Mikroskop sił atomowych (AFM)



Podobne dokumenty
I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna 1.

AFM. Mikroskopia sił atomowych

Badanie powierzchni materiałów z za pomocą skaningowej mikroskopii sił atomowych (AFM)

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy)

Skaningowy mikroskop tunelowy STM

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

Mikroskopia skaningowa tunelowa i siłowa

1 k. AFM: tryb bezkontaktowy

Mikroskopia Sił Atomowych (AFM)

M2 Mikroskopia sił atomowych: badanie nanostruktur.

M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur

Mikroskop sił atomowych

Podstawy fizyki wykład 2

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element)

(Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11. Opis oferowanej dostawy OFERUJEMY:

Laboratorium nanotechnologii

Elementy pomiaru AFM

DOTYCZY: Sygn. akt SZ /12/6/6/2012

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Wykład 21: Studnie i bariery cz.2.

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Nanoskopowe metody charakteryzacji materiałów. Obrazek: Helsinki University of Technology tfy.tkk.fi/sin/research/

Zmiana rozdzielczości ekranu

Ćwiczenie 5 Badanie sensorów piezoelektrycznych

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Wyznaczanie stosunku e/m elektronu

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Badanie rozkładu pola elektrycznego

ĆWICZENIE 4a. Analiza struktury kompozytów polimerowych

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

Zmiana rozdzielczości ekranu

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Bierne układy różniczkujące i całkujące typu RC

Badanie rozkładu pola elektrycznego

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Praca i energia Mechanika: praca i energia, zasada zachowania energii; GLX plik: work energy

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wyznaczanie prędkości dźwięku w powietrzu

WZMACNIACZ NAPIĘCIOWY RC

Wprowadzenie do programu MultiSIM

Układ stabilizacji laserów diodowych

Ć W I C Z E N I E N R J-1

Stanowisko do pomiaru fotoprzewodnictwa

Opis przedmiotu zamówienia

Instrukcja obsługi spektrometru EPR

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Pomiar drogi koherencji wybranych źródeł światła

Ćw. 0 Wprowadzenie do programu MultiSIM

Badanie efektu Dopplera metodą fali ultradźwiękowej

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

EMISJA POLOWA. przechwytywania obrazów wideo FAST Capture i kartą video AVMaster Video v.2.5. FAST Multimedia (wewnątrz komputera);

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Pomiar prędkości światła

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

E107. Bezpromieniste sprzężenie obwodów RLC

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Załamanie światła, Pryzmat

KRAJOWA MAPA ZAGROŻEŃ BEZPIECZEŃSTWA INSTRUKCJA OBSŁUGI

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

KOMPUTEROWE METODY SYMULACJI W ELEKTROTECHNICE I ELEKTRONICE. ZASADA DZIAŁANIA PROGRAMU MICRO-CAP

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Interferometr Michelsona

Prof. dr hab. Maria Kozioł-Montewka

Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut.

Ćwiczenie - 8. Generatory

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

Badanie rozkładu pola elektrycznego

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Program APEK Użytkownik Instrukcja użytkownika

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

Ćwiczenie nr 43: HALOTRON

Badanie transformatora

Zworka amp. C 1 470uF. C2 100pF. Masa. R pom Rysunek 1. Schemat połączenia diod LED. Rysunek 2. Widok płytki drukowanej z diodami LED.

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

SYSTEMY OPERACYJNE I SIECI KOMPUTEROWE

Transkrypt:

