Pomiary drogi (przemieszczenia) i kąta [5]

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pomiary drogi (przemieszczenia) i kąta [5]"

Transkrypt

1 Pomiary drogi (przemieszczenia) i kąta [5] Metody potencjometryczne Odwzorowanie wielkości wejściowej (droga, kąt) w zmianę oporności (R(x)). Obiekt pomiaru łączony jest bezpośrednio lub za pomocą przekładni ze ślizgaczem potencjometru (obrotowego lub liniowego) [5] Właściwości. Zakres -potencjometry obrotowe 0 o -360 o -liniowe 0-20 mm do 0-2m Oporność 100 Ω do 100kΩ Liniowość 0,05% 0,2% Trwałość cykli Pomiary statyczne i dynamiczne. Podatność na zużycie.

2 Metody indukcyjne wykorzystuje się oddziaływanie ciała ferromagnetycznego na indukcję magnetyczną w cewce. Czujnik dławikowy prosty (zmiana szczeliny powietrznej x) Indukcyjność obwodu L zależy od szczeliny powietrznej. L(x) jest nieliniowe stąd konieczność zastosowania linearyzacji. Czujnik dławikowy różnicowy Różnica sygnałów jest w przybliżeniu liniowa. Pomiary statyczne i dynamiczne.

3 Czujnik transformatorowy Wykorzystują zmianę indukcyjności wzajemnej między cewkami (obecność dodatkowej cewki wzbudzeniowej po stronie wtórnej) Pracuje przeważnie w układzie różnicowym [5] Właściwości: zakresy pomiarowe 0, mm liniowość 0,15..0,5 % dryf temperaturowy 0, ,01 %/K Pomiary statyczne i dynamiczne. Pomiar kontaktowy Podlega zużywaniu się Czujniki parametryczne wymagające zasilania

4 Czujnik wiroprądowy Podstawowe elementy układu: czujnik z cewką nawiniętą na izolatorze ceramicznym, generator wysokiej częstotliwości (1MHz). generowany prąd przepływa przez cewkę czujnika i wytwarza szybkozmienne pole magnetyczne indukujące prądy wirowe w przewodniku. Te z kolei wytwarzają pole magnetyczne które nakładając się na pierwotne zmienia oporność magnetyczną i indukcyjność cewki. Skutkiem zmian zależnych od odległości jest zmiana amplitudy i fazy prądu płynącego w obwodzie generatora (A(d),f(d)). demodulator, który przekształca powstający zmodulowany sygnał w niskoczęstotliwościowe zmiany napięcia zależne liniowo od odległości.

5 Właściwości: Charakterystyka liniowa w szerokim przedziale odległości Zakresy pomiarowy nawet do 4mm dla pomiarów statycznych Niewielkie rozmiary Zależność charakterystyki od przenikalności magnetycznej i kształtu czopa wału (wymagana odrębna kalibracja każdego układu) Wpływ temperatury na charakterystykę układu (np. 5% na 60C) Mała wartość składowej dynamicznej w porównaniu do składowej statycznej mierzonego na wyjściu demodulatora napięcia Zakres dynamiczny 500:1 Zakres częstotliwości 0-10kHz (teoretycznie) Hz (praktycznie) Pomiar bezkontaktowy Brak części ruchomych, brak zużycia z tym związanego Pomiary statyczne i dynamiczne Czujnik parametryczny wymagający zasilania

6 Metody pomiaru za pomocą sensorów pola magnetycznego (hallotrony) Sensory pola magnetycznego wykorzystują odchylenie ładunków poruszających się polu magnetycznym. [5] Cienka płytka półprzewodnikowa przez którą przesyłany jest prąd sterujący I o. Tory elektronów odchylane są przez składową pola magnetycznego o gęstości strumienia magnetycznego B z co powoduje powstanie różnicy potencjałów na poprzecznych stronach płytki U H (napięcie Halla U H (B z )). W celu pomiaru drogi magnes stały jest przymocowany do poruszającego się obiektu i prowadzony ponad nieruchomym czujnikiem. Właściwości Decydującą zaletą jest wytwarzanie elementów czujnika jak i elektroniki opracowującej za pomocą standardowej technologii półprzewodnikowej (zintegrowane w jednym chipie) Konieczność linearyzacji, duża czułość poprzeczna (B z ) zmienia się także w podczas ruchu pionowego do kierunku pomiaru. Pomiar statyczny i dynamiczny.

