Od wielkiego wybuchu do gwiazd neutronowych fizyka relatywistycznych zderzeń ciężkojonowych
|
|
- Witold Turek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Od wielkiego wybuchu do gwiazd neutronowych fizyka relatywistycznych zderzeń ciężkojonowych From Big-Bang to neutron stars- physcis with relatyvistic heavy ion collisions Piotr Salabura
2 Program Zderzenia wysokoenegetycznych ciężkich jonów (1000 TeV= 1.6*10-4 J masie około10 15 protonów) w laboratoriach na ziemi są jedynym sposobem na badania warunków które panowały we wszechświecie około 10-6 sekundy po tkz. wielkim wybuchu uważanym za jego początek
3 Big-bang- Wielki Wybuch Georges Lemaître, belgijski duchowny katolicki ksiądz, proponuje (1927) to co stało się znane dziś teorią Big Bang pochodzenia wszechświata. Model opierał ( pierwotnego atomu ) się na ogólnej teorii względności Alberta Einsteina, jednorodności i izotropii materii. Aleksander Friedmann (1922) formułuje niezależnie równania rozszerzającego się wszechświata Edwin Hubble odkrywa (1929) iż światło z dalekich galaktyki jest przesunięte ku czerwieni proporcjonalnie do ich odległości od ziemi Arno Penzias and Robert Wilson odkrywają (1968) odkrywają promieniowania tła Cosmic Background Radiation (CMB) za co otzymumją 1978 roku Nagrodę Nobla
4 Dowody na "wielki wybuch" Przesunięcie ku czerwieni (prawo Hubbla) Promieniowanie tła i jego jednorodność Nukleosynteza hadrosynteza czyli utworzenie materii z plazmy Kwarkowo-Gluonowej która istniała około ~10-6 s po wielkim wybuchu w zderzeniach ciężkich jonów? Jest możliwa do odtworzenia w.w eksperymentach
5 Jednostki Mikroświat/Makroświat Długość [m] 1 nm = 10-9 nm 500 nm światło widzialne 1 fm = fm 3-4 fm odległości pomiędzy nukleonami w jądrze Astronomia parsek 3.26 lata świetlne ~ 31*10 12 km Energia E [J= N*m/s 2 ] elektronovolt [ev] [C * V ] 1 ev=1.6*10-19 J energia elektronu przyspieszonego (E= e*u) przez napięcie elektryczne 1 Volta 1 MeV =10 6 ev, 1 GeV = 10 9 ev Masa m [kg ] masa protonu GeV/c MeV/c *10-27 kg E = mc 2 Masa neutronu GeV/c 2 Masa elektronu 511 kev/c 2 pęd p [kg * m/s] GeV/c, MeV/c Długość fali cząstki λ = h/p ~1fm cząstka o p ~1 GeV/c Temperatura T [K] poprzez energię E=k T 1 MeV 1.1 *10 10 [K]
6 Przesunięcie ku czerwieni Pomiar prędkości ucieczki gwiazd poprzez przesunięcie ku czerwieni lini spektralnych gwiazd (Efekt Dopplera) Linie absorpcji wodoru V λ ' = λ (1 + β )(1 β ) = λ(1 + z) V = βc λ z red-shift Przesunięcie ku czerwieni e p Słońce Daleka gwiazda
7 Wyznaczanie stałej Hubble a (H 0 ) Stała Hubble a fundamentalny parametr kosmologiczny. Charakteryzuje obecne tempo ekspansji Wszechświata. oraz H(t) = [dr(t)/dt]/r(t) H 0 = H(t 0 ) z = H 0 d/c Z- przesunięcie ku czerwieni długości fali fotonów Ta ostatnia zależność (prawdziwa dla z 0,2) daje nam pierwszą metodę pomiaru H 0 : H 0 = c z/d Wielkościami, które należy mierzyć są: - przesunięcie ku czerwieni, z - odległość, d (metodą niezależną od prawa Hubble a, oczywiście). Ruchy własne galaktyk będą dawać naturalny rozrzut tej relacji.
