Tworzenie protonów neutronów oraz jąder atomowych
|
|
- Aneta Krajewska
- 8 lat temu
- Przeglądów:
Transkrypt
1
2 Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami s światła fotonami energia kwarków jest już wystarczająco mała aby silne oddziaływanie zmusiło je do 10-6 s łączenia się w cząstki już nam znane protony, neutrony i ich antycząstki. po czasie 10-4 s wchodzimy w erę leptonową gdzie dominują lekkie cząstki. Po upływie 0.5 s Wszechświat jest matowy gdyż fotony nie mogą się przemieszać swobodnie i co chwilę zderzają się z inną cząsteczką.
3 Po jednej sekundzie Wszechświat jest jeszcze bardzo gorący kelwinów i gęsty 105 kg/m3 ale w tych warunkach fotony nie mają już energii do wytwarzania cząstek i cała antymateria ulega wyczerpaniu i powstaje promieniowanie oraz materia. Do pierwszej sekundy liczba neutronów tworzących się i rozpadających jest taka sama. Gdy minęła pierwsza sekunda prawie wszystkie elektrony podlegają anihilacji ze swoimi antycząstkami co oznacza, że protony nie mają już elektronów aby przekształcić się w neutron. Prowadzi to dużego niedoboru neutronów w stosunku do protonów, a dokładnie 2 do 10. Fotony powstałe podczas anihilacji już nie mają wystarczającej energii aby tworzyć pary materia-antymateria wypełniają więc sobą całą przestrzeń. Na każdą cząstkę przypada miliard fotonów, stosunek, który pozostał do dzisiaj.
4 Powstanie atomów helu 100 sek zaczną się tworzyć jądra atomowe. Podstawą jądra atomowego staje się proton, zapewne ze względu na jego stabilność. Pierwszym jądrem był proton z neutronem związany oddziaływaniem silnym. Nie mogły to być dwa protony gdyż działa tutaj silne odpychanie elektryczne. Ostyganie prowadzi do tego, że powstają kolejne jądra atomowe aż do He-4. Ponieważ jądra te są bardzo stabilne nie chcą już dalej przyłączać następnych nukleonów. Tak więc po trzech minutach Wszechświat zatrzymuje się w swym rozwoju na helu. Pamiętajmy, że trwa ekspansja i obniżanie temperatury co powoduje, ze już nie ma takich możliwości energetycznych jak poprzednio.
5 Powstawanie gwiazd i planet Dopóki Wszechświat był matowy czyli przed rokiem tysięcznym grawitacja była niweczona przez energetyczne fotony które zderzały się z cząstkami i nie pozwały im się gromadzić zgodnie z siłami grawitacji. Po znacznym rozrzedzeniu było możliwe, że w miejscu fluktuacji materii oddziaływanie grawitacyjne gęstszej materii przyciągnie do siebie inny fragment materii. Zaczynają się tworzyć nasiona galaktyk. Pozostał jednak jeszcze inny przeciwnik grawitacji a mianowicie ekspansja Wszechświata powodująca oddalanie się od siebie poszczególnych mas a więc zmniejszenie siły grawitacji między nimi. Na nasze szczęście siła grawitacji okazała się na tyle silna, że pokonała i tę przeszkodę.
