POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2
|
|
- Anatol Marek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Laboratorium z przedmiotu POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Kod przedmiotu: EZ2B Ćwiczenie pt. POMIAR PRĘDKOŚCI OBROTOWEJ Opracował: dr inż. Wojciech Walendziuk Białystok 2010
2 Wszystkie prawa zastrzeżone. Wszystkie nazwy handlowe i towarów występujące w niniejszej instrukcji są znakami towarowymi zastrzeżonymi lub nazwami zastrzeżonymi odpowiednich firm odnośnych właścicieli. 2
3 1. Cel ćwiczenia Celem niniejszego ćwiczenia jest zapoznanie studentów z istotą pomiaru prędkości obrotowej oraz liniowej, za pomocą czujników występujących w przemyśle. Przeprowadzony eksperyment w trakcie prac laboratoryjnych będzie polegał na badaniu prędkości obrotowej wirującej tarczy, zamocowanej na osi silnika prądu stałego za pomocą zasilacza laboratoryjnego. 2. Wstęp Pomiar prędkości liniowej, czy też obrotowej są jednymi z najważniejszych parametrów metrologicznych powszechnie występujących w przemyśle. Badanie prędkości liniowej stosowane jest powszechnie w czasie kontroli urządzeń związanych na przykład z przesuwem taśmy produkcyjnej, blachy w walcarce czy też szeroko pojętego przemieszczania się obiektów. Prędkość obrotową monitorujemy natomiast w przypadkach kontroli urządzeń wirujących takich jak: silniki, tarcze pilarek, koła zębate oraz pasowe, czy też różnego rodzaju urządzenia mieszające. Standardową jednostką prędkości liniowej według układu SI jest. Z definicji prędkość liniowa w ruchu jednostajnym jest przyrostem wektora położenia względem jednostki czasu. (1) moduł tej wielkości jako wielkość skalarną określa szybkość, która zamiennie jest nazywana prędkością. (2) gdzie: S - określa przebytą drogę, T - czas trwania ruchu. 3
4 Chcąc analizować prędkość obrotową, której jednostka wyrażana jest w, lub zwyczajowo w przemysłowej terminologii z definicji prędkości kątowej. Wyrażana jest ona następująco:, należy skorzystać (3) gdzie: - jest kątem zakreślonym przez promień wiodący, - przyrost czasu w którym nastąpił ruch. Prędkość obrotowa może być więc wyznaczona jako: (4) Istnieje także prosta w zapisie zależność prędkości liniowej w stosunku do prędkości kątowej o postaci: (5) gdzie: v- moduł prędkości liniowej, R- jest promieniem okręgu, którego fragmentem jest zakreślany łuk. 4
5 3. Metody pomiarów prędkości w warunkach przemysłowych Pomiar prędkości może odbywać się w dwojaki sposób: o dotykowy mechaniczny odbywający się za pomocą prądniczek tachometrycznych oraz innych metod pośrednich powiązanych z bezdotykowym pomiarem, o bezdotykowy optyczny wykonywany za pomocą czujników reagujących na światło widzialne (np. żarówka), promieniowanie podczerwone czy też laser, elektromagnetyczny związany z zastosowaniem czujników pojemnościowych, indukcyjnościowych oraz czujników natężenia pola magnetycznego, zwanych czujnikami Halla, porównawczy odbywający się za pomocą lampy stroboskopowej. Pomiar dotykowy polega na bezpośrednim zetknięciu się fragmentu ruchomego urządzenia pomiarowego z częścią maszyny znajdującą się w ruchu. Przy pomiarach prędkości liniowej, pomiar dotykowy jest jedną z najczęściej spotykanych metod. Na przykład pomiar prędkości pojazdu osobowego może być wykonywany pośrednio poprzez badanie prędkości obrotowej koła o znanym promieniu. Jak łatwo zauważyć pomiar prędkości obrotowej odegrał tu pośrednią rolę. Bez niego niestety nie dało by się wykonać pomiaru prędkości liniowej przy założeniu, że urządzenie pomiarowe jest umiejscowione nieruchomo. Warto więc w tym momencie podkreślić fakt, iż pomiary prędkości obrotowej w środowisku przemysłowym odgrywają przeważającą rolę. Jednymi z urządzeń wykorzystywanych w tym celu są tzw. prądniczki tachometryczne. Przykładem może tu być prądniczka komutatorowa, w której parametrem proporcjonalnym do prędkości obrotowej wirnika jest napięcie. Nieobciążona prądniczka traktowana jest wtedy jako źródło badanego sygnału. 5