8 Wyznaczenie odległości -cefeidy - Porównanie jasności obserwowanej z kalibrowaną z okresu zmian jasności Standardowe świece w astronomi L = L 0 /4πd 2
9 Wzynacznie H V = H D Trully Fischer relacja jasności galaktyk spiralnych z ich prędkością a obsewrwowaną jasnością Supernova Ia stała zależność krzywej jasności od czasu pozwala powiązać jasność z odległością a z drugiej strony z przesunięciem ku czerwieni (z) standardowe świecie w astronomii jak cefeidy
10 Prawo Hubble V (t)= H (t) D <H> = (72 ±8) km/s Mpc = 1/( lat) 1/H =15*10 9 ~ szacowny wiek wszechświata Gwiazdy i galaktyki oddalają się od ziemi z prędkością (V) która zwiększa się z odległością (D) ~ Hubble: co 5 sekund objętość wszechświata powiększa się o przestrzeń zajmowaną przez Drogę Mleczną
11 Widma promieniowania fotonów określa temperaturę obiektu
12 Prawo Plancka promieniowanie ciała doskonale czarnego λ max M. Planck 1900 ρ( v, T ) = A 3 hv exp( hv / kt ) 1 dla dużych energii : ρ( E) E = hν exp( E / kt ) λ max = 2.9e-3[m*K] / T T powierzchni słońca = 5000 K, T jądra słońca =1.5*10 7 K (~1 kev) długość fali (nm) Prawo Stefana-Boltzmana (S-B)
13 Pozostalość po wybuchu-poświata 1989 satelita COBE promieniowanie ciała doskonale czarnego o T=2.725 K λ max = 1.9 mm Poświata z wszechświata z Pewnego momentu jego ewolucji Kiedy fotony mogły swobodnie się rozchodzić..? Wilson, Penzias Nagroda Nobla
14 Obserwacje: od 30 VI 2001 orbita: okolice L2, 5 pasm w zakresie między 22 a 90 GHz Misja-WMAP
15 Pozostalość po wybuchu-poświata Satelita WMAP odstępstwa od T=2.725 w skali K! Poświata wykazuje pewne anizotropowości ale jest zadziwiająco jednorodna!
16 Jak wyjaśnić te obserwacje..
17 Proste wyprowadzenie dla Λ=0
18 Szacowanie wieku wszechświata
19 Energia promieniowania i jej zależność od czasu Wczesny wszechświat było zdominowany przez promieniowanie (powstałe z anihilacji materii) które było uwiezione w kuli ognistej. Promieniowanie uwolniło się w pewnym etapie ewolucji (o tym za chwile) Energia (temperatura) wszechświata dąży do w t=0!
20 Atom wodoru Atom wodoru: oddziaływanie elektromagnetyczne ( Siła Coulomba) Energia jonizacji U m (H)= m proton + m elekron + U U = ev Na pewnym etapie ewolucji wszechświat składał się z mieszaniny atomów wodoru oraz fotonów w równowadze termodynamicznej (czyli ustalonej T) E = mc 2
21 Reakcje syntezy/dezintegracji wodoru Energia/cząstkę Temperatura e - + p H + γ + Q (13.6 ev) W równowadze termodynamicznej (kt=q) tyle samo fotonów jest emitowanych co absorbowanych- > fotony nie mogą się wolno rozchodzić Bardziej dokładnie ilość reakcji <N> na sekundę wynosi <N> = N (gęstość H/p)* V(prędkość pocisku)* σ (przekrój czynny) σ ma wymiar powierzchni [cm 2 ] (1barn=10-24 cm 2 ) -efektywna powierzchnia na oddziaływanie
22 Emisja promieniowania reliktowego kt=0.5 ev ρ( v, T ) = A 3 hv exp( hv / kt ) 1 Te fotony mają dostateczną energię aby rozbić wodór E [ev]
23 Parę wniosków
24 Nukleosynteza Materia widzialna we wszechświecie składa się głównie z : wodoru (H), Helu ( 4 He), deuteru ( 2 H), trytu ( 3 He), Litu ( 7 Li) w stosunku; He/H H/H He/H Li/H Wodór, deuter, Hel są najczęściej występującymi jądrami we wszechświecie Mogły być wyprodukowane na pewnym etapie ewolucji wszechświata z istniejących już protonów i neutronów Cięższe jądra z A=5,6,8 nie są już stabilne a następne stabilne np. 12C już nie występuje tak często ponieważ zderzenia jąder helu nie prowadzi do syntezy z powodu odpychania kulombowskiego potrzebne jest olbrzymie ciśnienie to może się wydarzy w gwiazdach
25 Synteza/dezintegracja jądra Cząstka α = 4 He Oddziaływanie jądrowe(silne) Energia jonizacji U Dla wodoru: m (H)= m proton + m elekron + U U = ev 2*(M p +M n ) M He E = mc 2 Q=ΔU= u Q=23.8 MeV
