razy większa: f 1 β = γ f (1 β) = f 1 + β Efekt relatywistyczny nie wyróżnia żadnego układu odniesienia! A.F.Żarnecki Wykład X 2

Prawo Hubbla Przesunięcie ku czerwieni Jeśli źródło światła oddala się od obserwatora następuje wydłużenie fali: λ 1 + β = λ λ (1 + z) 1 β Linie węgla w widmie kwazara PKS 1232+0815: z = λ λ : przesunięcie ku czerwieni (ang. redshift ) W widmach odległych gwiazd zaobserwowano linie znanych nam pierwiastków wyraźnie przesunięte ku czerwieni. Widoczne przesunięcie odpowiada z=2.34 (λ = 3.34 λ)! A.F.Żarnecki Wykład X 3

Prawo Hubbla Przesunięcie ku czerwieni Obecne pomiary: H 70 km/s/m pc Przesunięcie ku czerwieni w widmach odległych galaktyk zaobserwował po raz pierwszy Hubble w 1929 r. Zauważył on też, że prędkość ucieczki rośnie z odległościa: (prawo Hubbla) v = H r r - odległość od Ziemi, H - stała Hubbla Wartość podana przez Hubbla: H 500 km/s/m pc prawie rzad wielkości za dużo :-) A.F.Żarnecki Wykład X 4

Prawo Hubbla Przesunięcie ku czerwieni Obserwowane przesunięcie jest takie samo w całym zakresie widma promieniowania elektromagnetycznego. Obserwacja Hubbla, że wszystkie obiekty oddalaja się, nie wyróżnia w żaden sposób naszego układu odniesienia. Porównanie przesunięcia w zakresie optycznym i radiowym: Dowolne dwa obiekty oddalać się będa w ten sam sposób. A.F.Żarnecki Wykład X 5

Ewolucja Wszechświata Zasada kosmologiczna Kosmologia zajmuje się opisem Wszechświata na odległościach większych od rozmiarów wszystkich znanych nam struktur skala kosmologiczna Zasada kosmologiczna: w skalach kosmologicznych Wszechświat jest jednorodny i izotropowy materia jest rozłożona równomiernie Przyjmuje się, że w trakcie ewolucji Wszechświat cały czas znajdował się (w dobrym przybliżeniu) w stanie równowagi termodynamicznej. Poszczególne rodzaje czastek anihiluja w tym samym tempie co sa produkowane... W miarę rozszerzania Wszechświata maleje średnia energia czastek (temperatura). Czastki zbyt masywne przestaja być reprodukowane i zanikaja... Albo też odprzęgaja się, jeśli zanika ich oddziaływanie z innymi czastkami... A.F.Żarnecki Wykład X 6

Wielki Wybuch Poczatki Wszechświata Przyjmujemy, że Wszechświat rozpoczał swoja ewolucję od pojedynczego punktu, osobliwości, o nieskończonej gęstości energii... 10 43 sekundy Wszechświat rozszerza się bardzo szybko (tzw. inflacja), nierozróżnialne oddziaływania (nośniki) sa w równowadze z materia i antymateria, np: W + W q q http://outreach.web.cern.ch/outreach/public/cern/picturepacks/bigbang.html A.F.Żarnecki Wykład X 7

Wielki Wybuch 10 34 sekundy Rozszerzanie spadek energii czastek. Materia znajduje się w stanie Plazmy Kwarkowo-Gluonowej (QGP). Oddziaływania silne oddzielaja się od elektrosłabych. 10 10 sekundy Oddzielenie oddziaływań elektromagnetycznych i słabych. Zanikaja swobodne bozony W ± i Z (do tej pory w równowadze z fotonami). A.F.Żarnecki Wykład X 8

Wielki Wybuch 10 5 sekundy Kwarki formuja neutrony i protony. Antymateria zaczyna zanikać bo promieniowanie jest już zbyt słabe aby ja wciaż wytwarzać. W międzyczasie naruszenie B B... 3 minuty Protony i neutrony tworza jadra lekkich pierwiastków. Wraz z zanikiem reakcji termojadrowych ustala się zawartości różnych izotopów we Wszechświecie. A.F.Żarnecki Wykład X 9