6 Metody pomiaru stykowego stosowane są w zakresie pomiaru metodami stykowymi są:. Wadami obciążenie części wirującej maszyny dodatkowym oporem, poślizgi lub nieodpowiedni docisk części pomiarowej miernika w punkcie stycznym z pomiarowym, trudny pomiar elementów wirujących o małych rozmiarach, przy pomiarach tachoprądniczkami występują duże zakłócenia w postaci szumów. Bezdotykowe badania prędkości w związku z rozwojem nowoczesnej elektroniki zaczynają odgrywać coraz to istotniejszą rolę. W zasadzie pomiary metodami bezdotykowymi opierają się na dwóch metodach. Pierwsza z nich polega na badaniu liczby impulsów wygenerowanych przez czujnik pomiarowy w jednostce czasu. Druga na pomiarze czasu pomiędzy wygenerowanymi impulsami z czujników. Układy akwizycji danych pomiarowych na podstawie tych impulsów mogą obliczać dwa rodzaje prędkości obrotowej: prędkość uśrednioną z na przykład ostatnich 60 s i prędkość chwilową. Poniższy rysunek (Rys.1.) poglądowo przedstawia przebiegi impulsów, które poddawane są dalszej analizie. Rys.1. Przebiegi impulsów pomiarowych przy pomiarze prędkości obrotowej uśrednionej i chwilowej. Czujniki wykorzystywane do pomiarów bezdotykowych opierają się na różnych zasadach działania. 6
7 Czujniki optyczne przeważnie ze względu na zmniejszenie czynnika zakłócenia światłem widzialnym wykorzystują promieniowanie podczerwone, jako nośnik informacji. Rozróżniamy tu na przykład czujniki odbiciowe oraz czujniki reagujące promieniowanie, które dostarczane jest z zewnętrznego źródła. Czujniki drugiego rodzaju powszechnie określa się jako pracujące na zasadzie fotokomórki lub bariery świetlnej. Do zalet czujników odbiciowych można zaliczyć łatwy montaż czujnika w maszynie ze względu na umieszczenie w jednej obudowie zarówno odbiornika i nadajnika bez potrzeby stosowania reflektora, którym jest wirująca część maszyny. Czujniki barierowe natomiast charakteryzują się dwoma rozdzielnymi elementami tj.: nadajnikiem i odbiornikiem. Oba elementy muszą być usytuowane wzdłuż jednej osi wyznaczonej przez wiązkę nadajnika. Czujniki takie wykrywają obiekty pojawiające się miedzy wiązką światła (przysłaniając ją) emitowaną z nadajnika, a odbiornikiem który odbiera sygnał. Czujniki tego typu mają większy zasięg działania w porównaniu do czujników odbiciowych. Wadą czujników optycznych jest konieczność częstej ich konserwacji ze względu na zabrudzenia mechaniczne optyki czujników. Przykład czujnika optycznego z barierą świetlną przedstawiono na rysunku poniżej (Rys.2.). Rys.2. Wygląd czujnika optycznego barierowego. 7
8 Przetworniki indukcyjne pracują na zasadzie zmiany indukcyjności własnej lub wzajemnej. Odbywa się to pod wpływem przesunięcia lub zmiany geometrii obwodu magnetycznego, co bezpośrednio w urządzeniach przemysłowych wiąże się ze zmianą szczeliny powietrznej. W pewnych przypadkach korzysta się ze zmiany rezystancji cewki indukcyjnej w zależności od położenia części ruchomej czujnika, powodowanej prądami wirowymi. Wielkość mierzona stanowi sygnał wejściowy przetwornika pomiarowego, a wyjściowa to sygnał pomiarowy. Zazwyczaj przetworniki tego typu mogą być samodzielnymi urządzeniami pomiarowymi, lub częściami złożonego układu pomiarowego. Jako przykład przedstawiona będzie zasada działania przetwornika magneto-indukcyjnego (Rys.3.). Przetwornik taki pracuje na zasadzie indukowania siły elektromotorycznej w uzwojeniu cewki nawiniętej na magnesie trwałym pod wpływem zbliżania się ferromagnetyka. Częstym zastosowaniem jest pomiar prędkości obrotowej silnika spalinowego, na którego wale znajduje się koło zębate. Wał silnika będąc w ruchu powoduje zmianę wartości strumienia magnetycznego, wytworzonego przez magnes trwały. Wartość siły elektromotorycznej E indukowanej w uzwojeniu o ilości zwojów z będzie proporcjonalna do szybkości zmian strumienia magnetycznego skojarzonego z uzwojeniem cewki. (6) Rys. 3. Magneto-indukcyjny przetwornik prędkości obrotowej. 8