Mikroskop sił atomowych (AFM) 1. Wprowadzenie Mikroskop sił atomowych (ang. Atomic Force Microscope AFM) został skonstruowany w 1986 r. w laboratorium IBM w Zurichu (Binnig G., Quate C.F., Gerber C., Phys. Rev. Lett., 1986, 56, 930-933) i jest pewna odmianą skonstruowanego 4 lata wcześniej mikroskopu tunelowego (ang. Scanning Tunneling Microscope - STM), za którego twórcy uzyskali w 1986 r. Nagrodę Nobla w dziedzinie fizyki. Oba te mikroskopy zalicza się do grupy mikroskopów ze skanującą sondą (ang. Scanning Probe Microscope SPM), nazywanych również mikroskopami bliskich oddziaływań. Podstawową różnicą między tymi mikroskopami są wielkości fizyczne, które są wykorzystywane do wytworzenia obrazu. Zarówno AFM jak i STM znajdują zastosowanie do badań budowy i właściwości powierzchni różnych materiałów. Topografia powierzchni to konfiguracja powierzchni uwzględniająca jej kształt oraz obecność i wzajemne położenie jej punktów charakterystycznych. 2. Mikroskop tunelowy W przypadku STM analizowaną wielkością jest natężenie prądu tunelowego, płynącego między powierzchnią badanej próbki a ostrzem pomiarowym. Natężenie prądu tunelowego zmienia się wykładniczo wraz z odległością ostrza od powierzchni, np. jeśli odległość ostrze/powierzchnia zmieni się on 1Å, prąd tunelowy zmienia się o rząd wielkości. Dzięki temu mikroskopy tunelowe wykazują czułość w skali z równą ułamkom Å, a w x-y równą rozdzielczości atomowej. Uzyskiwany obraz jest mapą gęstości elektronowej atomów na powierzchni. Stąd wynika jedno z ograniczeń tej metody, gdyż może być ona stosowana do badań materiałów przewodzących prąd elektryczny (a więc przewodników i półprzewodników). Największą zaletą STM jest możliwość badania właściwości elektronowych powierzchni z rozdzielczością atomową. Zasada działania STM Nad powierzchnią próbki, umieszczona jest sonda (igła, ostrze - wykonane z drutu wolframowego lub stopu platyna - iryd), którą można poruszać w sposób kontrolowany.

Ramię z przymocowaną igłą połączone jest z układem piezoelektrycznym (tzw. skanerem piezoelektryczny), który pod wpływem napięcia elektrycznego zmienia w niewielkim stopniu swe wymiary, a tym samym zmienia położenie igły umożliwiając jej przesuwanie się nad próbką. Komputer analizuje i zapamiętuje mapę prądów tunelowych dla każdego punktu próbki i na tej podstawie tworzony jest później obraz powierzchni próbki (Rys. 1). Rys 1. Zasada działania mikroskopu tunelowego STM. 3. Mikroskop sił atomowych W AFM analizuje się ugięcie dźwigni (belki, ang. cantilever) z ostrzem pomiarowym (ang. tip) pod wpływem sił oddziaływań pomiędzy atomami ostrza a atomami tworzącymi badaną powierzchnię. Wygięcie belki jest przetwarzanie przez detektor (fotodiodę) na sygnał prądowy, który następnie służy do generacji obrazu próbki. Dlatego (w przeciwieństwie do STM) metodę AFM można stosować zarówno w badaniach powierzchni materiałów przewodzących prąd elektryczny, jak i nieprzewodzących. Ponadto badania można prowadzić w próżni, w powietrzu, w gazach i w cieczach. Rozdzielczość teoretyczna w osi z wynosi nawet do 0,01 nm, a w osi x-y do 0,1 nm. W rzeczywistości rozdzielczość jest na ogół mniejsza i zależy od kształtu ostrza, rodzaju materiału, jego chropowatości i warunków pomiaru. W zależności od trybu pracy AFM, badane są siły przyciągania lub odpychania pomiędzy ostrzem pomiarowym a próbką (Rys. 2a). Siły przyciągania są siłami dalekiego

zasięgu i mierzone są w trybie bezkontaktowym (ang. non-contact mode), zaś siły odpychania mierzone są w trybie kontaktowym (ang. contact mode) (Rys. 2b). a b tapping c Rys. 2. Krzywa siła - odległość międzyatomowa (a) i schemat prowadzenia badań w trybie pracy AFM kontaktowym (b) i bezkontaktowym (c). 3.1. Kontaktowy tryb pracy W trybie pracy kontaktowym ostrze jest w bezpośrednim kontakcie z powierzchnią próbki i odległość pomiędzy atomami ostrza i próbki wynosi mniej niż 1 Å. W tym trybie, z uwagi na obecność sił odpychania, ramię belki wygięte jest w kierunku przeciwnym do próbki (Rys. 2b). Źródłem sił odpychania są oddziaływania pomiędzy orbitalami elektronowymi atomów na powierzchni badanej i na powierzchni ostrza. W tym układzie możliwe jest uzyskiwanie bardzo dokładnych obrazów powierzchni, jednak w przypadku materiałów miękkich, takich jak polimery, należy ograniczać siłę oddziaływań aby zapobiec niszczeniu próbki. Dodatkowy nacisk ostrza pomiarowego na próbkę jest powodowany działaniem sił kapilarnych (cząsteczki wody zaadsorbowane na powierzchni próbki) lub sił elektrostatycznych występujących między ładunkami, zlokalizowanymi na powierzchni próbki i ostrza pomiarowego. Dlatego w niektórych przypadkach, aby wyeliminować oddziaływania sił kapilarnych i elektrostatycznych, badania prowadzi się w cieczach.

Sonda pomiarowa (ostrze umieszczone na belce), sprzężona ze skanerem piezoelektrycznym, skanuje powierzchnię próbki. W czasie skanowania elementy topografii (tj. góry i doliny na powierzchni) powodują wychylenie belki w górę i w dół. Jednocześnie plamka lasera padająca na belkę i odbijająca się następnie od lustra do fotodetektora ulega przesunięciu odpowiednio w górę i w dół. Różnica intensywności światła w pomiędzy sektorem górnym i dolnym fotodetektora tj. (A+B) (C+D) używana jest do wytworzenia obrazu topograficznego AFM (ang. topography) lub obrazu zmiennej siły (ang. internal sensor, deflection). Różnica intensywności światła w pomiędzy sektorem lewym i prawym tj. (A+C) (B+D) używana jest do wytworzenia obrazu tarcia AFM (ang. friction) (Rys. 3). a b Rys. 3. Zasada działania mikroskopu AFM w trybie pracy kontakt (a) i podział fotodetektora na obszary (b). Skaner jest sprzężony z układem pomiaru ugięcia dźwigni fotodetektorem, tak aby utrzymać odpowiednie położenie ostrza pomiarowego w osi z (np. zachowana stała siła nacisku, ang. constant force lub odległość od powierzchni, ang. constant height). Sygnały z fotodiody i ze skanera przekazywane są do komputerowego generatora obrazu, dając obraz w kierunkach x-y-z. Mikroskop AFM w kontaktowym trybie pracy może jednocześnie rejestrować (Rys. 4): 1) Obrazy topograficzne (stała siła; ang. constant height) gdy jest utrzymywana stała siła nacisku ostrza na próbkę przy włączonej pętli sprzężenia zwrotnego. Z obrazów można wyznaczać wysokość elementów powierzchni, chropowatość. Jednostka nm lub μm. 2) Obrazy zmiennej siły (stała wysokość; ang. deflection, inernal sensor) z pomiaru prądu (zmiany wychylenia belki) przy wyłączonej pętli sprzężenia zwrotnego. Obrazy charakteryzują się dużą zdolnością rozdzielczą (szczegóły, kontrast) jednak nie można z nich mierzyć, np. chropowatości. Jednostka na.

a b Rys. 4. Kształt belki przy trybie pracy kontakt (a) i zmiennej siły (b). 3.2.Tryb pracy bezkontaktowy W trybie pracy bezkontaktowym mikroskop AFM pracuje w zakresie sił przyciągania dalekiego zasięgu i odległość ostrze pomiarowe-badana próbka wynosi 1-10 nm. W tym trybie, z uwagi na obecność sił przyciągania, ramię belki wygięte jest w kierunku próbki. Źródłem sił przyciągających są oddziaływania van der Waalsa atomów na powierzchni badanej i na powierzchni ostrza. Metoda ta jest przeznaczona do badań materiałów bardzo delikatnych i odkształcalnych, jednak warstwa zanieczyszczeń na powierzchni próbki (np. zaadsorbowanej wody) może wprowadzać artefakty (Rys. 2c). Metoda ta nie nadaje się do badań w płynach. W metodzie bezkontaktowej belka z ostrzem oscyluje z częstotliwością bliską częstości rezonansowej (100-400 khz) z amplitudą kilku kilkudziesięciu nm. Jak ostrze przybliża się do próbki ulegają zmianie częstotliwość i okres drgań sondy, które z jednej strony służą do kontrolowania pętli sprzężenia zwrotnego i do wytwarzania obrazu topograficznego powierzchni (Rys. 5). Rys. 5. Zasada działania mikroskopu AFM w bezkontaktowym trybie pracy. 3.3. Tryb pracy tapping

W trybie pracy polegającym na lekkim dotykaniu próbki (ang. tapping, intermittentcontact) mikroskop pracuje w zakresie odległości pokazanym na Rys. 2a. W metodzie bezkontaktowej belka z ostrzem oscyluje z częstotliwością bliską rezonansowej (100-400 khz) z amplitudą kilku kilkudziesięciu nm, jednak jest zbliżana do powierzchni na bliższą odległość niż w metodzie bezkontaktowej, tak że ostrze wchodzi w krótkotrwały kontakt z próbką. W wyniku krótkotrwałego kontaktu następuje rozpraszanie energii kinetycznej sondy, co powoduje zmniejszenie amplitudy drgań. Zmiany te są rejestrowane w układzie sprzężenia zwrotnego, gdzie dobierana jest automatycznie taka częstotliwość drgań, aby siłę oddziaływań pomiędzy ostrzem pomiarowym a próbką utrzymać na możliwie najniższym poziomie. Badania metodą tapping umożliwiają uniknięcie uszkodzeń powierzchni próbki, poprze eliminację sił tarcia i adhezji i są szczególnie zalecane do badań materiałów łatwo odkształcalnych i delikatnych, zarówno w płynach jak i w powietrzu. 4. Budowa mikroskopu sił atomowych 4.1. Skanery Zadaniem skanera jest przesuwanie ostrza pomiarowego nad próbką i próbki względem ostrza w czasie skanowania. Skanery wytwarza się z ceramicznych materiałów piezoelektrycznych (Pb,Zr)TiO 3 (tytanian ołowiowo-cyrkonowy, ang. Plumbum Zirconium Titanate, PZT), które pod wpływem przyłożonego napięcia zmieniają swoje wymiary. Skanery konstruuje się w postaci walców lub trójnogów (Rys. 6). Te pierwsze wykorzystuje się do małych obszarów skanowania do 20 μm x 20 μm, zaś drugie do obszarów skanowania 100 μm x 100 μm. a b b Rys. 6. Konstrukcja skanerów piezoelektrycznych: w kształcie walca (a) i trójnogu (b). 4.2. Sondy i ostrza pomiarowe

Sondy pomiarowe do AFM (belki zintegrowane z ostrzem) są produkowane najczęściej z azotku krzemu lub z czystego krzemu metodą technik litograficznych. Najpopularniejsze z nich maja kształt litery V, długość 100-200 μm, szerokość 10-40 μm a grubość od 0,3 do 2 μm. Różnią się one stałą sprężystości (od 0.01 100 N/m), częstością rezonansową i kształtem ostrza (Rys. 7). Promień krzywizny ostrzy wynosi od 10 do 100 nm. Kształt ostrza odgrywa istotną rolę w uzyskaniu dobrej rozdzielczości obrazów AFM. a b Rys. 7. Sonda AFM (belka z ostrzem na końcu) (a) i przykładowe kształty ostrzy (b) 4.3. Układ sprzężenia zwrotnego Zadaniem układu sprzężenia zwrotnego (ang. feedback loop) jest utrzymanie odpowiedniego położenia ostrza pomiarowego w stosunku do badanej próbki (Rys. 8). Podczas skanowania, układ sprzężenia zwrotnego porównuje sygnał z fotodiody (będący funkcją odległości ostrze pomiarowe próbka) z pewną wartością zadaną i zmienia napięcie przyłożone do skanera piezoelektrycznego, tym samym zmieniając odległość ostrze pomiarowe - próbka. Pozwala to na zachowanie stałej wielkości siły lub wysokości pomiędzy ostrzem a próbką. Dane o tych zmianach są przekazywane do generatora obrazu. Optymalne parametry pętli sprzężenia zwrotnego (PID, P proporcjonalny, I całkujący, D różniczkujący) ustala się indywidualnie dla każdej próbki, a zależą one od rodzaju próbki, szybkości skanowania, kształtu ostrza.

Rys. 8. Układ sprzężenia zwrotnego w AFM 4.4. Budowa Mikroskopu Explorer 1 3 2 4 Rys. 9. Budowa mikroskopu AFM Explorer: 1. Skaner piezoelektryczny 2. Sonda (ostrze zamontowane na belce) 3. Elektroniczna jednostka kontrolna 4.Komputer (kontrola parametrów skanowania i generacja obrazów) Rys. 10. Budowa głowicy mikroskopu AFM Explorer 5. Literatura 1. M. Żenkiewicz, Adhezja i modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych, Wyd. Naukowo-Techniczne, Warszawa 2000. 2. K.S. Birdi, Scanning Probe Microscopes, Applications in Science and Technology, CRC Press, Boca Raton USA, 2003. 3. Instrukcja obsługi mikroskopu EXPLORER INSTRUMENT OPERATION MANUAL

6. Cel ćwiczenia Celem ćwiczenia jest zarejestrowanie obrazów topograficznych tworzyw polimerowych za pomocą mikroskopu sił atomowych Explorer, a następnie dokonanie analizy uzyskanych obrazów. 7. Aparatura Badania przeprowadza się za pomocą mikroskopu sił atomowych Explorer. UWAGA! Należy zachować ostrożność aby nie uszkodzić mikroskopu. Pomiar można wykonywać tylko po uzyskaniu zgody prowadzącego i w jego obecności. 8. Wykonanie ćwiczenia 8.1. Zarejestrowanie obrazu próbki polimerowej 1. Próbkę należy przykleić do metalowej podkładki za pomocą taśmy dwustronnej. (Należy pamiętać aby nie dotykać próbki palcami) 2. Włączyć komputer, uruchomić program SPMLab1 poprzez kliknięcie na odpowiednią ikonę, wybrać skaner, kliknąć komendę Engage, i wybrać Image Acqusition lub kliknąć na ikonkę 3. Zapoznać się z funkcją ikon UWAGA Punkty 4-13 wykonuje prowadzący ćwiczenia laboratoryjne 4. Podnieść sondę znad próbki za pomocą śrub pokazanych na Rys 11a. 5. Zdjąć głowicę mikroskopu z podstawy i umieścić próbkę na podkładce magnetycznej (Rys. 11b).

a b Rys. 11. Budowa głowicy (a) i podstawy (b) mikroskopu AFM Explorer 6. Ostrożnie ustawić głowicę na podstawie zwracając uwagę aby najpierw umieścić śruby w dołkach (Z height screws recesses) i obserwować obraz sondy na monitorze. Belka z ostrzem musi być w bezpiecznej odległości od badanej powierzchni, aby nie spowodować zniszczenia mikroskopu. 7. Przybliżyć sondę pomiarową do powierzchni za pomocą śrub (Rys 11a). W celu lepszego uwidoczniania obrazu próbki i sondy zmieniać natężenie światła za pomocą pokrętła na urządzeniu 1001Chassis. Przybliżyć sondę do powierzchni za pomocą ikon 8. Ustawić parametry na panelu sterowania: Set Point =1 na, Scan Range= 20 m, Scan Rate =60 m/s, Resolution =300 pix, Proportional=1 Integral= 0.3 Derivative=0.

9. Włączyć ikonkę, włączyć laser zaznaczając High, włączyć oscyloskop,, ustawić na jednym kanale Inernal sensor, Feedback 10. Włączyć ikonę justowanie lasera za pomocą odpowiednich śrub ustawić następujące parametry lasera (Rys. 12). Najpierw ustawić T-B na ok. 0 na, następnie ustawić L-R na ok. 0 na i w końcu Sum > 18 na. Następnie wrócić do T-B i ustawić wartość od -55 do -30 na. Zwracać uwagę aby promień lasera był ustawiony na końcu belki. T-B Sum L-R Rys. 12. Śruby justowania lasera w mikroskopie AFM Explorer

11. Ustawić parametry skanowania: zaznaczyć topografię Fwd, Rev i inernal sensor Fwd, Rev. 12. Kliknąć na ikonę obserwując na oscyloskopie zmianę prądu. 13. Sprawdzić sensor response klikając na odpowiednią ikonę i jeśli wykres będzie zbliżony do linii prostej, można rozpocząć skanowanie poprzez kliknięcie na ikonkę 14. Zapisać uzyskane obrazy w folderze wskazanym przez prowadzonego, klikając na ikonę 15. Wykonać kolejne skany zmniejszając lub zwiększając obszary skanowania i zapisać wyniki. 16. Po zakończonym skanowaniu kliknąć na ikonę. Ostrze podniesie się na bezpieczną odległość nad próbką. Można wtedy zmienić badany obszar i dokonać analizy w innym miejscu. W tym celu należy wrócić do punktu 8 i wykonać wszystkie polecenia opisane w kolejnych punktach.

8.2. Wykonanie analizy uzyskanych obrazów topograficznych 1. W celu przejścia do trybu analiza obrazu naciśnij ikonę 2. Zapoznać się z funkcją ikon 3. Otwórz zarejestrowany obraz klikając na ikonę 4. Wypłaszcz uzyskany obraz klikając na ikonę 5. Włącz edycję danych i w razie potrzeby usuń błędne linie, punkty, artefakty związane z niestabilnymi warunkami prowadzenia pomiaru lub zakłóceniami, wibracjami. (prowadzenie obróbki danych wymaga pewnego doświadczenia i należy ją wykonywać w obecności prowadzącego, które które elementy są artefaktami i można je usunąć)

6. W celu zaokrąglenia wartości z wybierz polecenie Common Color Bar i w polu Common Range wpisz wartość zaokrągloną i możliwie taką sama dla wszystkich próbek. Umożliwi to potem porównywanie obrazów. 7. Dokonaj analizy chropowatości (Ra, R RMS ) a także Hsr, Hmax wybierając polecenie Analysis Area Analysis i zanotuj wyniki, następnie opuść okno. N N 1 1 2 R z - z R RMS ( zi - z) a N i 1 i N i 1 8. W celu zapisania obrazu w postaci *.tif wybierz polecenie Edit Screen Edit a następnie kliknij na ikonę Save as 9. Opuść Edycję klikając Exit 10. W celu przedstawienia obrazu w postaci 3D wybierz Display 3D Graphics, zaznacz OK, zmniejsz obraz o 50%. 11. W celu zapisania obrazu w postaci *.tif wybierz polecenie Edit Screen Edit a następnie kliknij na ikonę Save as 12. Opuść Edycję klikając Exit i zamknij zmodyfikowane obraz. UWAGA! Nie zapisuj zmodyfikowanych danych, bo utracone zostaną dane wyjściowe. Wyniki zapisujemy TYLKO w postaci obrazów *.tif. 9. Opracowanie wyników badań i przygotowanie sprawozdania UWAGA. Sprawozdanie należy przygotować w czasie trwania zajęć laboratoryjnych i oddać je prowadzącemu do oceny przed zakończeniem zajęć. W sprawozdaniu należy umieścić następujące punkty: 1. Cel ćwiczenia 2. Wyniki a. Wkleić wydrukowane obrazy AFM. b. W postaci tabeli zestawić wyniki chropowatości (Ra, R RMS ) a także Hsr, Hmax, umieszczając również dane statystyczne (odchylenie standardowe, liczba pomiarów). 3. Dyskusja wyników 4. Wnioski a. Zanalizować uzyskane obrazy topograficzne i wartości chropowatości.