Wielki Wybuch 300 000 lat Elektrony wychwytywane przez jadra tworza atomy. Wszechświat staje się przeźroczysty dla fotonów. 1 000 000 000 lat Formacja galaktyk, synteza ciężkich pierwiastków w gwiazdach. A.F.Żarnecki Wykład X 10

A.F.Żarnecki Wykład X 11

Zasada kosmologiczna Ewolucja Wszechświata Zasada kosmologiczna: w skalach kosmologicznych Wszechświat jest jednorodny i izotropowy materia jest rozłożona równomiernie Zamiast przepływu materii we Wszechświecie (pozycja zależna od czasu: r = r(t)), możemy opisać ewolucję Wszechświata wprowadzajac układ współporuszajacy się. W układzie tym materia (uśredniona na skalach kosmologicznych) spoczywa (r = r 0 ). Zmianę odległości między obiektami opisujemy poprzez wprowadzenie zależnej od czasy metryki: [ ds 2 = dt 2 R 2 dr 2 (t) 1 k r 2 + ( ) ] r2 dθ 2 + dφ 2 sin 2 θ metryka Friedmanna-Robertsona-Walkera, k = 1, 0, 1: krzywizna przestrzeni A.F.Żarnecki Wykład X 12

Ewolucja Wszechświata Krzywizna przestrzeni k = 0 k = 1 k = +1 Równania Friedmann a Równanie Einsteina możemy sprowadzić do równań na skalę R(t). Równania Friedmann a: (Ṙ ) 2 H 2 = = 8πG R 3 ρ k R 2+1 3 Λ R R = Λ 3 4πG (ρ + 3p) 3 gdzie: ρ - gęstość materii, p - ciśnienie Stała kosmologiczna Λ wprowadził do swojego równania Einstein, aby uratować statyczny i płaski Wszechświat. A.F.Żarnecki Wykład X 13

Ewolucja Wszechświata Gęstość krytyczna Z równań Friedmanna wynika zależność między krzywizna przestrzeni a gęstościa materii we Wszechświecie. Gęstość krytyczna: ρ c = 3H2 8πG Parametry gęstości (gęstość w jednostkach ρ c ): Ω m = ρ ρ c Ω Λ = Λ 3H 2 Jeśli Ω tot = Ω m + Ω Λ = 1 Wszechświat jest płaski (euklidesowy) krzywizna k = 0 Jeśli Ω tot < 1 Wszechświat otwarty krzywizna k = 1 Jeśli Ω tot > 1 Wszechświat zamknięty krzywizna k = +1 A.F.Żarnecki Wykład X 14

Ewolucja Wszechświata Szczególny przypadek: Λ = 0 gęstość materii (krzywizna przestrzeni) określa jednoznacznie charakter ewolucji: Ω m < 1 (k = 1) Wszechświat będzie zawsze rozszerzał się Ω m = 1 (k = 0) asymptotycznie Wszechświat zatrzyma się Ω m > 1 (k = +1) Wszechświat kiedyś zacznie się zapadać Scenariusze ewolucji Wszechświata Do opisu ewolucji Wszechświata wystarcza (w najprostszym modelu) trzy parametry: H, Ω m, Ω Λ A.F.Żarnecki Wykład X 15

Ewolucja Wszechświata Gęstość materii we Wszechświecie Krzywizna przestrzeni i charakter ewolucji Wszechświata zależa od gęstości materii. Można spróbować ja zmierzyć na różne sposoby: z pomiaru promieniowania gwiazd i materii międzygwiezdnej materia świetlista Ω lumi 0.006 z pomiaru zawartości lekkich pierwiastków + model nukleosyntezy (Wielki Wybuch) materia barionowa Ω b 0.04 z pomiaru oddziaływań grawitacyjnych (np. rotacja galaktyk) materia grawitacyjna (całkowita?) Ω m Ω m > Ωb ciemna materia!? A.F.Żarnecki Wykład X 16