9 Wartość jaką osiąga strumień elektromagnetyczny otaczający cewkę zależy od stosunku położenia przetwornika względem koła zębatego. Jeśli przetwornik jest ustawiony naprzeciwko zęba koła zębatego, to strumień magnetyczny wytworzony przez magnes ma łatwiejszą drogę przepływu. Jego droga zamyka się poprzez materiał ferromagnetyczny, z którego jest wykonane koło zębate. Odmienna sytuacja występuje w przypadku położenia czujnika między zębami, reluktancja (rezystancja magnetyczna) obwodu magnetycznego jest wtedy znacznie większa przez co strumień zostaje znacznie osłabiony. Cykliczne zmiany strumienia magnetycznego w cewce spowodowane obrotem koła zębatego indukują napięcie wyjściowe. Napięcie to jest funkcją obrotu koła zębatego, ponieważ strumień magnetyczny zależy od kątowego położenia zęba w stosunku do położenia magnesu. W celu poprawy czułości przetwornika zmniejsza się średnicę jednego z biegunów, który zwrócony jest w kierunku koła zębatego magnesu stałego. Konstrukcję w warunkach przemysłowych zazwyczaj osłania się obudową z tworzywa sztucznego, w celu ochrony przed uszkodzeniami mechanicznymi oraz wpływem warunków atmosferycznych. Zaletą stosowania przetworników tego typu jest brak konieczności zasilania, stosowania układów wzmacniających, względnie tania konstrukcja oraz duża odporność na zakłócenia elektromagnetyczne. Do wad tych przetworników można zaliczyć małą przydatność do pomiarów niewielkich prędkości obrotowych oraz wrażliwość na zmiany grubości szczeliny powietrznej i ograniczenie w możliwości zmniejszania wymiarów przy tradycyjnym wykonaniu cewki. Czujnik Halla opiera się na zjawisku, które polega na tym, iż w przewodniku znajdującym się w poprzecznym do płynącego prądu polu magnetycznym, wytwarza się różnica potencjałów. Napięcie to, nazwane zostało napięciem Halla, a pojawia się ono pomiędzy płaszczyznami ograniczającymi przewodnik prostopadle do płaszczyzny wyznaczanej przez kierunek prądu i wektor indukcji pola magnetycznego B. Napięcie wywołane jest działaniem siły Lorentza na ładunki, które poruszają się w polu magnetycznym. 9
10 F q( v B) (7) gdzie: F - siła Lorentza [N], q - ładunek elektryczny [C], v - prędkość elektronów [m/s], B - indukcja magnetyczna [T]. Kierunek siły Lorentza jest prostopadły do indukcji magnetycznej B oraz prędkości elektronów v, a jej zwrot zależy od znaku ładunku elektrycznego q. Siła ta powoduje powstanie różnicy w umiejscowieniu ładunków w przewodniku, a co się z tym wiąże, powstanie różnicy potencjałów, czyli napięcia, które mierzy się prostopadle do kierunku prądu I i wektora indukcji pola magnetycznego B. Napięcie to można wyznaczyć ze wzoru: U H Rh B h I (8) gdzie: U H - napięcie Halla Rh - jest zwane stałą Halla, charakterystyczną dla danego rodzaju materiału, z którego wykonany jest hallotron, B I h - wartość wektora indukcji magnetycznej [T], - prąd płynący przez przewodnik [A], - grubość przewodnika [m]. Poniżej (Rys.4.) przedstawiono klasyczny układ przewodnika w postaci płytki wraz z przenikającą go indukcyjnością, służący do demonstracji efektu Halla. 10
11 Rys. 4. Demonstracja układu do badania efektu Halla, w którym I jest prądem płynącym przez przewodnik [A], B - wartość wektora indukcji magnetycznej [T], U H - różnica potencjałów występująca na brzegach przewodnika [V], d- szerokość przewodnika [m], h- grubość przewodnika [m]. 4. Przebieg ćwiczenia Ćwiczenie polega na zbadaniu charakterystyk napięcia zasilającego silnik do jego prędkości obrotowej. Po połączeniu zasilania stanowiska laboratoryjnego, należy wykonać serię 10 pomiarów czterema metodami. Wyniki zestawić w tabeli. 11
12 Tabele wyników pomiarów wykonanych dn. grupa. Skład osobowy grupy: Tabela 1. L.p. Czujnik indukcyjnościowy Czujnik optyczny czujnik Hallotronowy Miernik BETA Tabela 2. L.p ω śr (średnia) σ-odchylenie standardowe) 12
13 Należy zbadać różnicę wskazań przy pomiarach prędkości obrotowej dla różnych czujników. Obliczyć także błąd względny wskazań. (9) (10) Jako przyrząd wzorcowy należy przyjąć miernik BETA 1760 (Rys.5.). Na podstawie tabeli narysować charakterystyki błędu bezwzględnego oraz względnego w funkcji prędkości obrotowej. Po wykonanym ćwiczeniu należy określić niepewność pomiaru przyrządem BETA1760. Badania wykonać dla wybranej prędkości obrotowej, podanej przez prowadzącego. W tym celu należy wykonać 5 pomiarów, a wyniki zestawić w tabeli 2. Do obliczeń przyjąć dane techniczne podane przez producenta urządzenia: Rys.5. Tachometr laserowy BETA