26 Nukleosynteza Energia przypadająca na cząstkę wynosi wtedy kt, np. wartość Q (ciepła reakcji) dla pierwszej reakcji wynosi Q =2.2 MeV(T K) 1* 4 2* Powstawanie lekkich jąder i ich akumulacja może się odbyć o ile energia fotonów nie jest za duża tak aby reakcja odwrotna nie mogła zajść i wciągu krótkiego czasu zanim rozpadną się neutrony (parę minut!) Jeżeli fotony i nukleony są w równowadze termodynamicznej, czyli w układzie w którym była ustalona równowaga termiczna i określona temperatura T, ilość protonów i fotonów jest podana przez rozkłady statyczne
27 Rozkład statystyczny (nierelatywistyczny) cząstek w równowadze termodynamicznej (T=const) kt=0.05 MeV Nota bene: podobny rozkładu fotonów! E [MeV]
28 Widmo fotonów Reakcje nukleonsyntezy kt=0.06 MeV Te fotony mają dostateczną energię aby zainicjować reakcje 2* kt=0.04 MeV E [MeV]
29 He/H H/H He/H Li/H Nukleosynteza Materia widzialna we wszechświecie składa się głównie z : wodoru (H), Helu ( 4 He), deuteru ( 2 H), trytu ( 3 He), Litu ( 7 Li) w stosunku; Modele syntezy 2* przewiduja stosunki, np.: 0.14
30 Szacowanie gęstości krytycznej
31 Problemy tww N γ = 411/cm 3
32 Warunki Sacharowa Sformułowane w 1966 przez rosyjskiego naukowca Sacharowa podają możliwe rozwiązanie problemu tww Istnienie oddziaływanie niezachowującego liczbę barionową (np. : p e+ π 0 ) nieobserwowane jak dotąd.. Odchylenia od warunków równowagi termodynamicznej (potrzebne do naruszenia zachowania liczby barionów) Łamanie symetrii rozpadów cząstek i antycząstek (tkz. łamanie symteri CP i C) różne prawdopodobieństwa rozpadów cząstka antycząstka (takie procesy są dziś znane..)
33 Przykład procesu prowadzącego do asymterii barion-antybarion Możliwe wyjaśnienie dają modele wielkiej Unifikacji (łączącej wszystkie oddziaływania) postulujące istnienie bardzo ciężkich cząstek (m>10 17 GeV) rozpadających się z niezachowaniem liczby barionowej np. X N B1 (z prawdopodobieństwem r) oraz X N B2 (z prawdopodobieństwem 1-r) Dla antycząstki anty-x odpowiednio rr oraz 1 rr W chwili produkcji cząstek ilość X i anty-x jest równa Po rozpadzie asymteria barion i antybarion będzie wynosić A = rn B1 - rr N B1 + (1-r) N B2 - (1 rr )N B2 = (r - rr ) (N B1 N B2 ) Jeżeli liczba barionowa jest naruszona to N B1 N B2 i jeżeli symteria CP jest naruszona to r rr (prawd. rozpadu cząstka antycząstka są różne) mamy wytworzenia Asymterii
34 Czarna materia Materia która nie świeci a jej obecność znamy poprzez efekty grawitacyjne Prędkość rotacji galaktyk spiralnych halo mmvv 22 rr mmmm < rr GG = rr 22 Częśc centralna Dla masy (gwiazdy) w części centralnej M r 3 V r v r dysk Dla gwiazdy daleko poza częścią centralną M=cont V s
35 Rozkłady prędkości gwiazd w galaktyce Galaktyka spiralna NGC 1560 Jasność w funkcji odległości (zanik wykładniczy) Jasność linii wodoru Prędkości tranversalne (v) w funkcji odległości wzrost Linie krzywe teoretyczne powstałe z całkowania masy wewnątrz promienia. Pokazano osobno wkład od gwiadz i gazu
36 Materia we wszechświecie Znamy tylko 4% wszystkiego co nas otacza!! co stanowi ciemną materię Dark matter? co jest ciemną energią? Nie jest to w większości materia barionowa! Włączając ciemną materię dostajemy Ω ~ 0.3
37 Inflacja Problem horyzontu: rozkład temperatury wszechświata jest bardzo jednorodny..(10-4 )..ale jego odległe punkty nie mogły być w kontakcie świetlnym w chwili rozprzęgnięcia fotonów.. Czas rozprzęgnięcia fotonów od materii to około t r =10 13 s od początku Zatem maksymalna względna odległość dwóch przeciwległych punktów które mogły być w kontakcie świetlnym wynosi dzisiaj ct r R 0 (0-dzisiaj)/R r = ct r T r / T 0 ~10 3 ct r <<2 c(t 0 t r ) 2 ct 0!!!! (T r = 3500 K, T 0 = 2.7 K) Rozwiązanie inflacja : Guth 1981 uwolnienie wielkiej energii w bardzo małym okresie czasu (stała kosmologiczna Λ ) związanej z zerwaniem Wielkiej Unifikacji RR ( RR )22 ΛΛ RR = RR 33 00ee ΛΛ 33 (tt tt 00) typowe skala inflacji to 10 30!! w czasie 10-32!
38 t= lat ~ 1 ev ~3000 K t=10-12 s ~ 1 TeV -LHC
39 Kalendarz wszechświata dzisiaj Hubble Expansion Ekspansja Hubble powstanie galaktyk dominacja materii Nukleosynteza Promieniowanie tła Materia kwarkowo gluonowa powstanie hadronów Reakcje ciężkojonowe URHiC Grand unification Planck epoch T = 100 MeV T = 1.16*10 12 K słońce : T=1.1*10 7 K
40 oddziaływanie elektromagnetyczne Struktura mikroświata oddziaływanie silne (jadrowe) Gdyby protony i neutrony na rysunku miały średnicę 10 cm, to wtedy rozmiar kwarków i elektronów byłby mniejszy niż 0.1 mm, a średnica całego atomu wynosiłaby 10 km!
41 Struktura materii najbardziej fundamentalna 3 rodziny cząstek elementarnych Bariony: 3 kwarki d u u proton Mezony: kwark-antykwark Każda cząstka ma swojego partnera antycząstkę o przeciwnym ładunku Bariony i mezony : układy uwięzionych kwarków połączonych oddziaływaniami silnymi q q
Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi?
Wielki Wybuch czyli podróż do początku wszechświata Czy może się to zdarzyć na Ziemi? Świat pod lupą materia: 10-4 m kryształ: 10-9 m ρ=2 3 g/cm 3 atom: 10-10 m jądro: 10-14 m nukleon: 10-15 m (1fm) ρ=10
Bardziej szczegółowoZ czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?
Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm
Bardziej szczegółowoTeoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Bardziej szczegółowoElementy kosmologii. D. Kiełczewska, wykład 15
Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Pomiary parametrów kosmologicznych: WMAP SNIa Asymetria materii i antymaterii Rozszerzający
Bardziej szczegółowoOddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.
1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne
Bardziej szczegółowooraz Początek i kres
oraz Początek i kres Powstanie Wszechświata szacuje się na 13, 75 mld lat temu. Na początku jego wymiary były bardzo małe, a jego gęstość bardzo duża i temperatura niezwykle wysoka. Ponieważ w tej niezmiernie
Bardziej szczegółowoGalaktyka. Rysunek: Pas Drogi Mlecznej
Galaktyka Rysunek: Pas Drogi Mlecznej Galaktyka Ośrodek międzygwiazdowy - obłoki molekularne - możliwość formowania się nowych gwiazd. - ekstynkcja i poczerwienienie (diagramy dwuwskaźnikowe E(U-B)/E(B-V)=0.7,
Bardziej szczegółowoPolecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 15 Maria Krawczyk, Wydział Fizyki UW 12.01. 2010 Ciemny Wszechświat Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743
Bardziej szczegółowoHistoria Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków
Historia Wszechświata w (dużym) skrócie Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków wczesny Wszechświat późny Wszechświat z (przesunięcie ku czerwieni; redshift)
Bardziej szczegółowoNeutrina z supernowych. Elementy kosmologii
Neutrina z supernowych Obserwacja neutrin z SN1987A Kolaps grawitacyjny Własności neutrin z kolapsu grawitacyjnego Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza
Bardziej szczegółowoEwolucja Wszechświata Wykład 5 Pierwsze trzy minuty
Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Historia Wszechświata Pod koniec fazy inflacji, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i
Bardziej szczegółowoSTRUKTURA MATERII PO WIELKIM WYBUCHU
Wykład I STRUKTURA MATERII -- -- PO WIELKIM WYBUCHU Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...) Nigdy
Bardziej szczegółowoKosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla
Kosmologia Wykład IX Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Prawo
Bardziej szczegółowo10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 10 Maria Krawczyk, Wydział Fizyki UW Ciemny Wszechświat 10.V. 2010 Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy
Bardziej szczegółowoWszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie
Wszechświat: spis inwentarza Typy obiektów Rozmieszczenie w przestrzeni Symetrie Curtis i Shapley 1920 Heber D. Curtis 1872-1942 Mgławice spiralne są układami gwiazd równoważnymi Drodze Mlecznej Mgławice
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata
Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 16 stycznia 2018 A.F.Żarnecki
Bardziej szczegółowoWSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Początki Wszechświata Początki Wszechświata Dane obserwacyjne Odkrycie Hubble a w 1929 r. Promieniowanie tła w 1964 r. (Arno Penzias i Robert
Bardziej szczegółowoElementy kosmologii. Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza
Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza Rozszerzający się Wszechświat W 1929 Hubble zaobserwował
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata
Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 8 stycznia 2019 A.F.Żarnecki WCE Wykład 12 8 stycznia 2019 1 / 50 Ciemna
Bardziej szczegółowoFizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Bardziej szczegółowoUniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW
Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Prof. Henryk Drozdowski Wydział Fizyki UAM Dedykuję ten wykład o pochodzeniu materii wszystkim czułym sercom,
Bardziej szczegółowoKosmologia. Elementy fizyki czastek elementarnych. Wykład X. Prawo Hubbla
Kosmologia Wykład X Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Przypadek
Bardziej szczegółowoPodróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział
Bardziej szczegółowoKosmologia. Elementy fizyki czastek elementarnych. Wykład VIII. Prawo Hubbla
Kosmologia Wykład VIII Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Prawo
Bardziej szczegółowoEkspansja Wszechświata
Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera
Bardziej szczegółowoMateria i jej powstanie Wykłady z chemii Jan Drzymała
Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań
Bardziej szczegółowo2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Bardziej szczegółowoWszechświat. Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła
Wszechświat Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła Opis relatywistyczny W mech. Newtona czas i przestrzeń są
Bardziej szczegółowoWszechświat czastek elementarnych
Wszechświat czastek elementarnych Wykład 15: Ciemna Strona Wszechświata prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych
Bardziej szczegółowoCząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Bardziej szczegółowoOddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Bardziej szczegółowoCząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Bardziej szczegółowoLiceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA
Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Bardziej szczegółowoTworzenie protonów neutronów oraz jąder atomowych
Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała
Bardziej szczegółowoMODEL WIELKIEGO WYBUCHU
MODEL WIELKIEGO WYBUCHU JAKO TEORIA POWSTANIA WSZECHŚWIATA OPRACOWANIE Poznań 2007 Teoria Wielkiego Wybuchu Wstęp "WIELKI WYBUCH gwałtowna eksplozja bardzo gorącego i bardzo skondensowanego Wszechświata
Bardziej szczegółowoPodstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Bardziej szczegółowoEwolucja Wszechświata
Ewolucja Wszechświata Wykład 6 Mikrofalowe promieniowanie tła Rozseparowanie materii i promieniowania 380 000 lat Temperatura 3000 K Protony i jądra przyłączają elektrony (rekombinacja) tworzą się atomy.
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski
Bardziej szczegółowoWszechświat cząstek elementarnych dla przyrodników WYKŁAD 1
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 1 7.X.2009 Informacje ogólne o wykładzie Fizyka cząstek elementarnych Odkrycia Skąd ten tytuł wykładu? Wytłumaczenie dlaczego Wszechświat wygląda
Bardziej szczegółowoPodstawy astrofizyki i astronomii
Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 20 marca 2018 th.if.uj.edu.pl/ odrzywolek/ andrzej.odrzywolek@uj.edu.pl A&A Wykład 4 Standardowy
Bardziej szczegółowoPoczątek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Bardziej szczegółowoOdległość mierzy się zerami
Odległość mierzy się zerami Jednostki odległości w astronomii jednostka astronomiczna AU, j.a. rok świetlny l.y., r.św. parsek pc średnia odległość Ziemi od Słońca odległość przebyta przez światło w próżni
Bardziej szczegółowoWszechświat cząstek elementarnych WYKŁAD 5
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:
Bardziej szczegółowoPROJEKT KOSMOLOGIA PROJEKT KOSMOLOGIA. Aleksander Gendarz Mateusz Łukasik Paweł Stolorz
PROJEKT KOSMOLOGIA Aleksander Gendarz Mateusz Łukasik Paweł Stolorz 1 1. Definicja kosmologii. Kosmologia dział astronomii, obejmujący budowę i ewolucję wszechświata. Kosmolodzy starają się odpowiedzieć
Bardziej szczegółowo- mity, teorie, eksperymenty
Święto Uniwersytetu Warszawskiego, 27.11 11.2008 Początek Wszechświata - mity, teorie, eksperymenty Grzegorz Wrochna Instytut Problemów w Jądrowych J im. A.Sołtana Warszawa / Świerk wrochna@ipj.gov.pl
Bardziej szczegółowodoświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Bardziej szczegółowoElementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
Bardziej szczegółowoI. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Bardziej szczegółowo1100-3Ind06 Astrofizyka
1100-3Ind06 Astrofizyka 2016/2017 Michał Jaroszyński (+Tomasz Bulik +Igor Soszyński ) Różne informacje mogą znajdować się na: http://www.astrouw.edu.pl/~mj Zasady zaliczeń: Pozytywny wynik w teście otwartym
Bardziej szczegółowoTeoria grawitacji. Grzegorz Hoppe (PhD)
Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości
Bardziej szczegółowoFizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 1: Wszechświat, kwarki cząstki elementarne, atomy, gwiazdy, galaktyki. T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Wszechświat - obserwacje
Bardziej szczegółowoAtomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Bardziej szczegółowoDr Tomasz Płazak. CIEMNA ENERGIA DOMINUJĄCA WSZECHŚWIAT (Nagroda Nobla 2011)
Dr Tomasz Płazak CIEMNA ENERGIA DOMINUJĄCA WSZECHŚWIAT (Nagroda Nobla 2011) SŁOŃCE i ZIEMIA 2 Wszechświat OBSERWOWALNY 3 ZABICIE IDEI LOKALNEGO ( ZWYKŁEGO ) WIELKIEGO WYBUCHU Powinno być tak c Promieniowanie
Bardziej szczegółowoAnaliza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Bardziej szczegółowoNUKLEOSYNTEZA I PROMIENIOWANIE RELIKTOWE
NUKLEOSYNTEZA I PROMIENIOWANIE RELIKTOWE Cieszyn, 17 Listopada, 2006 Marek Zrałek, Instytut Fizyki, UŚl 1 Tegoroczna Nagroda Nobla z fizyki została przyznana dwóm fizykom amerykańskim, otrzymali ją John
Bardziej szczegółowo- Cząstka Higgsa - droga do teorii wszystkiego
- Cząstka Higgsa - droga do teorii wszystkiego Bohdan Grządkowski Uniwersytet Warszawski Wydział Fizyki Instytut Fizyki Teoretycznej 19 maja 2014 Uniwersytet Szczeciński Plan Model Standardowy oddziaływań
Bardziej szczegółowoCząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Bardziej szczegółowoPodstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Bardziej szczegółowoWczoraj, dziś i jutro Wszechświata. Michał Jaroszyński Obserwatorium Astronomiczne
Wczoraj, dziś i jutro Wszechświata Michał Jaroszyński Obserwatorium Astronomiczne Planety, gwiazdy, mgławice Jednorodność, izotropia, ekspansja Prosty model Przyszłość? Jednostki odległości: 1AU=150 mln
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Bardziej szczegółowoPlan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Bardziej szczegółowoReakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Bardziej szczegółowoWYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Bardziej szczegółowoCiemna strona wszechświata
Ciemna strona wszechświata Letnia Szkoła Fizyki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Letnia Szkoła Fizyki U.W. Ciemna strona
Bardziej szczegółowoWYKŁAD 8. Wszechświat cząstek elementarnych dla humanistów
Wszechświat cząstek elementarnych dla humanistów WYKŁAD 8 Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Bardziej szczegółowoWYKŁAD 5 sem zim.2010/11
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 5 sem zim.2010/11 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne
Bardziej szczegółowoAstrofizyka teoretyczna II. Równanie stanu materii gęstej
Astrofizyka teoretyczna II Równanie stanu materii gęstej 1 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects by Stuart L. Shapiro, Saul A. Teukolsky " Rozdziały 2, 3 i 8 2 Odkrycie
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Bardziej szczegółowoPodstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
Bardziej szczegółowoWszechświat cząstek elementarnych (dla humanistów)
Wszechświat cząstek elementarnych (dla humanistów) Maria Krawczyk i A. Filip Żarnecki nstytut Fizyki Teoretycznej Instytut Fizyki Doświadczalnej Wydział Fizyki UW Odkrycie cząstki Higgsa w LHC (CERN )
Bardziej szczegółowoWczoraj, dziś i jutro Wszechświata. Tomasz Bulik
Wczoraj, dziś i jutro Wszechświata Tomasz Bulik Plan wykładu Obserwacje Wszechświata stan obecny Dlaczego Wielki Wybuch Co to jest inflacja Powstawanie Galaktyk Powstanie Układu Słonecznego Przyszłość
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Bardziej szczegółowoNEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Bardziej szczegółowoCiemna strona Wszechświata
Ciemna strona Wszechświata prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej, Wydział Fizyki U.W. Warszawa, 23 listopada 2010 A.F.Żarnecki Ciemna strona Wszechświata
Bardziej szczegółowoPorównanie statystyk. ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt. - potencjał chemiczny
Porównanie statystyk ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt - potencjał chemiczny Rozkład Maxwella dla temperatur T1
Bardziej szczegółowoStany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ)
Plazma Kwarkowo-Gluonowa Nowy Stan Materii Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ) Diagram fazowy
Bardziej szczegółowo[C [ Z.. 2 ]
[CZ. 2] MODELE KOSMOLOGICZNE FRIEDMANA TRZY MOśLIWE PRZYSZŁE E LOSY WSZECHŚWIATA WIATA I EKSPANSJI KOSMOLOGICZNEJ Skoro kosmologiczna ekspansja miała początek przed ok. 14 mld. Lat to spróbuj buj- my
Bardziej szczegółowoOd Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie
Bardziej szczegółowoCiemna strona Wszechświata
Ciemna strona Wszechświata Nowoczesna fizyka w przyrodzie i technice Uniwersytet Otwarty Uniwersytetu Warszawskiego prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej,
Bardziej szczegółowoSpis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
Bardziej szczegółowoFizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie
Bardziej szczegółowoNIEPRZEWIDYWALNY WSZECHŚWIAT
ARTYKUŁY Zagadnienia Filozoficzne w Nauce XXXVII / 2005, s. 41 52 Marek DEMIAŃSKI Instytut Fizyki Teoretycznej Uniwersytet Warszawski NIEPRZEWIDYWALNY WSZECHŚWIAT Trudno dokładnie określić datę powstania
Bardziej szczegółowoCzarne dziury. Grażyna Karmeluk
Czarne dziury Grażyna Karmeluk Termin czarna dziura Termin czarna dziura powstał stosunkowo niedawno w 1969 roku. Po raz pierwszy użył go amerykański uczony John Wheeler, przedstawiając za jego pomocą
Bardziej szczegółowoWYKŁAD 7. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 7 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne
Bardziej szczegółowoReakcje syntezy lekkich jąder
Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 3 17 października 2016 A.F.Żarnecki
Bardziej szczegółowoOddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Bardziej szczegółowoNiezachowanie CP najnowsze wyniki
Niezachowanie CP najnowsze wyniki Dlaczego łamanie CP jest ważne asymetria barionowa we Wszechświecie Łamanie CP w sektorze mezonów dziwnych Łamanie CP w sektorze mezonów pięknych Asymetria barionowa we
Bardziej szczegółowoKwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Bardziej szczegółowoReakcje syntezy lekkich jąder
Reakcje syntezy lekkich jąder 1. Synteza jąder lekkich w gwiazdach 2. Warunki wystąpienia procesu syntezy 3. Charakterystyka procesu syntezy 4. Kontrolowana reakcja syntezy termojądrowej 5. Zasada konstrukcji
Bardziej szczegółowoZderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
Bardziej szczegółowoWstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania
Bardziej szczegółowoWykłady z Geochemii Ogólnej
Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch
Bardziej szczegółowo