Pierwotna nukleosynteza Nukleosynteza W zależności od stosunku gęstości materii (pozostałej po anihilacji materii i antymaterii) do promieniowania, różne pierwiastki produkuja się w różnej ilości. Produkcja deuteru: p + n 2 H + γ Konkurencyjny jest rozpad neutronu (zachodzi niezależnie od gęstości): n p + e + ν e A.F.Żarnecki Wykład X 17

Ciemna materia? Rotacja galaktyk Znane nam prawa dynamiki nie tłumacza rotacji galaktyk. Ramiona wiruja szybciej niż oczekiwalibyśmy z praw grawitacji i dynamiki ciemna materia? A.F.Żarnecki Wykład X 18

Projekt 2dF Galaxy Redshift Survey pomiar przesunięcia ku czerwieni dla około 250 000 galaktyk A.F.Żarnecki Wykład X 19

Przesunięcie ku czerwieni Ciemna materia? Znana nam materia barionowa nie wystarcza też do opisu oddziaływań grawitacyjnych na skalach międzygalaktycznych Wyniki 2dFGRS Ω m 0.3 A.F.Żarnecki Wykład X 20

Supernova Cosmology Project A.F.Żarnecki Wykład X 21

Pomiar stałej Hubbla Ewolucja Wszechświata Supernowe typu 1A sa najlepszym obiektem do pomiaru ekspansji Wszechświata. Sa to tzw. świece standardowe. Wiemy dokładnie jaka jest ich absolutna jasność jasność obserwowana definiuje odległość. Jasność obserwowana, w stosunku do oczekiwanej dla modelu z Ω tot = 0: mag. residual from empty cosmology 1.0 0.5 0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Redshift bardzo odległych obiektów niesie informację o historii, ewolucji Wszechświata (światło wyemitowane bardzo dawno temu) możemy dopasować parametry Ω M i Ω Λ : Ω Λ 3 2 1 0 Knop et. al. (2003) No Big Bang SCP 2003 68%, 90%, 95%, 99% Closed Flat Open 1 0 1 2 3 Ω M Accelerating Decelerating Expands Forever Recollapses Eventually A.F.Żarnecki Wykład X 22

Promieniowanie tła Odkrycie Mikrofalowe promieniowanie tła (CMB) zostało odkryte w 1965 roku przez A.A.Penazisa i R.W.Wilsona. Wyniki z satelity COBE: (1999) Rozkład widmowy promieniowania zgadza się z widmem promieniowania ciała doskonale czarnego. T = 2.725 ± 0.002 K A.F.Żarnecki Wykład X 23

A.A.Penazis, R.W.Wilson, 1965 A.F.Żarnecki Wykład X 24

Promieniowanie tła Rozkład katowy W pierwszym przybliżeniu ( T 1K) promieniowanie tła jest izotropowe: Jednak gdy przyjrzymy się bliżej ( T 1mK): widzimy wpływ ruchu Ziemi względem globalnego układu. A.F.Żarnecki Wykład X 25

Promieniowanie tła Rozkład katowy Odejmujac wpływ efektu Dopplera ( T 200µK): Odejmujac promieniowanie Galaktyki i innych znanych źródeł ( T 100µK): widzimy promieniowanie naszej galaktyki (Drogi Mlecznej)... zaczyna być ciekawie!!! A.F.Żarnecki Wykład X 26

A.F.Żarnecki Wykład X 27

Promieniowanie tła Fluktuacje Fluktuacje promieniowania wynikaja z faktu, że Wszechświat w momencie oddzielenia promieniowania nie był statyczny. Cały czas oscylował wokół stanu równowagi, w którym ciśnienie promieniowania równoważy przyciaganie grawitacyjne Charakter fluktuacji w promieniowaniu tła zależy od rozmiarów Wszechświata w chwili oddzielenia promieniowania... zależy od parametrów kosmologicznych A.F.Żarnecki Wykład X 28