14 Dane techniczne tachometru laserowego BETA 1760: bezkontaktowy pomiar prędkości obrotowej, kontaktowy pomiar prędkości obrotowej i liniowej, 5 cyfrowy wyświetlacz LCD, zakres pomiarowy: pomiar bezkontaktowy 2, obr/min, pomiar kontaktowy 0, obr/min, kontaktowy pomiar prędkości liniowej 0, ,99 m/min, okres odświeżania 0,8 s, zasilanie 6 V. 5. Pytania kontrolne 1. Podaj definicję prędkości liniowej i obrotowej. 2. Wymień sposoby pomiaru prędkości liniowej i obrotowej. 3. Wyjaśnij ogólną zasadę działania czujnika optycznego. 4. Wyjaśnij ogólną zasadę działania czujnika indukcyjnościowego. 5. Wyjaśnij ogólną zasadę działania czujnika Halla. 6. Wyjaśnij co to jest błąd bezwzględny i względny. 6. Literatura 1) Turkowski M.: Przemysłowe sensory i przetworniki pomiarowe, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa ) Miłek M.: Pomiary wielkości nieelektrycznych metodami elektrycznymi, Podręcznik akademicki, Zielona Góra, ) Hagel R.: Miernictwo wielkości nieelektrycznych metodami elektrycznymi, Cz. 1, Przetworniki i ich zastosowanie, Skrypt Pol. Śląskiej, ) Hagel R.: Miernictwo wielkości nieelektrycznych metodami elektrycznymi, Cz. 2, Przetworniki i ich zastosowanie, Skrypt Pol. Śląskiej, ) Kaczmarek Z.: Pomiary wielkości nieelektrycznych metodami elektrycznymi, skrypt nr 215, Wyd. Politechniki Świętokrzyskiej, Kielce
15 7. Wymagania BHP Warunkiem przystąpienia do praktycznej realizacji ćwiczenia jest zapoznanie się z instrukcją BHP i instrukcją przeciwpożarową oraz przestrzeganie zasad w nich zawartych. Wybrane urządzenia dostępne na stanowisku laboratoryjnym mogą posiadać instrukcje stanowiskowe. Przed rozpoczęciem pracy należy zapoznać się z instrukcjami stanowiskowymi wskazanymi przez prowadzącego. W trakcie zajęć laboratoryjnych należy przestrzegać następujących zasad: Sprawdzić, czy urządzenia dostępne na stanowisku laboratoryjnym są w stanie kompletnym, nie wskazującym na fizyczne uszkodzenie. Sprawdzić prawidłowość połączeń urządzeń. Załączenie napięcia do układu pomiarowego może się odbywać po wyrażeniu zgody przez prowadzącego. Przyrządy pomiarowe należy ustawić w sposób zapewniający stałą obserwację, bez konieczności nachylania się nad innymi elementami układu znajdującymi się pod napięciem. Zabronione jest dokonywanie jakichkolwiek przełączeń oraz wymiana elementów składowych stanowiska pod napięciem. Zmiana konfiguracji stanowiska i połączeń w badanym układzie może się odbywać wyłącznie w porozumieniu z prowadzącym zajęcia. W przypadku zaniku napięcia zasilającego należy niezwłocznie wyłączyć wszystkie urządzenia. Stwierdzone wszelkie braki w wyposażeniu stanowiska oraz nieprawidłowości w funkcjonowaniu sprzętu należy przekazywać prowadzącemu zajęcia. Zabrania się samodzielnego włączania, manipulowania i korzystania z urządzeń nie należących do danego ćwiczenia. W przypadku wystąpienia porażenia prądem elektrycznym należy niezwłocznie wyłączyć zasilanie stanowisk laboratoryjnych za pomocą wyłącznika bezpieczeństwa, dostępnego na każdej tablicy rozdzielczej w laboratorium. Przed odłączeniem napięcia nie dotykać porażonego. 15
POMIAR PRĘDKOŚCI OBROTOWEJ
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS 04456 Ćwiczenie nr
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod
BADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Pomiary elektryczne wielkości nieelektrycznych 2 Kod przedmiotu:
METROLOGIA EZ1C
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ
POMIARY PARAMETRÓW PRZEPŁYWU POWIETRZA
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS 04456 Ćwiczenie nr
Pomiar prędkości obrotowej
2.3.2. Pomiar prędkości obrotowej Metody: Kontaktowe mechaniczne (prądniczki tachometryczne różnych typów), Bezkontaktowe: optyczne (światło widzialne, podczerwień, laser), elektromagnetyczne (indukcyjne,