6 Łączenie się protonów w jądro helu prowadzi do powstania energii. Wydziela się tzw. energia wiązania. Można sprawdzić, że suma energii czterech protonów nie jest równa energii jądra helu-4, ta różnica to właśnie energia wiązania wydzielana podczas reakcji jądrowych. Wyzwolenie tej energii prowadzi do wzrostu temperatury i emisji promieniowania co wstrzymuje zapadanie się gwiazdy. Równowaga ta utrzymuje się tak długo dopóki starcza protonów. Gdy zabraknie paliwa gwiazda zaczyna się zapadać dalej. Prowadzi to do zwiększenia gęstości oraz temperatury, która dochodzi do 100 milionów kelwinów. W tej temperaturze zaczyna zachodzić zjawisko tworzenia węgla C-6, gdyż w takich warunkach jądra helu chętnie łączą się w trójki natomiast dalej nie lubią połączeń podwójnych. Proces spalania helu zachodzi tak długo aż nastąpi całkowita przemiana gwiazdy helowej w gwiazdę węglową. Oznacza to, że znika promieniowanie które było przeciwwagą dla grawitacji i znowu grawitacja przejmuje inicjatywę. Rozpoczyna się kolejny etap zapadania gwiazdy. Staje się ona coraz mniejsza, coraz gęstsza i temperatura teraz rośnie. Po osiągnięciu kilkuset milionów kelwinów rozpoczynają się kolejne przemiany. Cykle spalania oraz tworzenia nowych pierwiastków są coraz krótsze. Im większa masa gwiazdy tym więcej pierwiastków może powstać. Na zewnątrz spala się wodór, trochę głębiej hel. Im bliżej środka gwiazdy tym cięższe pierwiastki. W końcu życia gwiazdy jej jądro składa się z żelaza, kobaltu oraz niklu podczas gdy w wyższych warstwach powstaje tlen, siarka, azot itp. Produkcja pierwiastków w gwiazdach kończy się jednak na żelazie-56. Dlaczego?
7 Z życia gwiazd Masa mniejsza od 1.4 masy Słońca staje się najpierw czerwonym olbrzymem a po wyemitowaniu pozostałej energii staje się białym karłem aby zakończyć swój żywot jako czarny karzeł, kupa złomu krążąca po ogromie Kosmosu. Jeżeli gwiazda ma masę między 1.4 a 3 mas Słońca wtedy zapadanie się następuje gwałtownie. W ciągu ułamka sekundy gwiazda kurczy się do rozmiarów ok. 10 km. Powstaje gwiazda neutronowa i powstaje zjawisko, które nazywamy supernowa. Natężenie wybuch ma siłę 100 milionów jasności Słońca. Dla gwiazd o masie większej niż 3 masy Słońca koniec jest jeszcze bardziej gwałtowny i tragiczny. Gdy dojdzie do zapaści takiej gwiazdy dzieje się to tak szybko, że nic nie zdoła powstrzymać tego procesu sprężania do tak małej objętości i tak dużej gęstości, że powstałe pole grawitacyjne jest tak duże, że jądro gwiazdy staje się czarną dziurą. Światło nie może opuścić tego obszaru czyli jest on dla nas niewidoczny. Kwazary - niby gwiazdy Pulsary
Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie
Bardziej szczegółowoSynteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ
Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku
Bardziej szczegółowoEwolucja w układach podwójnych
Ewolucja w układach podwójnych Tylko światło Temperatura = barwa różnica dodatnia różnica równa 0 różnica ujemna Jasnośd absolutna m M 5 log R 10 pc Diagram H-R Powstawanie gwiazd Powstawanie gwiazd ciśnienie
Bardziej szczegółowoTeoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Bardziej szczegółowoNastępnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15:
Reakcje syntezy lekkich jąder są podstawowym źródłem energii wszechświata. Słońce - gwiazda, która dostarcza energii niezbędnej do życia na naszej planecie Ziemi, i w której 94% masy stanowi wodór i hel
Bardziej szczegółowoI etap ewolucji :od ciągu głównego do olbrzyma
I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma
Bardziej szczegółowooraz Początek i kres
oraz Początek i kres Powstanie Wszechświata szacuje się na 13, 75 mld lat temu. Na początku jego wymiary były bardzo małe, a jego gęstość bardzo duża i temperatura niezwykle wysoka. Ponieważ w tej niezmiernie
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Bardziej szczegółowoMateria i jej powstanie Wykłady z chemii Jan Drzymała
Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań
Bardziej szczegółowoWykłady z Geochemii Ogólnej
Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch
Bardziej szczegółowoWykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1
Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07
Bardziej szczegółowoSens życia według gwiazd. dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski
Sens życia według gwiazd dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Diagram H-R Materia międzygwiazdowa Składa się z gazu i pyłu Typowa gęstośd to kilka (!) atomów na cm3 Zasilana przez
Bardziej szczegółowoPodstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu
Bardziej szczegółowoŻycie rodzi się gdy gwiazdy umierają
Życie rodzi się gdy gwiazdy umierają Promieniowanie elektromagnetyczne Ciało doskonale czarne (promiennik zupełny) Tak świeci ciało znajdujące się w równowadze termodynamicznej Gwiazdy gorące są niebieskie,
Bardziej szczegółowoLiceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA
Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych
Bardziej szczegółowoOddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.
1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne
Bardziej szczegółowoSTRUKTURA MATERII PO WIELKIM WYBUCHU
Wykład I STRUKTURA MATERII -- -- PO WIELKIM WYBUCHU Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...) Nigdy
Bardziej szczegółowoReakcje rozpadu jądra atomowego
Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym
Bardziej szczegółowoFizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Bardziej szczegółowoPo 1 mld lat (temperatura Wszechświata ok. 10 K) powstają pierwsze gwiazdy.
Nukleosynteza Mirosław Kwiatek Skrót ewolucji materii we Wszechświecie: Dominacja promieniowania: Wg. Gamowa (1948) Wszechświat powstał jako 10-wymiarowy i po 10-43 sekundy rozpadł się na 4- i 6-wymiarowy.
Bardziej szczegółowoBudowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd
Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy
Bardziej szczegółowoFIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
Bardziej szczegółowoTo ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki
Jest to początek czasu, przestrzeni i materii tworzącej wszechświat. Podstawę idei Wielkiego Wybuchu stanowił model rozszerzającego się wszechświata opracowany w 1920 przez Friedmana. Obecnie Wielki Wybuch
Bardziej szczegółowoTeoria grawitacji. Grzegorz Hoppe (PhD)
Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski
Bardziej szczegółowoCzarne dziury. Grażyna Karmeluk
Czarne dziury Grażyna Karmeluk Termin czarna dziura Termin czarna dziura powstał stosunkowo niedawno w 1969 roku. Po raz pierwszy użył go amerykański uczony John Wheeler, przedstawiając za jego pomocą
Bardziej szczegółowoFizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
Bardziej szczegółowoGwiazdy neutronowe. Michał Bejger,
Gwiazdy neutronowe Michał Bejger, 06.04.09 Co to jest gwiazda neutronowa? To obiekt, którego jedna łyżeczka materii waży tyle ile wszyscy ludzie na Ziemi! Gwiazda neutronowa: rzędy wielkości Masa: ~1.5
Bardziej szczegółowoAutorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
Bardziej szczegółowoUniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW
Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Prof. Henryk Drozdowski Wydział Fizyki UAM Dedykuję ten wykład o pochodzeniu materii wszystkim czułym sercom,
Bardziej szczegółowoEnergetyka jądrowa. Energetyka jądrowa
Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe
Bardziej szczegółowoI ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
Bardziej szczegółowoPodstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Bardziej szczegółowoReakcje jądrowe dr inż. Romuald Kędzierski
Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane
Bardziej szczegółowoEwolucja Wszechświata Wykład 5 Pierwsze trzy minuty
Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Historia Wszechświata Pod koniec fazy inflacji, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i
Bardziej szczegółowoCząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Bardziej szczegółowoBudowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd
Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala
Bardziej szczegółowoGWIAZDY SUPERNOWEJ. WSZYSTKO WE WSZECHŚWIECIE WIECIE PODLEGA ZMIANOM GWIAZDY RÓWNIER. WNIEś. PRZECHODZĄ ONE : FAZĘ NARODZIN, WIEK DOJRZAŁY,
WSZYSTKO WE WSZECHŚWIECIE WIECIE PODLEGA ZMIANOM GWIAZDY RÓWNIER WNIEś. PRZECHODZĄ ONE : FAZĘ NARODZIN, WIEK DOJRZAŁY, W KOŃCU UMIERAJĄ. NIEKTÓRE Z NICH KOŃCZ CZĄ śycie W SPEKTAKULARNYM AKCIE WYBUCHU tzw.
Bardziej szczegółowoPROJEKT KOSMOLOGIA PROJEKT KOSMOLOGIA. Aleksander Gendarz Mateusz Łukasik Paweł Stolorz
PROJEKT KOSMOLOGIA Aleksander Gendarz Mateusz Łukasik Paweł Stolorz 1 1. Definicja kosmologii. Kosmologia dział astronomii, obejmujący budowę i ewolucję wszechświata. Kosmolodzy starają się odpowiedzieć
Bardziej szczegółowoCzarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić.
Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarne dziury są to obiekty nie do końca nam zrozumiałe. Dlatego budzą ciekawość
Bardziej szczegółowoElementy Fizyki Jądrowej. Wykład 11 Pochodzenie pierwiastków
Elementy Fizyki Jądrowej Wykład 11 Pochodzenie pierwiastków Powstawanie gwiazd Mgławica gazowo - pyłowa (masa od kilkuset tysięcy do miliona mas Słońca) Niestabilność grawitacyjną wywołuje zwykle fala
Bardziej szczegółowoZadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α
Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego
Bardziej szczegółowoA - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów
Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość
Bardziej szczegółowoJAK POWSTAŁ WSZECHŚWIAT?
JAK POWSTAŁ WSZECHŚWIAT? Cofnijmy się w czasie 100, 500, 1000 miliardów lat. Wszechświat wypełnia ciemna energia (eter). Są to jednowymiarowe dipole magnetyczne mające możliwość łączenia się biegunami
Bardziej szczegółowoCząstki elementarne z głębin kosmosu
Cząstki elementarne z głębin kosmosu Grzegorz Brona Zakład Cząstek i Oddziaływań Fundamentalnych, Uniwersytet Warszawski 24.09.2005 IX Festiwal Nauki Co widzimy na niebie? - gwiazdy - planety - galaktyki
Bardziej szczegółowoCzarne dziury. Rąba Andrzej Kl. IVTr I
Czarne dziury Rąba Andrzej Kl. IVTr I CZYM JEST CZARNA DZIURA Czarna dziura jest tworem grawitacji, której podlegają zarówno cząstki o małych, jak i o dużych masach, a nawet światło. Największe i najjaśniejsze
Bardziej szczegółowoOddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Bardziej szczegółowoPodróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział
Bardziej szczegółowoGalaktyka. Rysunek: Pas Drogi Mlecznej
Galaktyka Rysunek: Pas Drogi Mlecznej Galaktyka Ośrodek międzygwiazdowy - obłoki molekularne - możliwość formowania się nowych gwiazd. - ekstynkcja i poczerwienienie (diagramy dwuwskaźnikowe E(U-B)/E(B-V)=0.7,
Bardziej szczegółowoAtomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Bardziej szczegółowoPowstanie pierwiastków we Wszechświecie
16 FOTON 98, Jesień 2007 Powstanie pierwiastków we Wszechświecie Lucjan Jarczyk Instytut Fizyki UJ Otaczający nas świat zbudowany jest z niezliczonej wręcz liczby różnych substancji. Ich powstanie to domena
Bardziej szczegółowoHistoria Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków
Historia Wszechświata w (dużym) skrócie Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków wczesny Wszechświat późny Wszechświat z (przesunięcie ku czerwieni; redshift)
Bardziej szczegółowoOddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Bardziej szczegółowoAnaliza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Bardziej szczegółowoAstrofizyka teoretyczna II. Równanie stanu materii gęstej
Astrofizyka teoretyczna II Równanie stanu materii gęstej 1 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects by Stuart L. Shapiro, Saul A. Teukolsky " Rozdziały 2, 3 i 8 2 Odkrycie
Bardziej szczegółowoFIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne
FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne TEMAT (rozumiany jako lekcja) 1.1. Kinematyka ruchu jednostajnego po okręgu 1.2. Dynamika ruchu jednostajnego po okręgu 1.3. Układ Słoneczny
Bardziej szczegółowo- mity, teorie, eksperymenty
Święto Uniwersytetu Warszawskiego, 27.11 11.2008 Początek Wszechświata - mity, teorie, eksperymenty Grzegorz Wrochna Instytut Problemów w Jądrowych J im. A.Sołtana Warszawa / Świerk wrochna@ipj.gov.pl
Bardziej szczegółowopobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20
Bardziej szczegółowofizyka w zakresie podstawowym
mi edukacyjne z przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej Poziom Kategoria celów Zakres Poziom podstawowy - Uczeń opanował pewien zakres WIADOMOŚCI Poziom ponadpodstawowy
Bardziej szczegółowoDefinicja (?) energii
Plan wykładu Energia jest wieczną rozkoszą. Definicja (?) energii William Blake (1757 1827), poeta Chociaż nie potrafimy podać ogólnej definicji energii, zasada zachowania energii prosto wskazuje, że jest
Bardziej szczegółowoEnergetyka w Środowisku Naturalnym
Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 12 17/24 stycznia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Bardziej szczegółowoWszechświat cząstek elementarnych WYKŁAD 5
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:
Bardziej szczegółowodoświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Bardziej szczegółowoZadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość
strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka
Bardziej szczegółowoEnergetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Bardziej szczegółowoElementy kosmologii. D. Kiełczewska, wykład 15
Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Pomiary parametrów kosmologicznych: WMAP SNIa Asymetria materii i antymaterii Rozszerzający
Bardziej szczegółowoPorównanie statystyk. ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt. - potencjał chemiczny
Porównanie statystyk ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt - potencjał chemiczny Rozkład Maxwella dla temperatur T1
Bardziej szczegółowoDiagram Hertzsprunga Russela. Barwa gwiazdy a jasność bezwzględna
Astrofizyka Gwiazdy, gwiazdozbiory Obserwowane własności gwiazd diagram HR Parametry gwiazd i ich relacje Modele gwiazd: gwiazdy ciągu głównego, białe karły, gwiazdy neutronowe Ewolucja gwiazd i procesy
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Bardziej szczegółowoBUDOWA I EWOLUCJA GWIAZD. Jadwiga Daszyńska-Daszkiewicz
BUDOWA I EWOLUCJA GWIAZD Jadwiga Daszyńska-Daszkiewicz Semestr letni, 2018/2019 równania budowy wewnętrznej (ogólne równania hydrodynamiki) własności materii (mikrofizyka) ograniczenia z obserwacji MODEL
Bardziej szczegółowoFizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów
Bardziej szczegółowoSpis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu
Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych
Bardziej szczegółowo12. ZASADA ANTROPICZNA
17-12 Antropiczna zasada [4] [5] 12.1. Wprowadzenie 12. ZASADA ANTROPICZNA Rys. 12.1. Anomalne zmiany gęstości wody wraz z temperaturą i ich skutki. Zarówno w czasie upałów jak i "siarczystych" mrozów,
Bardziej szczegółowoRóżne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Bardziej szczegółowoBudowa atomu. Wiązania chemiczne
strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i
Bardziej szczegółowoSzkolny konkurs chemiczny Grupa B. Czas pracy 80 minut
Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone
Bardziej szczegółowoSpełnienie wymagań poziomu oznacza, że uczeń ponadto:
Fizyka LO - 1, zakres podstawowy R - treści nadobowiązkowe. Wymagania podstawowe odpowiadają ocenom dopuszczającej i dostatecznej, ponadpodstawowe dobrej i bardzo dobrej Wymagania podstawowe Spełnienie
Bardziej szczegółowoTeoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego
Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Prolog Teoria z niczego Dla danego obiektu możemy określić: - Ilość światła - widmo -
Bardziej szczegółowoWielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi?
Wielki Wybuch czyli podróż do początku wszechświata Czy może się to zdarzyć na Ziemi? Świat pod lupą materia: 10-4 m kryształ: 10-9 m ρ=2 3 g/cm 3 atom: 10-10 m jądro: 10-14 m nukleon: 10-15 m (1fm) ρ=10
Bardziej szczegółowofizyka w zakresie podstawowym
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej W trakcie nauczania fizyki w szkole realizujemy założone na początku cele
Bardziej szczegółowoAtomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Bardziej szczegółowoGrzegorz Wrochna Narodowe Centrum Badań Jądrowych Z czego składa się Wszechświat?
Narodowe Centrum Badań Jądrowych www.ncbj.gov.pl Z czego składa się Wszechświat? 1 Budowa materii ~ cała otaczająca nas materia składa się z atomów pierwiastek chemiczny = = zbiór jednakowych atomów Znamy
Bardziej szczegółowo25. Niespełniające się prognozy. Przy próbie opisu reakcji jądrowych, transfizyka napotyka na trudności, które przedstawię szczegółowiej, gdyż mogą
25. Niespełniające się prognozy. Przy próbie opisu reakcji jądrowych, transfizyka napotyka na trudności, które przedstawię szczegółowiej, gdyż mogą mieć związek z trudnościami teoretycznymi fizyki, rzutującymi
Bardziej szczegółowoNUKLEOGENEZA. Barbara Becker
Barbara Becker NUKLEOGENEZA nukleony - wspólna nazwa dla protonów i neutronów jako składników jąder atomowych geneza - pochodzenie, rodowód - zespół warunków powstania i rozwoju danego zjawiska Układ okresowy
Bardziej szczegółowoElementy fizyki jądrowej
Elementy fizyki jądrowej Cząstka elementarna Fermiony (cząstki materii) -leptony: elektron, neutrino elektronowe, mion, neutrino mionowe, taon, neutrino taonowe -kwarki: kwark dolny, kwark górny, kwark
Bardziej szczegółowoPromieniotwórczość naturalna. Jądro atomu i jego budowa.
Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.
Bardziej szczegółowoElementy Fizyki Jądrowej. Wykład 10 Energetyka jądrowa
Elementy Fizyki Jądrowej Wykład 10 Energetyka jądrowa Reakcja łańcuchowa Warunki wystąpienia reakcji łańcuchowej: Reakcja egzotermiczna Czynnik wywołujący reakcję musi być produktem reakcji (neutrony)
Bardziej szczegółowoFIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY SZKOŁY BENEDYKTA 1. Cele kształcenia i wychowania Ogólne cele kształcenia zapisane w podstawie programowej dla zakresu podstawowego
Bardziej szczegółowoOpis założonych osiągnięć ucznia Fizyka zakres podstawowy:
Opis założonych osiągnięć ucznia Fizyka zakres podstawowy: Zagadnienie podstawowy Poziom ponadpodstawowy Numer zagadnienia z Podstawy programowej Uczeń: Uczeń: ASTRONOMIA I GRAWITACJA Z daleka i z bliska
Bardziej szczegółowoSzczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej.
Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej. Zagadnienie podstawowy Uczeń: ponadpodstawowy Uczeń: Numer zagadnienia z Podstawy programowej ASTRONOMIA I GRAWITACJA Z daleka i
Bardziej szczegółowoEkspansja Wszechświata
Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera
Bardziej szczegółowoPodstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
Bardziej szczegółowo1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Bardziej szczegółowoFizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer
Barcelona, Espania, May 204 W-29 (Jaroszewicz) 24 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Reakcje jądrowe Fizyka jądrowa cz. 2 Teraz stałem się Śmiercią, niszczycielem światów Robert Oppenheimer
Bardziej szczegółowoMODEL WIELKIEGO WYBUCHU
MODEL WIELKIEGO WYBUCHU JAKO TEORIA POWSTANIA WSZECHŚWIATA OPRACOWANIE Poznań 2007 Teoria Wielkiego Wybuchu Wstęp "WIELKI WYBUCH gwałtowna eksplozja bardzo gorącego i bardzo skondensowanego Wszechświata
Bardziej szczegółowoPROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład.
1. Promień atomu jest większy od promienia jądra atomu PROMIENIOTWÓRCZOŚĆ A) 5 razy. B) 100 razy. C) 10 5 razy. D) terminy promień atomu i promień jądra są synonimami. 2. Jeśliby, zachowując skalę, powiększyć
Bardziej szczegółowoWymagania edukacyjne z fizyki dla klas pierwszych
Zagadnienie Poziom Numer zagadnienia z Podstawy podstawowy ponadpodstawowy programowej Uczeń: Uczeń: ASTRONOMIA I GRAWITACJA Z daleka i z bliska porównuje rozmiary i odległości we Wszechświecie (galaktyki,
Bardziej szczegółowo