7 Metody pojemnościowe jako efekt pomiarowy wykorzystywana jest zmiana pojemności kondensatora płytowego (C(d)). W celu pomiaru mogą być wykorzystane zmiany powierzchni płyty, odległości płyt, przenikalności elektrycznych.

8 Właściwości: Możliwość wytwarzania prawie dowolnych charakterystyk poprzez odpowiednie ukształtowanie geometrii płyty. Nieczułość na wahania temperatury i możliwość pracy w wysokich temperaturach. Wpływ pojemności kabla łączącego przetwornik z innymi elementami układu pomiarowego. Pomiar statyczny i dynamiczny Zakres pomiarowy 0,1..10 mm Rozdzielczość 0, nm Liniowość 0,01% Czujniki parametryczne wymagające zasilania

9 Metody ultradźwiękowe - pomiar opiera się na pomiarze czasu przebiegu impulsu ultradźwiękowego od źródła do odbiornika. Jako przetworniki stosuje się elementy piezoelektryczne (przy przyłożeniu napięcia piezoelektryki odkształcają się). Przy krótkotrwałym pobudzeniu zmiennym napięciem drgają generując sygnał ultradźwiękowy (20kHz- 200kHz), który odbijając się od przeszkody wraca do tego samego przetwornika, który jest w stanie oczekiwania. Ponieważ efekt piezoelektryczny jest odwracalny (przy odkształcaniu wytwarza się na powierzchni ładunek elektryczny) ten sam element służy jako odbiornik.

10 [5] Właściwości: Konieczność zastosowania filtru pasmowego (blok przygotowanie sygnału) strojonego na częstotliwość generowanego sygnału. Zależność prędkości rozchodzenia się fali ultradźwiękowej od temperatury, wilgotności i ciśnienia stycznego powietrza (pomijalny).

11 Wpływ temperatury na prędkość fali akustycznej w powietrzu Prędkosć dźwięku [m/s] Temperatura [C] Przy wyskalowanym pomiarze dla temperatury 20 C i dalszych pomiarach np. w 100C błąd ok. 12% Konieczność kompensacji wpływu temperatury (zintegrowany czujnik temperatury) Własności przetwornika zależą od częstotliwości generowanej fali ultradźwiękowej: wyższe częstotliwości pozwalają na zwiększenie rozdzielczości pomiaru, ale są łatwiej pochłaniane przez powietrze. Należy także uwzględnić ewentualne zakłócenia od innych źródeł ultradźwięków. Należy wziąć pod uwagę silne pochłanianie ultradźwięków przez niektóre materiały o strukturze porowatej i o niewielkiej gęstości (np. tworzywa piankowe) lub niektóre gazy (np. CO 2 ) oraz minimalną wielkość rozpoznawanego obiektu. Pomiar statyczny i dynamiczny.

12 Magnetostrykcyjne czujniki drogi Magnetostrykcja efekt odkształcenia sprężystego ferromagnetyka pod wpływem zewnętrznego pola magnetycznego. [5] Element pomiarowy ( przewód falowy ) składa się z rury wykonanej z materiału magnetostrykcyjnego (np. stopy z udziałem niklu), w której wnętrzu znajduje się drut miedziany. Na ten drut podaje się impulsy elektryczne (np. o częstotliwości 1 khz) co powoduje powstanie kołowego pola magnetycznego w przewodzie falowym. W miejscu pomiaru położenia znajduje się magnes (przeważnie pierścieniowy) dający prostopadłe do przewodu falowego linie pola magnetycznego. Nakładanie się pól magnetycznych wywołuje efekt magnetostrykcji w przewodzie falowym i powoduje skręcenie przewodu falowego. Ponieważ przepływający prąd w przewodniku to krótki impuls w przewodzie powstaje fala skrętna rozchodząca się od miejsca lokalizacji magnesu pierścieniowego do obu końców przewodu falowego. Fala skrętna dociera do przetwornika piezoelektrycznego którego odkształcenie powoduje generację napięcia. W drugim kierunku fala jest wytłumiana poprzez tłumik. Czas od przyłożenia napięcia impulsu prądowego aż do rejestracji fali skrętnej przez przetwornik piezoelektryczny jest proporcjonalny do odległości miedzy magnesem ( z możliwością przemieszczania się) i końcem pręta. Pomiar drogi następuje w oparciu o pomiar czasu. Właściwości: Rozdzielczość µm przy długości nawet kilku metrów. Prostota budowy, możliwość stosowania w warunkach ekstremalnych. Pomiary statyczne i dynamiczne.

13 Nadajniki wartości absolutnej kąta - resolwery Resolwery optyczne składają się z tarczy szklanej z kilkoma współosiowo umieszczonymi ścieżkami z jasnymi i ciemnymi polami. [5] Ścieżki te są odczytywane przez promieniowo usytuowane bramki świetlne (fotoelementy). Liczba ścieżek ustala rozdzielczość resolwera. Za pomocą n ścieżek można zakodować 2 n położeń. Ostateczny zakres i rozdzielczość wynika z zastosowanych przełożeń mechanicznych (np. kilka tarcz związanych poprzez przekładnie mechaniczne o przełożeniach równych rozdzielczości każdej z nich). Z definicji pomiary statyczne jak i dynamiczne.

14 Inkrementalne metody pomiarowe Metody oparte o zliczanie pojedynczych zdarzeń (impulsów elektrycznych) gdzie kolejne zarejestrowane zdarzenie wyznacza przyrost drogi (kąta). W celu określenia położenia absolutnego konieczne wyznaczenie położenia odniesienia. Enkoder optyczny podobna budowa do resolwera ale tylko jedna tarcza z jedną ścieżką z równooddalonymi szczelinami. [5] Za pomocą odpowiedniej siatki odczytującej i dwóch fotoodbiorników wytwarzane są dwa sygnały przesunięte w fazie względem siebie o 90 o co pozwala na odczyt kierunku ruchu. [5]

15 Aby inkrementalnemu wynikowi pomiaru przypisać wartość absolutną położenia należy ustalić punkt odniesienia (punkt zerowy). Następuje to zwykle poprzez zastosowanie dodatkowego przełącznika (np. dotykowego tzw. krańcówki ), który wyznacza pozycję zerową (np. w przypadku skomputeryzowanych pomiarów, czy zastosowania gotowego sterownika, w momencie kontaktu badanego obiektu z krańcówką zerujemy wartość licznika ilości impulsów enkodera tzw. jazda odniesieniowa ). W przypadku wykorzystywania enkodera ze znacznikiem zera (możliwy tylko jeden obrót enkodera). W przypadku zastosowania komputera do pomiarów za pomocą enkodera stosuje się karty rozszerzeń (karty enkodera) które automatycznie w tle (za pomocą procedur obsługi przerwań) same zliczają ilość impulsów natomiast zadaniem programu komputerowego jest jedynie odczyt aktualnego stanu licznika. Liniały inkrementalne wersja liniowa enkodera obrotowego. Liniały inkrementalne działające w oparciu o indukcję (dla kilkumetrowych długości) taśma magnetyczna z zapisanymi impulsami i głowica odczytująca poruszająca się względem taśmy. Właściwości Ilość impulsów na obrót (enkodery obrotowe) Poprzez analizę zboczy można rozdzielczość zwiększyć dwukrotnie Możliwe zastosowanie przekładni mechanicznej. Liniały inkrementalne rozdzielczość 1µm

16 Metody laserowe.zasadą pracy jest pomiar czasu przebiegu promieniowania laserowego od głowicy do obiektu i z powrotem oraz wyliczenie odległości od przedmiotu. Przykładowe właściwości *Rozdzielczość przy zakresie 4m min. 70 mm (min. wielkość obiektu) *Minimalny współczynnik odbicia 1,8% *Rozdzielczość przy zakresie 15m min. 80 mm (min. wielkość obiektu) *Minimalny współczynnik odbicia 20% Metody optyczne Metody pozwalające na znalezienie położenia i orientacji bryły sztywnej trójwymiarowej względem układu kamery na podstawie informacji wizyjnej z niej pochodzącej oraz znajomości wymiarów bryły i ogniskowej kamery (zagadnienie z zakresu rozpoznawania obrazów, robotyka).

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki) Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,

Bardziej szczegółowo

PRZETWORNIKI POMIAROWE

PRZETWORNIKI POMIAROWE PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Czujniki i urządzenia pomiarowe

Czujniki i urządzenia pomiarowe Czujniki i urządzenia pomiarowe Czujniki zbliŝeniowe (krańcowe), detekcja obecności Wyłączniki krańcowe mechaniczne Dane techniczne Napięcia znamionowe 8-250VAC/VDC Prądy ciągłe do 10A śywotność mechaniczna

Bardziej szczegółowo

Podstawy mechatroniki 5. Sensory II

Podstawy mechatroniki 5. Sensory II Podstawy mechatroniki 5. Sensory Politechnika Poznańska Katedra Podstaw Konstrukcji Maszyn Poznań, 20 grudnia 2015 Budowa w odróżnieniu od czujników indukcyjnych mogą, oprócz obiektów metalowych wykrywać,

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,

Bardziej szczegółowo

(zwane również sensorami)

(zwane również sensorami) Czujniki (zwane również sensorami) Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do

Bardziej szczegółowo

Pomiar prędkości obrotowej

Pomiar prędkości obrotowej 2.3.2. Pomiar prędkości obrotowej Metody: Kontaktowe mechaniczne (prądniczki tachometryczne różnych typów), Bezkontaktowe: optyczne (światło widzialne, podczerwień, laser), elektromagnetyczne (indukcyjne,

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Elementy indukcyjne. duża czułość i sztywność układu stateczne i bezstopniowe przekazywanie sygnału mała siła oddziaływania duża pewność ruchu

Elementy indukcyjne. duża czułość i sztywność układu stateczne i bezstopniowe przekazywanie sygnału mała siła oddziaływania duża pewność ruchu Elementy indukcyjne Elementem indukcyjnym nazywamy urządzenie, którego zadaniem jest przetworzenie dowolnej wielkości nieelektrycznej lub elektrycznej na elektryczny sygnał napięciowy lub prądowy. Sygnał

Bardziej szczegółowo

SENSORY I SYSTEMY POMIAROWE

SENSORY I SYSTEMY POMIAROWE SENSORY I SYSTEMY POMIAROWE Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2015/2016 Elementy indukcyjne Elementem indukcyjnym nazywamy urządzenie, którego zadaniem jest

Bardziej szczegółowo

Narzędzia pomiarowe Wzorce Parametrami wzorca są:

Narzędzia pomiarowe Wzorce Parametrami wzorca są: Narzędzia pomiarowe zespół środków technicznych umożliwiających wykonanie pomiaru. Obejmują: wzorce przyrządy pomiarowe przetworniki pomiarowe układy pomiarowe systemy pomiarowe Wzorce są to narzędzia

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany

Bardziej szczegółowo

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi

Bardziej szczegółowo

Wprowadzenie do mechatroniki

Wprowadzenie do mechatroniki Czujniki Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Elementy przetwarzające nieelektryczny sygnał wejściowy w elektryczny sygnał wyjściowy. Sensoryka czujniki ANALOGOWE Podające

Bardziej szczegółowo

Podstawy mechatroniki 4. Sensory

Podstawy mechatroniki 4. Sensory Podstawy mechatroniki 4. Sensory Politechnika Poznańska Katedra Podstaw Konstrukcji Maszyn Poznań, 07 grudnia 2015 Wprowadzenie stotnym składnikiem systemów mechatronicznych są sensory, tzn. urządzenia

Bardziej szczegółowo

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. Badziak Zbigniew Kl. III te Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. 1. MIERNIKI ANALOGOWE Mierniki magnetoelektryczne. Miernikami magnetoelektrycznymi nazywamy mierniki,

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiIB Kierunek: Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych II Celem

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

PL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża

PL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203822 (13) B1 (21) Numer zgłoszenia: 358564 (51) Int.Cl. G01N 19/04 (2006.01) G01N 29/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

Impulsy magnetostrykcyjne informacje podstawowe

Impulsy magnetostrykcyjne informacje podstawowe Impulsy magnetostrykcyjne informacje podstawowe 1. Zasada działania metody generacji i detekcji impulsów magnetostrykcyjnych W ćwiczeniu wykorzystuje się właściwości magnetosprężyste ferromagnetyków a

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia)

Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia) Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia) Nr ćw. w Temat ćwiczenia skrypcie 1 ćwiczenia 7 12 Badanie zależności temperatury wrzenia wody od ciśnienia 24 16 16 Wyznaczenie równoważnika elektrochemicznego

Bardziej szczegółowo

Badanie efektu Dopplera metodą fali ultradźwiękowej

Badanie efektu Dopplera metodą fali ultradźwiękowej Badanie efektu Dopplera metodą fali ultradźwiękowej Cele eksperymentu 1. Pomiar zmiany częstotliwości postrzeganej przez obserwatora w spoczynku w funkcji prędkości v źródła fali ultradźwiękowej. 2. Potwierdzenie

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania 1.1. Przedmiot metrologii 1.2. Rola i zadania metrologii współczesnej w procesach produkcyjnych 1.3. Główny Urząd Miar i inne instytucje ważne

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

O różnych urządzeniach elektrycznych

O różnych urządzeniach elektrycznych O różnych urządzeniach elektrycznych Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Nie tylko prądnica Choć prądnice

Bardziej szczegółowo

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl

Bardziej szczegółowo

Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne)

Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne) Pomiary prędkości (kątowej, liniowej) Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne) Różniczkowanie numeryczne W dziedzinie czasu (ilorazy różnicowe) W dziedzinie częstotliwości.

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10 Układy zasilania samochodowych silników spalinowych Bartosz Ponczek AiR W10 ECU (Engine Control Unit) Urządzenie elektroniczne zarządzające systemem zasilania silnika. Na podstawie informacji pobieranych

Bardziej szczegółowo

2. Pomiar drgań maszyny

2. Pomiar drgań maszyny 2. Pomiar drgań maszyny Stanowisko laboratoryjne tworzą: zestaw akcelerometrów, przedwzmacniaczy i wzmacniaczy pomiarowych z oprzyrządowaniem (komputery osobiste wyposażone w karty pomiarowe), dwa wzorcowe

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

E107. Bezpromieniste sprzężenie obwodów RLC

E107. Bezpromieniste sprzężenie obwodów RLC E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie

Bardziej szczegółowo

PRZETWORNIKI CIŚNIENIA. ( )

PRZETWORNIKI CIŚNIENIA. ( ) PRZETWORNIKI CIŚNIENIA. 1. Wprowadzenie Pomiary ciśnień należą do najczęściej wykonywanych pomiarów wraz z pomiarami temperatury zarówno w przemyśle wytwórczym jak i w badaniach laboratoryjnych. Pomiary

Bardziej szczegółowo

Czujniki prędkości obrotowej silnika

Czujniki prędkości obrotowej silnika Czujniki prędkości obrotowej silnika Czujniki prędkości obrotowej silnika 1 Jednym z najważniejszych sygnałów pomiarowych używanych przez program sterujący silnikiem spalinowym ZI jest sygnał kątowego

Bardziej szczegółowo

Wydział Metrologii Elektrycznej, Fizykochemii, Akustyki, Drgań i Promieniowania Optycznego

Wydział Metrologii Elektrycznej, Fizykochemii, Akustyki, Drgań i Promieniowania Optycznego Wydział Metrologii Elektrycznej, Fizykochemii, Akustyki, Drgań i Promieniowania Optycznego ul. Polanki 124 c, 80-308 Gdańsk tel. 58 524 52 00, fax 58 524 52 29, e-mail: w2@oum.gda.pl 2 Akustyka i ultradźwięki

Bardziej szczegółowo

LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA.

LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. 1. Wprowadzenie LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. W przemyśle (także w praktyce laboratoryjnej) pomiary ciśnienia oprócz pomiarów temperatury należą do najczęściej

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Temat XXIV. Prawo Faradaya

Temat XXIV. Prawo Faradaya Temat XXIV Prawo Faradaya To co do tej pory Prawo Faradaya Wiemy już, że prąd powoduje pojawienie się pola magnetycznego a ramka z prądem w polu magnetycznym może obracać się. Czy z drugiej strony można

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego Wrocław 1994 1 Pomiary statycznych parametrów indukcyjnościowych

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (../..) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Struktura układu pomiarowego drgań mechanicznych

Struktura układu pomiarowego drgań mechanicznych Wstęp Diagnostyka eksploatacyjna maszyn opiera się na obserwacji oraz analizie sygnału uzyskiwanego za pomocą systemu pomiarowego. Pomiar sygnału jest więc ważnym, integralnym jej elementem. Struktura

Bardziej szczegółowo

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych

Bardziej szczegółowo

Karta charakterystyki online MVM-04M-2MC-MKLB TTK70 ENKODERY LINIOWE

Karta charakterystyki online MVM-04M-2MC-MKLB TTK70 ENKODERY LINIOWE Karta charakterystyki online MVM-04M-2MC-MKLB TTK70 A B C D E F Rysunek może się różnić Informacje do zamówienia Typ Więcej wersji urządzeń i akcesoriów Nr artykułu MVM-04M-2MC-MKLB 6037423 www.sick.com/ttk70

Bardziej szczegółowo

(13) B1 PL B1. (51)Int.Cl.5: H03B 28/00 H03L 7/06. (73)Uprawniony z patentu: Politechnika Warszawska, Warszawa, PL

(13) B1 PL B1. (51)Int.Cl.5: H03B 28/00 H03L 7/06. (73)Uprawniony z patentu: Politechnika Warszawska, Warszawa, PL R Z E C Z P O S P O L IT A POLSKA( 12) OPIS PATENTOWY (19) P L (11) 157613 P O L S K A (13) B1 (21)Numer zgłoszenia: 276873 U r z ą d P ate n to w y (22) D ata zgłoszenia: 30.12.1988 R ze czy p o sp o

Bardziej szczegółowo

Pomiar przemieszczeń i prędkości liniowych i kątowych

Pomiar przemieszczeń i prędkości liniowych i kątowych POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA TRANSPORTU SZYNOWEGO LABORATORIUM DIAGNOSTYKI POJAZDÓW SZYNOWYCH ĆWICZENIE 11 Pomiar przemieszczeń i prędkości liniowych i kątowych Katowice, 2009.10.01 1.

Bardziej szczegółowo

MiAcz4 Czujniki i układy pomiarowe

MiAcz4 Czujniki i układy pomiarowe MiAcz4 Czujniki i układy pomiarowe Czujniki układy pomiarowe 1 Parametry czujników Błędy pomiarowe Linearyzacja ch-k a) w punkcie y(x)=y0 +y (x)(x-x0) b) w zakresie Klasyfikacja stopni ochrony IP Stopnie

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Metoda prądów wirowych

Metoda prądów wirowych Metoda prądów wirowych Idea Umieszczeniu obiektów, wykonanych z materiałów przewodzących prąd elektryczny, w obszarze oddziaływania zmiennego w czasie pola magnetycznego, wytwarzane przez przetworniki

Bardziej szczegółowo

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy

Bardziej szczegółowo

FIZYKA MOLEKULARNA I CIEPŁO

FIZYKA MOLEKULARNA I CIEPŁO FIZYKA MOLEKULARNA I CIEPŁO 102. Wyznaczanie współczynnika lepkości cieczy metodą Stokesa. 105. Pomiar wilgotności powietrza psychrometrem Assmana. 106. Wyznaczanie stosunku c p χ = dla powietrza. c V

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Katedra Technik Wytwarzania i Automatyzacji WYDZIAŁ BUDOWY MASZYN I LOTNICTWA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot: DIAGNOSTYKA I NADZOROWANIE SYSTEMÓW OBRÓBKOWYCH Temat: Pomiar charakterystyk

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Ćwiczenie nr 25: Interferencja fal akustycznych

Ćwiczenie nr 25: Interferencja fal akustycznych Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 25: Interferencja

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.

Bardziej szczegółowo

SENSORY I SYSTEMY POMIAROWE

SENSORY I SYSTEMY POMIAROWE SENSORY I SYSTEMY POMIAROWE Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2017/2018 Natężenie przepływu oraz ilość przepływającego materiału należą do wielkości często

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Newsletter 1/2017. Liniowe przetworniki pozycji dla siłowników pneumatycznych. elektronika w pneumatyce.

Newsletter 1/2017. Liniowe przetworniki pozycji dla siłowników pneumatycznych. elektronika w pneumatyce. Newsletter /07 Liniowe przetworniki pozycji dla siłowników pneumatycznych elektronika w pneumatyce www.pneumax.pl Opis produktu ezstykowy, liniowy przetwornik pozycji, z innowacyjną technologią wykorzystującą

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

BADANIE WŁAŚCIWOŚCI STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH ĆWICZENIE 5a BADANIE WŁAŚCIWOŚCI STATCZNCH PRZETWORNIKÓW POMIAROWCH 5.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie metod badania właściwości statycznych przetworników pomiarowych na przykładzie indukcyjnościowego

Bardziej szczegółowo

P Y T A N I A. 8. Lepkość

P Y T A N I A. 8. Lepkość P Y T A N I A 1. Moment bezwładności 1.1 Co to jest bryła sztywna? 1.2 Co to jest środek masy ciała? 1.3 Co to jest moment bezwładności? 1.4 Co to jest wahadło torsyjne? 1.5 Jak zapisać II zasadę dynamiki

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI Generatora impulsów PWM

INSTRUKCJA OBSŁUGI Generatora impulsów PWM INSTRUKCJA OBSŁUGI Generatora impulsów PWM Przeznaczeniem generatora jest sterowanie różnymi zaworami lub elementami indukcyjnymi jak przekaźniki, siłowniki i inne elementy wykonawcze sterowane napięciem

Bardziej szczegółowo

Akumulatorowe układy zapłonowe

Akumulatorowe układy zapłonowe Akumulatorowe układy zapłonowe 1 Akumulatorowe układy zapłonowe Układy zapłonowe silników spalinowych w silnikach ZI służą do wytworzenia wyładowania iskrowego wewnątrz komory spalania silnika. Stosowane

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Laboratorium z przedmiotu POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Kod przedmiotu: EZ2B200012 Ćwiczenie

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego.

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego. Badanie woltomierza 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rożnymi układami nastawienia napięcia oraz metodami jego pomiaru za pomocą rożnych typów woltomierzy i nabranie umiejętności posługiwania

Bardziej szczegółowo

Urządzenie i sposób pomiaru skuteczności filtracji powietrza.

Urządzenie i sposób pomiaru skuteczności filtracji powietrza. Urządzenie i sposób pomiaru skuteczności filtracji powietrza. dr inż. Stanisław Kamiński, mgr Dorota Kamińska WSTĘP Obecnie nie może istnieć żaden zakład przerabiający sproszkowane materiały masowe bez

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym 1. Badania nieniszczące wprowadzenie Badania nieniszczące polegają na wykorzystaniu nieinwazyjnych metod badań (bez zniszczenia

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875

Bardziej szczegółowo

(86) Data i numer zgłoszenia międzynarodowego: , PCT/DE03/00923 (87) Data i numer publikacji zgłoszenia międzynarodowego:

(86) Data i numer zgłoszenia międzynarodowego: , PCT/DE03/00923 (87) Data i numer publikacji zgłoszenia międzynarodowego: RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 204399 (21) Numer zgłoszenia: 370760 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 20.03.2003 (86) Data i numer zgłoszenia

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) 1 MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) 7. Przetworniki stosowane w medycynie: tupu sandwich, kompozytowe,

Bardziej szczegółowo