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politecnika Białostocka Wydział Elektryczny Katedra Elektrotecniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnyc z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod przedmiotu:
WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Fizyka Kod przedmiotu: ISO73, INO73 Ćwiczenie Nr 7 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Ćwiczenie: "Silnik prądu stałego"
Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Klasyczny efekt Halla
Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
ELEMENTY ELEKTRONICZNE TS1C300 018
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)
Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 6 BADANIE TEMPERATUR TOPNIENIA Autorzy:
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu: TS1C 200 008 ODDZIAŁYWANIE PRZYRZĄDU
Zjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania
Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania 1.1. Przedmiot metrologii 1.2. Rola i zadania metrologii współczesnej w procesach produkcyjnych 1.3. Główny Urząd Miar i inne instytucje ważne
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych
Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany
Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2
Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi
ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10
Politechnika iałostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ENS1200 013 DNE OWOD TRÓJFOWEGO ODORNKEM POŁĄONYM W TRÓJKĄT Numer ćwiczenia
PRZETWORNIKI POMIAROWE
PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i
LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH
-CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie
BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5
BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie
4.8. Badania laboratoryjne
BOTOIUM EEKTOTECHNIKI I EEKTONIKI Grupa Podgrupa Numer ćwiczenia 4 p. Nazwisko i imię Ocena Data wykonania ćwiczenia Podpis prowadzącego zajęcia 4. 5. Temat Wyznaczanie indukcyjności własnej i wzajemnej
ENS1C BADANIE DŁAWIKA E04
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych ENS00 03 BADANIE DŁAWIKA Numer ćwiczenia E04 Opracowanie: Dr inż. Anna
INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami
INSTRUKCJA DO ĆWICZENIA NR 2 Analiza kinematyczna napędu z przekładniami 1. Wprowadzenie Układ roboczy maszyny, cechuje się swoistą charakterystyką ruchowoenergetyczną, często odmienną od charakterystyki
Ćwiczenie EA1 Silniki wykonawcze prądu stałego
Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA1 Silniki wykonawcze prądu stałego Program ćwiczenia: A Silnik wykonawczy elektromagnetyczny 1. Zapoznanie się
Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI
37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe
Czujniki prędkości obrotowej silnika
Czujniki prędkości obrotowej silnika Czujniki prędkości obrotowej silnika 1 Jednym z najważniejszych sygnałów pomiarowych używanych przez program sterujący silnikiem spalinowym ZI jest sygnał kątowego
Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
1.Wstęp. Prąd elektryczny
1.Wstęp. Celem ćwiczenia pierwszego jest zapoznanie się z metodą wyznaczania charakterystyki regulacyjnej silnika prądu stałego n=f(u), jako zależności prędkości obrotowej n od wartości napięcia zasilania
WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10
Miernictwo I dr Adam Polak WYKŁAD 10 Pomiary wielkości elektrycznych stałych w czasie Pomiary prądu stałego: Technika pomiaru prądu: Zakresy od pa do setek A Czynniki wpływające na wynik pomiaru (jest
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Ćwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Badanie prądnicy prądu stałego
POLTECHNKA ŚLĄSKA WYDZAŁ NŻYNER ŚRODOWSKA ENERGETYK NSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH LABORATORUM ELEKTRYCZNE Badanie prądnicy prądu stałego (E 18) Opracował: Dr inż. Włodzimierz OGULEWCZ 3 1. Cel
KARTA MODUŁU / KARTA PRZEDMIOTU
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Pomiary elektryczne wielkości nieelektrycznych Electrical measurements
3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego.
