Naturalna zawartość kadmu w glebach zaleŝy w duŝym stopniu od występowania tego metalu w skałach macierzystych. DuŜy wpływ czynników antropoge-

Podobne dokumenty
ZMIANY POZORNEJ POWIERZCHNI WŁAŚCIWEJ KORZENI ŻYCICY WIELOKWIATOWEJ (LOLIUM MULTIFLORUM L.) DETERMINOWANE TOKSYCZNOŚCIĄ KADMU

WPŁYW ph I JONÓW CYNKU NA POWIERZCHNIĘ WŁAŚCIWĄ KORZENI śyta (Secale cereale L.) WYZNACZANĄ METODĄ ADSORPCJI-DESORPCJI AZOTU

WPŁYW ph W WARUNKACH STRESU KADMOWEGO NA ŁADUNEK POWIERZCHNIOWY KORZENI JĘCZMIENIA (HORDEUM VULGARE L.)

Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, ul. Doświadczalna 4, Lublin

WPŁYW TEMPERATURY WSTĘPNEGO SUSZENIA KORZENI ŻYTA NA POWIERZCHNIĘ WŁAŚCIWĄ WYZNACZANĄ Z METOD ADSORPCYJNYCH. Alicja Szatanik-Kloc, Dawid Wiater

Zjawiska powierzchniowe

Badanie właściwości odpadów przemysłowych jako wstępny etap w ocenie ich oddziaływania na środowisko

METALE CIĘŻKIE W UKŁADZIE GLEBA-ROŚLINOŚĆ W ŚRODOWISKU WIELKOMIEJSKIM

w gruntach w zasięgu oddziaływania elektrociepłowni owni Czechnica w Siechnicach.

Acta Agrophysica, 2010, 15(1), WPŁYW ph ORAZ JONÓW Cu 2+ i Zn 2+ NA ZAWARTOŚĆ WAPNIA W śycie (Secale cereale L.) 1

Adsorpcja wybranych jonów metali ciężkich na biowęglu pochodzącym z komunalnych osadów ściekowych

Zawartość składników pokarmowych w roślinach

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

SORPCJA WILGOCI SORPCJA WILGOCI

Wykład 13. Anna Ptaszek. 4 stycznia Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 13.

Tytuł prezentacji. Możliwość wykorzystania biowęgla w rekultywacji gleb zanieczyszczonych. metalami ciężkimi

Wpływ niektórych czynników na skład chemiczny ziarna pszenicy jarej

SORPCJA PARY WODNEJ NA ŁUSZCZYNACH RZEPAKU

ANEKS 5 Ocena poprawności analiz próbek wody

WŁAŚCIWOŚCI POWIERZCHNIOWE GLEBY ZE STANOWISKA ARCHEOLOGICZNEGO NR 4 W BISKUPINIE SORPCJA PARY WODNEJ. Zofia Sokołowska 1, Leszek Babiński 2

MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl. CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT

Możliwość zastosowania biowęgla w rolnictwie, ogrodnictwie i rekultywacji

Wpływ intensywności użytkowania łąki na glebie torfowo-murszowej na wielkość strumieni CO 2 i jego bilans w warunkach doświadczenia lizymetrycznego

Fizyczne działanie kwasów humusowych: poprawa napowietrzenia (rozluźnienia) gleby. poprawa struktury gleby (gruzełkowatość) zwiększona pojemność wodna

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Bilans fosforu i potasu w zmianowaniu jako narzędzie efektywnej gospodarki azotem. Witold Grzebisz Uniwersytet Przyrodniczy w Poznaniu

KARTA KURSU (realizowanego w module specjalności) Biologia z ochroną i kształtowaniem środowiska

RÓŻNICE ODMIANOWE W AKUMULACJI KADMU I OŁOWIU PRZEZ RZODKIEWKĘ (RAPHANUS SATIVUS L.)

w badaniach rolniczych na pszenicy ozimej w Polsce w latach 2007/2008 (badania rejestracyjne, IUNG Puławy)

2 Chmiel Polski S.A., ul. Diamentowa 27, Lublin

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

Makro- i mikroskładniki w dokarmianiu dolistnym kukurydzy

Fizjologiczne i molekularne markery tolerancji buraka cukrowego na suszę. Dr Danuta Chołuj

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

niezbędny składnik pokarmowy zbóż

AKUMULACJA METALI CIĘŻKICH W RUNI TRAWIASTEJ ROSNĄCEJ W SĄSIEDZTWIE GŁÓWNYCH ARTERII KOMUNIKACYJNYCH LUBLINA

Wpływ nawożenia buraka cukrowego na jakość surowca. Witold Grzebisz

Nawożenie dolistne roślin w warunkach stresu suszy. Maciej Bachorowicz

INNOWACYJNY SPOSÓB WAPNOWANIA PÓL

Instrukcja do ćwiczeń laboratoryjnych

ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA

Biowęgiel w remediacji zanieczyszczeń w środowisku gruntowo-wodnym

Sylwester Smoleń* ) on uptake and accumulation of Al, B, Cd, Cr, Cu, Fe, Li, Ti and V in carrot storage roots.

Analiza i monitoring środowiska

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 277

Termodynamika fazy powierzchniowej Zjawisko sorpcji Adsorpcja fizyczna: izoterma Langmuira oraz BET Zjawiska przylegania

ZAKŁAD ŻYWIENIA ROŚLIN I NAWOŻENIA. ZLECENIODAWCA: VET-AGRO Sp. z o. o. ul. Gliniana 32, Lublin. Nr umowy: /16

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Agric., Aliment., Pisc., Zootech.

Zakład Produkcji Roślinnej i Nawadniania, Akademia Rolnicza ul. Słowackiego 17, Szczecin

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów

BADANIA TOKSYCZNOŚCI ZANIECZYSZCZEŃ ORGANIZMÓW WODNYCH (PN -90/C-04610/01;03;05)

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Reakcja zbóż jarych i ozimych na stres suszy w zależności od kategorii gleby. mgr inż. Beata Bartosiewicz, mgr Ludwika Poręba

2

WPŁYW ZMIAN ZAWARTOŚCI WODY NA TWARDOŚĆ ZIARNA PSZENICY PODCZAS PRZECHOWYWANIA W SILOSIE W WARUNKACH MODELOWYCH

ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO

Wprowadzenie. Danuta WOCHOWSKA Jerzy JEZNACH

I: WARUNKI PRODUKCJI RO

Zagrożenie eutrofizacją i zakwaszeniem ekosystemów leśnych w wyniku koncentracji zanieczyszczeń gazowych oraz depozytu mokrego

2 Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, ul. Doświadczalna 4, Lublin

w badaniach rolniczych na pszenżycie ozimym w Polsce w latach 2007/2008 (badania rejestracyjne, IUNG Puławy)

WPŁYW MIKROFALOWEJ STYMULACJI SADZENIAKÓW ZIEMNIAKA NA WZROST I ROZWÓJ ROŚLIN POTOMNYCH

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH. Ćwiczenie nr 6. Adam Pawełczyk

BADANIE ZMIAN ZACHODZĄCYCH W MASACH Z BENTONITEM POD WPŁYWEM TEMPERATURY METODĄ SPEKTROSKOPII W PODCZERWIENI

Ocena zastosowania geokompozytów sorbujących wodę w uprawie miskanta olbrzymiego i traw na podłożach rekultywacyjnych - raport

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

WPŁYW DAWEK AZOTU NA ZAWARTOŚĆ Ca, Mg, S i Na W BIOMASIE ŚLAZOWCA PENSYLWAŃSKIEGO (SIDA HERMAPHRODITA RUSBY) Stanisław Kalembasa, Beata Wiśniewska

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 277

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1044

Helena Kubicka*, Natalia Jaroń* żyta (Secale cereale L.) of rye seedlings (Secale cereale L.)

STAN WŁAŚCIWOŚCI AGROCHEMICZNYCH GLEB I ZANIECZYSZCZEŃ METALAMI CIĘŻKIMI GRUNTÓW NA UŻYTKACH ROLNYCH STAROSTWA POWIATOWEGO RACIBÓRZ W GMINIE NĘDZA

Pierwiastki bloku d. Zadanie 1.

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

ZAWARTOŚĆ METALI CIĘŻKICH W GLEBACH W RÓŻNYCH PORACH ROKU

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1044

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja

WYDARZENIA Centrum Badawczo-Innowacyjne Instytutu Agrofizyki PAN w Lublinie

OKREŚLENIE WPŁYWU NAWOŻENIA I ZAGĘSZCZENIA FASOLI NA WZROST ROŚLIN

Nawożenie zbóż jarych i trwałych użytków zielonych azotem!

Sabina Dołęgowska, Zdzisław M. Migaszewski Instytut Chemii, Uniwersytet Humanistyczno- Przyrodniczy Jana Kochanowskiego w Kielcach

WYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ

Badanie Nmin w glebie i wykorzystanie tych wyników w nawożeniu roślin uprawnych. Dr inż. Rafał Lewandowski OSCHR Gorzów Wlkp.

Nawożenie warzyw w uprawie polowej. Dr Kazimierz Felczyński Instytut Ogrodnictwa Skierniewice

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

PRZEDMIOT ZLECENIA. Odebrano z terenu powiatu Raciborskiego próbki gleby i wykonano w Gminie Kornowac:

WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH

Aleksandra Bielicka*, Ewa Ryłko*, Irena Bojanowska* ZAWARTOŚĆ PIERWIASTKÓW METALICZNYCH W GLEBACH I WARZYWACH Z OGRODÓW DZIAŁKOWYCH GDAŃSKA I OKOLIC

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM

CZYNNIKI KSZTAŁTUJĄCE STĘŻENIE SIARKI W ROZTWORZE GLEBOWYM FACTORS DETERMINING SULPHUR CONCENTRATION IN THE SOIL SOLUTION

Bez fosforu w kukurydzy ani rusz!

ADSORPCJA BŁĘKITU METYLENOWEGO I JODU NA WYBRANYCH WĘGLACH AKTYWNYCH

PRZEDMIOT ZLECENIA :

Silny rozwój korzeni rzepaku nawet w trudnych warunkach! Jest sposób!

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI

Za poprawną metodę Za poprawne obliczenia wraz z podaniem zmiany ph

AtriGran szybko i bezpiecznie podnosi ph gleby. AtriGran błyskawicznie udostępnia wapń. AtriGran usprawnia pobieranie makroskładników z gleby

Wykorzystaniem biowęgla jako podłoża w produkcji szklarniowej ogórka i pomidora

Doświadczenia polowe w Kampanii 2017/2018 w Nordzucker Polska SA

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

Transkrypt:

Acta Agrophysica, 2008, 12(2), 337-345 WPŁYW JONÓW KADMU NA POZORNĄ POWIERZCHNIĘ WŁAŚCIWĄ KORZENI JĘCZMIENIA (HORDEUM VULGARE. L) Natalia Hrebelna 1*, Alicja Szatanik-Kloc 2, Zofia Sokołowska 2 1 Wydział Ekologii i Biologii, Lwowski Uniwersytet Rolniczy w Dublanach ul. V. Velukogo 1, Ukraina 2 Instytut Agrofizyki PAN im. Bohdana Dobrzańskiego, ul. Doświadczalna 4, 20-290 Lublin e-mail: a.kloc@.ipan.lublin S t r e s z c z e n i e. Celem przeprowadzonych badań było, określenie wpływu intensywności (stęŝenia) i czasu trwania stresu kadmowego na zmianę pozornej powierzchni właściwej korzeni. W badaniach wykorzystano korzenie jęczmienia jarego odmiany Pejas. Rośliny pochodziły ze stacji badawczej w Dublanach, stanowiącej obiekt doświadczalny Uniwersytetu Rolniczego we Lwowie. Do gleby (czarnoziem leśno-stepowy, wyługowany, wytworzony z lessu) dodano kadm jako CdCl 2 w stęŝeniach 0, 3, 15, 30 mg kg gleby. Pozorną powierzchnię właściwą wyznaczano z izoterm adsorpcji (w oparciu o teorię BET), dla korzeni zebranych w fazie wschodów i w fazie pełnej dojrzałości. Pod wpływem jonów Cd +2 pozorna powierzchnia właściwa zmniejszyła się. Zaobserwowano Ŝe, dla korzeni w fazie wschodów najbardziej istotne zmniejszenie się powierzchni nastąpiło przy stęŝeniu Cd +2 3 mg kg gleby. Zdecydowanie bardziej istotne zmiany powierzchni właściwej (bez względu na nasilenie stresu) odnotowano dla korzeni zebranych w fazie pełnej dojrzałości. Czas trwania stresu istotnie wpłynął na zmiany powierzchni właściwej. Związane jest to prawdopodobnie ze zmianami procesów fizjologicznych w roślinie pod wpływem stresu, a takŝe z mechanizmami tolerancji na stres kadmowy. S ł o wa kluczowe: kadm, korzenie jęczmienia, pozorna powierzchnia właściwa WSTĘP Naturalna zawartość kadmu w glebach zaleŝy w duŝym stopniu od występowania tego metalu w skałach macierzystych. DuŜy wpływ czynników antropoge- * Stypendystka projektu Interregionalnego Centrum Edukacji w Instytucie Agrofizyki PAN w Lublinie, współfinansowanego przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach programu sąsiedztwa Polska-Białoruś-Ukraina INTERREG IIIA/TACIS CBS 2004-2006.

338 N. HREBELNA i in. nicznych (odpady komunalne, nawozy fosforowe, pyły hut metali niezaleŝnych) spowodował, Ŝe jest to obecnie metal najbardziej wzbogacony w glebach. Ponadto kadm wykazuje duŝą mobilność, która wzmaga się wraz ze spadkiem ph gleby, niezaleŝnie od jej typu (Japony i Young 1994, Kabata-Pendias i Pendias 1999, Alcantara i in. 2001, Appel i Ma 2002). Rośliny przyswajają kadm stosunkowo łatwo (głównie przez korzeń) bez względu na właściwości gleby, a wiec wprost proporcjonalnie do jego stęŝenia w roztworze glebowym (Wójcik i Tukiendorf 2005). Łatwo równieŝ transportują jony kadmu do części nadziemnych. Niemniej jednak przy duŝych stęŝeniach kadmu w roztworze glebowym kumuluje się on głównie w korzeniach roślin. Zawartość kadmu w roślinach jest bardzo zróŝnicowana, najczęściej wynosi ona w częściach nadziemnych 0,05-0,2 mg g -1 suchej masy. Przy czym w korzeniach jest go od kilku do kilkunastu razy więcej. Fitotoksyczne koncentracje określane są dla roślin wraŝliwych na 5-10 mg g -1 suchej masy, dla roślin odpornych 10-30 mg g -1 (Kabata-Pendias i Pendias 1999). Zanieczyszczenie gleb kadmem jest istotnym zagroŝeniem skaŝenia roślin. Większość roślin wykazuje duŝą tolerancję na ten metal i to właśnie ze względu na nią, a takŝe z uwagi na wyjątkową łatwość biokumulacji, kadm stanowi wyjątkowe szkodliwe źródło, zarówno dla zwierząt jak i człowieka.. Stres związany z fitotoksycznością metali cięŝkich (a więc i kadmu) w środowisku roślinnym tj. roztworze glebowym lub poŝywce wpływa na zmiany procesów metabolicznych i fizjologicznych w roślinie, a takŝe na jej zmiany anatomiczne i morfologiczne. Zmiany te z reguły wpływają równieŝ na zmianę powierzchni właściwej korzeni. Wielkość powierzchni właściwej jest jedną z wielkości fizykochemicznych, charakteryzujących sorpcję i transport wody oraz makro i mikroelementów, a takŝe pierwiastków toksycznych przez korzeń. Do pomiarów naturalnych powierzchni heterogenicznych wykorzystuje się najczęściej jedną z metod sorpcyjnych mianowicie, metodę adsorpcji-desorpcji pary wodnej (polarnego adsorbatu) lub azotu (niepolarnego adsorbatu). Reakcja roślin na stres zaleŝna jest od odporności roślin, czasu trwania stresu oraz jego nasilenia. Celem przeprowadzonych badań było, określenie wpływu intensywności (stęŝenia) i czasu trwania stresu kadmowego na zmianę pozornej powierzchni właściwej 1, wyznaczanej z izoterm adsorpcji pary wodnej. 1 Pojęcie powierzchnia właściwa (surface area) stosowane jest dla powierzchni heterogenicznych o wyraźnie zaznaczonej róŝnicy pomiędzy procesem adsorpcji a procesem absorpcji (np. gleb mineralnych). Dla adsorbentów organicznych granica pomiędzy tymi procesami jest trudna do oznaczenia. Dlatego teŝ Chiou i współautorzy (1990) zaproponowali w przypadku adsorbentów organicznych stosowanie zamiast terminu surface area (powierzchnia właściwa) terminu apparent surface area (pozorna powierzchnia właściwa) dla powierzchni oznaczanych polarnym adsorbatem (parą wodną). Dlatego teŝ w pracy stosowno termin pozorna powierzchnia właściwa w odniesieniu do korzeni (adsorbentu organicznego).

WPŁYW JONÓW KADMU NA POZORNĄ POWIERZCHNIĘ WŁAŚCIWĄ KORZENI 339 MATERIAŁ I METODY W badaniach wykorzystano korzenie jęczmienia jarego odmiany Pejas. Rośliny pochodziły ze stacji badawczej w Dublanach, stanowiącej obiekt doświadczalny Uniwersytetu Rolniczego we Lwowie. Obszar ok. 300 m 2 gleby (czarnoziem leśnostepowy, wyługowany, wytworzony z lessu) podzielono na 21 poletek doświadczalnych wielkości około 2 m 2. Na trzech poletkach wysiano jęczmień, który stanowił wariant kontrolny( bez czynnika stresowego). Rośliny jęczmienia pobrano w róŝnych fazach rozwoju: w fazie wschodów (z jednego poletka), kolejne w fazie kwitnienia (z drugiego poletka) i z trzeciego poletka pobrano rośliny jęczmienia w fazie pełnej dojrzałości. Na dziewięciu poletkach równieŝ wysiano jęczmień i dodano do gleby kadm jako roztwór CdCl 2 w stęŝeniach 3, 15, 30 mg kg gleb, po 3 poletka na kaŝdy wariant stęŝenia, na pozostałych 9 poletkach czynnik stresowy stanowił ołów, który nie jest przedmiotem niniejszej pracy (Sokołowska i in. 2007). Rośliny jęczmienia z tych poletek doświadczalnych pobrano analogicznie jak dla wariantu kontrolnego. Do określenia wpływu jonów Cd +2 na zmiany powierzchni właściwej uŝyto korzeni jęczmienia w fazie wschodów i w fazie pełnej dojrzałości. Pozorną powierzchnię właściwą badanych korzeni wyznaczano z izoterm adsorpcji pary wodnej. Pomiar izoterm adsorpcji pary wodnej na korzeniach przeprowadzono zgodnie z Polską Normą PN-Z-19010-1. PoniewaŜ norma ta dotyczy gleb, metoda wyznaczania powierzchni właściwej dla korzeni roślin wymagała adaptacji, głównie dotyczących masy próbki, wstępnego jej dosuszenia i czasu ustalania się równowagi adsorpcyjnej. W oparciu o badania prezentowane w pracach Szatanik-Kloc (2000, 2006), pomiar izoterm adsorpcji na korzeniach jęczmienia, wykorzystanych w niniejszych badaniach przeprowadzono następująco: wstępnie suszony w temperaturze 303K przez 48 godzin i rozdrobniony materiał korzeniowy o masie 0,3 g umieszczono w szczelnych naczyńkach wagowych. Następnie naczyńka wagowe z próbką postawiono w komorze próŝniowej, w temperaturze 293 K, nad roztworami kwasu siarkowego o kolejno malejącej, a następnie rosnącej gęstości (wzrost i spadek względnej pręŝności pary wodnej). Masę wilgotnych próbek określono poprzez waŝenie, natomiast względną pręŝność pary wodnej w komorze, p/p o, poprzez pomiary gęstości kwasu siarkowego. Ilość zaadsorbowanej przez korzenie pary wodnej przy danym p/p o obliczono z róŝnicy masy próbki wilgotnej (mierzonej przy danych p/p 0 ) i suchej masy danej próbki. Suchą masę określono po 24 godzinach suszenia próbek w temperaturze 378 K. Do opisu danych doświadczalnych zastosowano model adsorpcji BET (Brunauer i in. 1938, Ościk 1983). Izoterma adsorpcji BET, w postaci liniowej wyraŝa się równaniem: y/a = 1/(a m C) + x (C 1)/ (a m C ) (1)

340 N. HREBELNA i in. gdzie y = x/(1 x), x = p/p o, p o (Pa) jest względną pręŝnością pary wodnej, a m (kg kg -1 ) jest ilością zaadsorbowanego adsorbatu przy określonej pręŝności pary wodnej, w danej temperaturze T (K). C = exp[ (Ea-Ec)/RT] jest stałą w równaniu przy Ea energii adsorpcji i Ec energii kondensacji i stałej gazowej RT. Równanie BET wyprowadzone było w oparciu o model adsorpcji zlokalizowanej na powierzchni homogenicznej. Model ten zakłada tworzenie się wielocząsteczkowych warstw adsorpcji. Równanie to obejmuje zakres względnych ciśnień adsorbatu p/p o od 0,05 do 0,35. Na podstawie równania (1) wyznaczono statystyczną pojemność monowarstwy w oparciu, o którą obliczono pozorną powierzchnię właściwą korzeni S z równania: S = Lωa m /M, (2) gdzie; ω = 1,08 10 19 jest powierzchnią zajmowaną przez jedną molekułę pary wodnej, L (mol -1 ) to liczba Avogadro, M (kg mol -1 ) masa cząsteczkowa jednej molekuły pary wodnej. Zawartość kadmu w korzeniach jęczmienia wyznaczono metodą AAS (Perkin-Elmer model 3300), po wstępnej mineralizacji próbek korzeniowych, na sucho w piecu muflowym typ FCF 12 SP. WYNIKI I DYSKUSJA Na rysunku 1 przedstawiono początkowe fragmenty izoterm adsorpcji pary wodnej na korzeniach jęczmienia. Jak wynika z analizy tego rysunku, pod wpływem stresu kadmowego zmniejszyła się ilość zaadsorbowanej pary wodnej na badanych korzeniach. PrzedłuŜający się stres kadmowy (korzenie zebrane w fazie pełnej dojrzałości) zdecydowanie bardziej wyraźnie obniŝył adsorpcję pary wodnej w porównaniu z korzeniami, których wzrost i rozwój odbywał się bez czynnika stresowego, a takŝe w porównaniu do korzeni zebranych w fazie wschodów. Obliczona w oparciu o dane sorpcyjne pozorna powierzchnia właściwa (tab. 1) korzeni zebranych w fazie pełnej dojrzałości, równieŝ wyraźnie zmniejszyła się dla korzeni stresowanych jonami kadmu (w odniesieniu do korzeni kontrolnych i zebranych w fazie wschodów). Przy czym nie odnotowano istotnych zmian pozornej powierzchni właściwej pomiędzy korzeniami zebranymi w fazie pełnej dojrzałości, przy roŝnym nasileniu stresu (tab. 2). Dla korzeni młodszych roślin (faza wschodów) największy wpływ na zmniejszenie się pozornej powierzchni właściwej miały jony kadmu, dodane do gleby w stęŝeniu 3 mg kg. Kadm dodany do gleby w wyŝszych stęŝeniach, 15 i 30 mg kg gleby tylko nieznacznie (na granicy istotności) zmniejszył badaną powierzchnię korzeni jęczmienia Pejas.

WPŁYW JONÓW KADMU NA POZORNĄ POWIERZCHNIĘ WŁAŚCIWĄ KORZENI 341 Rys. 1. Izotermy adsorpcji pary wodnej dla badanych korzeni jęczmieni (faza wschodów i pełnej dojrzałości). StęŜenia kadmu (Cd) - 0, 3, 15, 30 mg kg gleby) Fig. 1. Water vapor adsorption ishoterms for the barley roots studied (stage emergence and full maturity). Cadmum (Cd) concentration - 0, 3, 15, 30 mg kg of the soils Tabela 1. Pozorna powierzchnia właściwa (S) korzeni jęczmienia, śr. z trzech powtórzeń (± ufność 95%) Table 1. Apparent surface area (S) of barley roots, average of three replicates (± confidence 95%) Warianty Treatments S (m 2 g -1 ) Wschody Emergence S (m 2 g -1 ) Pełna dojrzałość Full maturity Cd 0 143,5±0,2 160,9±0,5 Cd 3 124,9±0,5 121,9±0,4 Cd 15 137,9±0,4 132,5±0,7 Cd 30 139±0,3 124.3±0,6 Analiza zawartości jonów kadmu w korzeniach (rys. 2) wykazała, Ŝe wzrost stęŝenia w podłoŝu tego metalu cięŝkiego, spowodował równieŝ zwiększenie jego zawartości w korzeniach jęczmienia Natomiast, w miarę przedłuŝania się stresu kadmowego, zawartość kadmu w korzeniach zmniejszyła się.

342 N. HREBELNA i in. Tabela 2. t-test (test Studenta): dwuśladowy, typ-2-wariancje ze śr. próby nie róŝnią się istotnie między sobą ( średnie są jednakowe w ±95% przedziale ufności); 1 prawda, 0 fałsz Table 2. t-test (Student-T): Two-tailed, Type-2- variances for averages of samples do not differ significantly from one another (averages are the same for ±95% of confidence interval); 1 truth, 0 false S (m 2 g -1 ) Wschody Emergence Pełna dojrzałość Full naturity Cd0 Cd3 Cd15 Cd30 Cd0 Cd3 Cd15 Cd30 Cd0 1 0 0 0 1 0 0 0 Cd3 0 1 0 0 0 1 0 1 Cd15 0 0 1 1 0 0 1 1 Cd30 0 0 1 1 0 1 1 1 Zaobserwowano Ŝe, zawartość kadmu w korzeniach zebranych w fazie pełnej dojrzałości jest prawie dwukrotnie mniejsza niŝ w korzeniach roślin zebranych w fazie wschodów (rys. 2). Wynika to z faktu, Ŝe kadm wykazuje wyjątkową łatwość w przemieszczaniu się zarówno z gleby do korzenia, jak teŝ z korzenia do części nadziemnych. Stąd teŝ część pobranego z gleby kadmu znalazła się równieŝ w masie części nadziemnych a ta zdecydowanie była większa u roślin starszych (pełna dojrzałość). Rys. 2. Zawartość jonów Cd +2 w korzeniach jęczmienia jarego (Pejas) Fig. 2. Concentration of Cd +2 ions in roots of spring barley (Pejas) Ponadto, jak podaje literatura przedmiotu, u niektórych rośliny wraŝliwość na duŝe dawki kadmu wzrasta wraz z wiekiem. Skórzyńska-Polit i Baszyński

WPŁYW JONÓW KADMU NA POZORNĄ POWIERZCHNIĘ WŁAŚCIWĄ KORZENI 343 (1997) zaobserwowali Ŝe, młode rośliny fasoli skuteczniej chroniły swój aparat fotosyntezy i łatwiej adaptowały się do warunków stresu kadmowego niŝ rośliny starsze. Koncentracja jonów kadmu w badanych korzeniach jęczmienia, nie jest bezpośrednio związana ze zmianą wielkości pozornej powierzchni właściwej. Współczynnik korelacji Persona pomiędzy pozorną powierzchnią właściwą a zawartością jonów kadmu w korzeniach wynosił dla wschodów r = 0,27, a dla fazy pełnej dojrzałości r = 0,68. Lepsza korelacja dla korzeni zebranych w fazie pełnej dojrzałości raczej była związana z czasem trwania stresu. Czyli Ŝe, wpływ na zaobserwowane zmiany powierzchni właściwej badanych korzeni mają mechanizmy odpornościowe samej rośliny i/lub zmiany fizjologiczne zachodzące w korzeniach pod wpływem fitotoksyczności kadmu. O poziomie tolerancji danej rośliny w stosunku do określonego metalu, decyduje szereg mechanizmów zaangaŝowanych w obronę roślin. Z dotychczasowych badań wynika, Ŝe głównym mechanizmem obronnym roślin w stosunku do kadmu, jest detoksykacja przy udziale fitochelatyn i akumulacja w ścianie komórkowej (Baranowska-Morek 2003). W niektórych gatunkach roślin akumulacja PCs (fitochelatyny) wyraźnie wzrastała, szczególnie w korzeniach wraz ze wzrostem fitotoksycznych dawek kadmu (Wójcik i in. 2006). Ponadto potencjalnymi ligandami jonów metali mogą być kwasy organiczne (cytrynowy, jabłkowy szczawiowy). Przypuszcza się, Ŝe na fitotoksyczne stęŝenia kadmu, rośliny reagują zwiększonym wydzielaniem kwasu cytrynowego (Siedlecka i in. 2001). JuŜ uruchamianie samych mechanizmów obronnych w roślinie, moŝe wpływać na zmianę właściwości fizykochemicznych korzenia, takich chociaŝby jak spadek ładunku powierzchniowego, co prowadzi do zmniejszenia się całkowitej pojemności kationowymiennej, a dalej do ograniczenia pobierania innych kationów, niezbędnych roślinie do prawidłowego funkcjonowania (Szatanik-Kloc i in. 2007). W przypadku kadmu szczególne antagonistyczne interakcje zachodzą pomiędzy Cd i Zn. Zmiana właściwości fizykochemicznych korzenia, w tym oczywiście powierzchni właściwej pod wpływem fitotoksyczności kadmu, związana jest równieŝ ze zmianami morfologicznymi, anatomicznymi i fizjologicznymi jakie zachodzą w roślinie pod wpływem fito stresu kadmowego. Objawy toksyczności nie są specyficzne. Najczęściej naleŝą do nich: skręcenie liści, plamy chlorotyczne i brunatne liści oraz skrócenie i zgrubienie korzeni. Fizjologiczny efekt nadmiaru kadmu to między innymi zaburzenie fotosyntezy, transpiracji, przemiany związków azotowych a takŝe zmiany przepuszczalności błon komórkowych i struktury DNA (Kabata-Pendias i Pendias 1999). Zarówno, zmiany fizjologiczne zachodzące w roślinie pod wpływem fitotoksyczności kadmu jak i mechanizmy odpornościowe, działające w rośliny (najczęściej jednocześnie, z róŝną intensywnością, zaleŝną od jej wraŝliwości) są ze sobą powiązane i często występują jednocześnie lub jako następstwa wynikające z takiej lub innej reakcji roślin na stres. Bioche-

344 N. HREBELNA i in. miczne właściwości jonów kadmu wykazują duŝe powinowactwo do sulfohydrylowych grup róŝnych związków, z którymi tworzą połączenia. Ponadto w warunkach stresu powstają fitochelatyny wiąŝące kadm. Kadm unieruchomiony zostaje równieŝ w ścianie komórkowej. To tylko niektóre z mechanizmów tolerancji mogące wpływać na powierzchnię właściwą badanych korzeni jęczmienia. Uwzględniając jeszcze, wyŝej wymienione zmiany fizjologiczne związane z przedłuŝającym się stresem kadmowym moŝemy przypuszczać, Ŝe to jedna lub wszystkie z tych reakcji roślin na fito stres były przyczyną zaobserwowanych zmian pozornej powierzchni właściwej badanych korzeni jęczmienia jarego. WNIOSKI 1 Pozorna powierzchnia właściwa badanych korzeni jęczmienia jarego odmiany Pejas zmniejszyła się pod wpływem stresu kadmowego. Przy czym istotny wpływ na zmniejszenie się pozornej powierzchni właściwej miał czas trwania stresu. 2 Korzenie jęczmienia zebrane w fazie pełniej dojrzałości zdecydowanie bardziej zmniejszyły swoją pozorną powierzchnię właściwą w porównaniu z korzeniami roślin kontrolnych (bez dodatkowej aplikacji jonów kadmu), a takŝe z korzeniami zebranymi w fazie wschodów (krótszy czas oddziaływania stresu kadmowego). PIŚMIENNICTWO Alcantara A., Ginhaus A. M., Ojeda M. A., Benitez M. J., Benlloch M., 2001. Metal accumulation by different plant species grown in contaminated media. W.J. Horst et. al. (Eds.) Plant nutrition Food security and sustainability of agro-ecosystems, 460-461. Appel C., Ma L., 2002. Concentration, ph and surface charge effects on cadmium and lead in three tropical soils. J. Environ. Qual. 31, 581-589. Baranowska-Morek A., 2003. Roślinne mechanizmy tolerancji na toksyczne działanie metali cięŝkich. Kosmos. Problemy Nauk Biologicznych, T. 52, Nr 2-3, 283-298. Brunauer S., Emmet P.H., Teller E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 309-314. Chiou C.T., Lee J.F., Boyd S.A., 1990. The surface area of organic matter. Environ. Sci. Technol. 24, 1164-1166. Japony M., Young S. D., 1994. The solid solution equilibria of lead and cadmium in polluted soils. Europ. J. Soil Sci. 84, 121-134. Kabata-Pendias A., Pendias H., 1999. Biogeochemia pierwiastków śladowych. Wydawnictwo PWN, Warszawa. Ościk J. 1983. Adsorpcja. PWN Warszawa. Polska Norma PN-Z-19010-1, 1997. Jakość gleby. Oznaczenie powierzchni właściwej gleb metodą sorpcji pary wodnej (BET). Polski Komitet Normalizacyjny, Warszawa.

WPŁYW JONÓW KADMU NA POZORNĄ POWIERZCHNIĘ WŁAŚCIWĄ KORZENI 345 Siedlecka A., Tukiendorf A., Skórzyńska-Polit E., Maksymiec W., Wójcik M., Baszyński T., Krupa Z., 2001. Angiosperms.[W:] Metals in the environment. Analysis by biodiversity. Prasad M. N. V. (red). Marcel Dekker, Inc. New York, Hyderabad, India, 171-217. Skórzyńska-Polit E., Baszyński T., 1997. Differences in sensitivity of photosynthetic apparatus in Cd-stresed runner bean plants in relation to their age. Plant Sci. 128, 11-21 Sokołowska Z., Hrebelna N., Hajnos M., 2007. Porosity of leached forest-meadow chernozem polluted with lead and cadmium. Acta Agrophysica 152, Vol. 10 (2), 455-464. Szatanik-Kloc A., 2000. Wpływ ph i stresu glinowego na właściwości fizykochemiczne powierzchni korzeni roślin zboŝowych. Rozprawa doktorska. Instytut Agrofizyki PAN, Lublin. Szatanik-Kloc A., 2006. Właściwości powierzchniowe korzeni wybranych roślin jednoliściennych i dwuliściennych; oznaczane metodą adsorpcji-desorpcji pary wodnej i azotu. Acta Agrophysics, 135 Vol. 7(4), 1015-1027 Szatanik-Kloc A., Sokołowska Z., Hrebelna N., 2007. Wpływ ph w warunkach stresu kadmowego na ładunek powierzchniowy korzeni jęczmienia (Hordeum vulgare L.), Acta Agrophysica 152, Vol. 10 (2), 473-482. Wójcik M and Tukiendorf A., 2005. Cadmium uptake, localization and detoxification in Zea mays. Biology Plantarum, 49(2), 237-245. Wójcik M., Skórzyńska-Polit E., Tukiendorf A., 2006. Organic acid accumulation and antioxidant enzyme activities in Thlaspi carelessness under Zn and Cd stress. Plant Growth Regulation, 48, 145-155. EFFECT OF CADMIUM IONS ON APPARENT SURFACE AREA OF BARLEY ROOTS (HORDEUM VULGARE L.) Natalia Hrebelna 1, Alicja Szatanik- Kloc 2, Zofia Sokołowska 2 1 Department of Ecology and Biology, Lviv State Agrarian University ul. V. Velukogo 1, Dublyany, Ukraine 2 Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin e-mail: a.kloc@ipan.lublin.pl Ab s t r a c t. The aim of investigations was to determine the influence of intensity and cadmium stress time on changes of apparent surface area of the roots. Spring barley roots variety Peas were studied. The plants were taken from the Dublany research field of the Lvov State Agrarian University. Cadmium was added to the soil (leached forest-meadow chernozem) in the form of CdCl 2 at concentrations of 0, 3, 15, 30 mg Cd +2 per kg of the soil. From the isotherms, apparent surface area was calculated using BET theory. The apparent surface area of the roots of the emergence stage and full maturity stage were studied. Under the influence of Cd +2 ions, apparent surface area decreased. Significant difference of the surface area was also observed for roots in the emergence stage and with cadmium concentration of 3 mg per kg of soil. Visible changes of the surface area (for all stress doses) were observed for roots in the full maturity stage. Stress time influenced significantly the surface area changes. It is probably connected with changes of physiological processes in the plant under influence of protracted stress and with tolerance mechanisms of cadmium stress. K e y wo r d s : apparent surface area, cadmium, roots The author wish to express their appreciation to the International Research and Education Centre in the Institute of Agrophysics PAS in Lublin. The Project is co-financed by the European Regional Development Fund within the Neighbourhood Programme Poland-Belarus-Ukraine INTERREG IIIA/TACIS CBC 2004-2006.