Promieniowanie tła Fluktuacje Rozmiary fluktuacji jakie obecnie obserwujemy zależy też silnie od krzywizny Wszechświata! Wyniki symulacji: A.F.Żarnecki Wykład X 29

Promieniowanie tła Fluktuacje Aby opisać rozkład fluktuacji dzieli się obraz na małe kawałki (pixle), a następnie rozkłada uzyskana macierz korelacji na wielomiany Legendre a w cos θ ij (odległości katowej). Wyniki symulacji dla różnych wartości parametrów: Oczekiwany rozkład natężenia dla poszczególnych multipoli (wielomianów danego rzędu) zależy od parametrów modelu np. dla płaskiego Wszechświata (Ω = 1) oczekujemy dominujacego wkładu od l 200 A.F.Żarnecki Wykład X 30

WMAP Wilkinson Microwave Anisotropy Probe Detektor Sonda kosmiczna wystrzelona 30.06.2001. Pomiar promieniowania mikrofalowego w 5 przedziałach częstości: od 23 GHz (13 mm) do 94 GHz (3.2 mm). Porównanie pomiarów w różnych zakresach częstości umożliwia efektywne odjęcie tła pochodzacego od Galaktyki. Aby zminimalizować tło pochodzace od Ziemi i Słońca sondę umieszczono na orbicie wokół tzw. punktu Lagrange a quasi-stabilna konfiguracja WMAP-Ziemia-Słońce A.F.Żarnecki Wykład X 31

A.F.Żarnecki Wykład X 32

WMAP Wyniki (2006) Bardzo precyzyjny pomiar korelacji katowych w promieniowaniu tła. Możliwe jednoczesne dopasowanie wielu parametrów kosmologicznych Dominuja fluktuacje o rozmiarach katowych rzędu 0.8 (l 220) gęstość całkowita: Ω tot = 1.00 ± 0.03 Wszechświat jest płaski!... (k = 0) A.F.Żarnecki Wykład X 33

WMAP Zestawienie wyników Łaczna analiza pomiarów (2006) supernowych 1A promieniowania tła oddz. grawitacyjnych gromad galaktyk Ω b = 0.044 +0.002 0.003 Ω cdm = 0.22 +0.01 0.02 Ω Λ = 0.74 ± 0.02 A.F.Żarnecki Wykład X 34

Wyniki WMAP Okazuje się, że atomy (bariony) wypełniaja tylko około 4% Wszechświata. 22% stanowi tzw. ciemna materia, której natury na razie nie znamy (?)... 74% to ciemna energia, która opisujemy poprzez stała kosmologiczna (?) Wszechświat zdominowany przez stała kosmologiczna rozszerza się coraz szybciej!!! Wiek Wszechświata: T = 13.8 +0.1 Obecna wartość stałej Hubbla: 0.2 Gyr H = 71 +1 2 km/(s MP c) A.F.Żarnecki Wykład X 35

Kosmo-czastki W ostatnich latach, zwłaszcza w świetle nowych wyników, kosmologia zbliża się coraz bardziej do fizyki czastek. Jest wiele pytań na które wspólnie szukamy odpowiedzi: ciemna materia Nie wiemy co nia jest, choć mamy szereg propozycji (np. czastki supersymetryczne) ciemna energia Całkowita zagadka... asymetria barionowa we Wszechświecie Wszechświat zbudowany jest z materii jak w trakcie ewolucji złamana została symetria materia-antymateria? Wiemy już, że wymagało to złamania symetrii CP, znacznie silniejszego niż w Modelu Standardowym... czastki o bardzo wysokich energiach w promieniowaniu kosmicznym, błyski γ,... A.F.Żarnecki Wykład X 36

Ogromny postęp w ostatnich latach od COBE (1999) do WMAP (2003/2006) czekamy na wyniki kolejnych misji (Planck 2007?) A.F.Żarnecki Wykład X 37