Badanie woltomierza 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rożnymi układami nastawienia napięcia oraz metodami jego pomiaru za pomocą rożnych typów woltomierzy i nabranie umiejętności posługiwania
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych
Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest
Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów
Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi
OBWODY MAGNETYCZNIE SPRZĘŻONE
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych Tytuł ENS1C200 013 ćwiczenia OBWODY MAGNETYCZNIE SPRZĘŻONE Numer ćwiczenia
Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika
Charakterystyka rozruchowa silnika repulsyjnego
Silnik repulsyjny Schemat połączeń silnika repulsyjnego Silnik tego typu budowany jest na małe moce i używany niekiedy tam, gdzie zachodzi potrzeba regulacji prędkości. Układ połączeń silnika repulsyjnego
Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Oddziaływanie wirnika
Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ
Spis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka Kod przedmiotu: ESC00 009 (studia stacjonarne)
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Temat: POMIAR SIŁ SKRAWANIA
AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:
Silniki prądu stałego z komutacją bezstykową (elektroniczną)
Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego
LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego Wrocław 1994 1 Pomiary statycznych parametrów indukcyjnościowych
Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD)
Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badane silniki BLCD są silnikami bezszczotkowymi prądu stałego (odpowiednikami odwróconego konwencjonalnego silnika prądu stałego z magnesami
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe
W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie
Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a
Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia
Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie
Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.
Badziak Zbigniew Kl. III te Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. 1. MIERNIKI ANALOGOWE Mierniki magnetoelektryczne. Miernikami magnetoelektrycznymi nazywamy mierniki,
Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO
KARTA MODUŁU / KARTA PRZEDMIOTU
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-1EZ2-1002-s2 Pomiary elektryczne wielkości Nazwa modułu nieelektrycznych_e2n Electrical measurements of non-electrical Nazwa modułu w języku angielskim quantities
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2007 Cyfrowe pomiary częstotliwości oraz parametrów RLC Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową,
Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.
Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.
Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...
Laboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
BADANIE AMPEROMIERZA
BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
Systemy pomiarowe. Ćwiczenie Nr 4 BADANIE WŁAŚCIWOŚCI PRZETWORNIKA INDUKCYJNOŚCIOWEGO TRANSFORMATOROWEGO
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS05456, KN05456 Ćwiczenie Nr 4 BADANIE WŁAŚCIWOŚCI PRZETWORNIKA
Ćwiczenie 3 Falownik
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja i Nadzorowanie Maszyn Zajęcia laboratoryjne Ćwiczenie 3 Falownik Poznań 2012 Opracował: mgr inż. Bartosz Minorowicz Zakład Urządzeń
SENSORY i SIECI SENSOROWE
SKRYPT DO LABORATORIUM SENSORY i SIECI SENSOROWE ĆWICZENIE 1: Pętla prądowa 4 20mA Osoba odpowiedzialna: dr hab. inż. Piotr Jasiński Gdańsk, 2018 1. Informacje wstępne Cele ćwiczenia: Celem ćwiczenia jest
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
Podstawy Elektroenergetyki 2
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Laboratorium z przedmiotu: Podstawy Elektroenergetyki 2 Kod: ES1A500 037 Temat ćwiczenia: BADANIE SPADKÓW
Uśrednianie napięć zakłóconych
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Czujniki i urządzenia pomiarowe
Czujniki i urządzenia pomiarowe Czujniki zbliŝeniowe (krańcowe), detekcja obecności Wyłączniki krańcowe mechaniczne Dane techniczne Napięcia znamionowe 8-250VAC/VDC Prądy ciągłe do 10A śywotność mechaniczna
Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek
Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek 1. Dane osobowe Data wykonania ćwiczenia: Nazwa szkoły, klasa: Dane uczniów: A. B. C. D. E. 2. Podstawowe informacje BHP W pracowni większość
Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi
POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi