Kategoria Szkoły podstawowe
|
|
- Bogumił Wróbel
- 9 lat temu
- Przeglądów:
Transkrypt
1 Kategoria Szkoły podstawowe O punkcie Y wiadomo, że odcinek łączący go z PK 41 jest podstawą trójkąta równoramiennego, którego trzeci wierzchołek stanowi PK o numerze podzielnym przez 13, a od Y do PK 41 idzie się w kierunku NNE. liczby 18, 9, 14, 7, 12, 6, 3, 8, Agatka powiedziała, że już wie i dopisała dwie kolejne. Jaka była ich suma? Zad. 2. Babcia Waleria jest bardzo roztrzepana. Zamiast pomnożyć swój wiek przez 6 i od wyniku odjąć 6, odjęła od wieku 7 i pomnożyła wynik przez 7. O dziwo, otrzymała ten sam rezultat, co gdyby się nie pomyliła. Ile lat ma babcia Waleria? Zad. 3. Co to jest: stolica większa niż Warszawa, na pożegnanie jej część to potrawa? Zad. 4. Na jaką największą liczbę części prosta może rozciąć wielokąt o 20 bokach? Zad. 5. W pola poniższego diagramu należy wpisać cyfry od 1 do 6, tak aby się nie powtarzały, by w każdym polu stała tylko jedna cyfra, a sumy liczb w trzech kółkach każdego małego trójkąta były mniejsze lub równe 9. Ile wynosi suma liczb ze środkowego trójkąta? 31 małe obniżenie terenu 32 duże liściaste charakterystyczne drzewo 33 górka 35 górka 39 dół 41 dół na małej polanie 42 płd. koniec suchego rowu 50 małe zagłębienie terenu
2 Kategoria Gimnazja Niech A i B będą numerami PK z Twojej mapy będącymi kolejnymi liczbami naturalnymi, których suma wynosi 85, oraz A<B. Wówczas PK A i punkt Y leżą w odległości 0,42 km i są końcami przekątnej prostokąta, którego jeden wierzchołek to PK B. liczby 2, 11, 20, 101, 110, 200, 1001, Agatka powiedziała, że już wie i dopisała dwie kolejne. Jaka była ich suma? Zad. 2. Babcia Waleria jest bardzo roztrzepana. Obliczyła sumę cyfr roku urodzenia dziadka Walerego i zauważyła, że jest ona podzielna przez 4. Babcia Waleria jest od dziadka rok starsza, ale stwierdziła ze zdziwieniem, że suma cyfr jej roku urodzenia też dzieli się przez 4. Ile lat ma babcia Waleria? Zad. 3. Co to jest: Słodki ma smak ten ptak, gdy wspak. Zad. 4. Na jaką największą liczbę części prosta może rozciąć wielokąt o 100 bokach? Zad. 5. W pola poniższego diagramu należy wpisać cyfry od 1 do 9, tak aby się nie powtarzały, by w każdym polu stała tylko jedna cyfra, a suma liczb znajdujących się w szarych trójkątach była dwa razy większa od sumy liczb w białych trójkątach. Dla ułatwienia dwie cyfry zostały już wpisane. Ile wynosi suma liczb w białych trójkątach? 36 płaska górka 37 szczyt wzniesienia na rozwidleniu drogi i przecinki 38 kamienny dół 42 płd. koniec suchego rowu 46 dół 47 mała polana porośnięta 49 paśnik 50 małe zagłębienie terenu 52 wsch. koniec płn. rowu melioracyjnego 53 górka 3 4
3 Kategoria Szkoły ponadgimnazjalne i wyższe Jeśli A i B to numery PK z Twojej mapy, iloczyn kwadratów których wynosi oraz A<B, to Y leży w 49/85 drogi od PK A do PK B. liczby 1, 1, 2, 3, 3, 7, 4, 15, 5, 31, Agatka powiedziała, że już wie i dopisała dziesięć kolejnych. Jaka była suma dwóch ostatnich? Zad. 2. Babcia Waleria jest bardzo roztrzepana. Badając historię swojego rodu w poprzednim tysiącleciu, natknęła się na przodka, którego lata urodzin i śmierci były utworzone z tych samych cyfr. Ich suma wyrażała wiek, w jakim umarł, ale babcia Waleria pomnożyła je zamiast dodać i otrzymała wiek, w którym umarł. Ile lat żył przodek babci Walerii? Zad. 3. Co to jest: mebel nie bez kozery złożony z ułamka litery? Zad. 4. Na jaką największą liczbę części prosta może rozciąć wielokąt o 2014 bokach? Zad. 5. W pola poniższego diagramu należy wpisać cyfry od 1 do 9, tak aby się nie powtarzały, by w każdym polu stała tylko jedna cyfra, a sumy liczb na każdym boku trójkąta były jednakowe. Dla ułatwienia dwie cyfry zostały już wpisane. Ile wynosi suma liczb na każdym boku trójkąta? 34 płd.-zach. róg starego cmentarza 35 górka 36 płaska górka 38 kamienny dół 44 paśnik 45 podstawa wieży 48 ambona na wzgórzu 49 paśnik 52 wsch. koniec płn. rowu melioracyjnego 54 górka
4 Kategoria Nauczyciele i rodzice Aby odnaleźć punkt Y, wystarczy pójść o 10% kilometra na pn.-wsch. od punktu, którego numer ma najwięcej dzielników ze wszystkich punktów na Twojej mapie. liczby 22, 11, 16, 8, 4, 2, 1, 3, Agatka powiedziała, że już wie i dopisała dwie kolejne. Jaka była ich suma? Zad. 2. Babcia Waleria jest bardzo roztrzepana. Jej wiek jest liczbą podzielną przez 6, a kiedy przez pomyłkę przestawiła cyfry w liczbie lat, zauważyła, że odmłodziła się o 6 2 lat. Ile lat ma babcia Waleria? Zad. 3. Chodzisz zwierzęciem, a gdy siadasz jest OK. Czy wiesz, co to za zwierz? Zad. 4. Na jaką największą liczbę części prosta może rozciąć wielokąt o 17 bokach? Zad. 5. W pola poniższego diagramu należy wpisać cyfry od 1 do 6, tak aby się nie powtarzały, by w każdym polu stała tylko jedna cyfra, a sumy liczb na dużych okręgach były jednakowe. Dla ułatwienia dwie cyfry zostały już wpisane. Ile wynosi suma liczb na każdym okręgu? 31 małe obniżenie terenu 32 duże liściaste charakterystyczne drzewo 33 górka 39 dół 41 dół na małej polanie 46 dół 48 ambona na wzgórzu 53 górka 54 górka
5 XII WMMnO ODPOWIEDZI SZKOŁA PODSTAWOWA ZAD (4+2; liczby parzyste dzielimy na 2, do nieparzystych dodajemy 5), ZAD , ZAD. 3. PARYŻ, ZAD , ZAD X: 45 (OBSERWACYJNA WIEŻA), Y: 44 GIMNAZJUM ZAD ( ; liczby o sumie cyfr dwa w kolejności rosnącej), ZAD (ur. 1919) lub 55 (ur. 1959), ZAD. 3. KOS, ZAD , ZAD X: 34 (CMENTARZ LEŚNY RÓG PŁD.-ZACH.), Y: 40 SZKOŁY PONADGIMNAZJALNE I WYŻSZE ZAD ( ; na miejscach parzystych potęgi dwójki zmniejszone o 1, na parzystych kolejne liczby naturalne), ZAD ( ), ZAD. 3. PÓŁKA, ZAD , ZAD X: 51 (ZBIORNIK WODNY WYSUSZONY RÓG PŁD.- ZACH.), Y: 40 NAUCZYCIELE I RODZICE Z DZIEĆMI ZAD (8+4; liczby parzyste dzielimy na 2, liczby nieparzyste zwiększamy o 5 jeśli są pierwsze lub o 2 w przeciwnym razie), ZAD , ZAD. 3. RAK, ZAD. 4. 9, ZAD X: 37 (DRUGI SZCZYT MAPY), Y: 47
Kategoria SZKOŁY PODSTAWOWE
Kategoria SZKOŁY PODSTAWOWE Znajdź na swojej mapie dwa punkty kontrolne o największych takich numerach, że ich różnica wynosi 1. Odcinek łączący te punkty jest podstawą trójkąta równoramiennego o trzecim
Kategoria Szkoły podstawowe
Kategoria Szkoły podstawowe Gdyby iść z punktu Y na NE, trafiłoby się na punkt z Twojej mapy, którego numer jest o 1 większy od kwadratu pewnej liczby naturalnej. Punkt Y leży w odległości 3070 dm od PK
Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D
A B C D 4 4 9 9 4 5 6 2 4 5 4 Zad. 1. (4 pkt.) Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) Ma oś symetrii Obwód wynosi 12 Ma środek symetrii
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
Kategoria Szkoły podstawowe
Kategoria Szkoły podstawowe Jeśli na swojej mapie znajdziesz dwa punkty kontrolne, których numery są kolejnymi wielokrotnościami czwórki, to ten z większym numerem leży prawie dokładnie w 2 / 3 drogi od
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
sumaryczna liczba punktów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2.
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych
GEOMETRYCZNE 1) Dany jest prostokąt ABCD. Bok AB podzielono na trzy równe odcinki: AX, XY i YB. Wyznaczono trójkąty DAX, DXY i DYB. Uzasadnij, że wyznaczone trójkąty mają równe pola. Wizualizacja zadania
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Kategoria Szkoły podstawowe
Kategoria Szkoły podstawowe A jest punktem kontrolnym z Twojej mapy, którego numer jest taką liczbą, że wszystkie jej dzielniki większe od 1 są parzyste. Y leży na tym samym równoleżniku co A, a odległość
X Olimpiada Matematyczna Gimnazjalistów
X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (27 listopada 2014 r.) Rozwiązania zadań testowych 1. Istnieje ostrosłup, który ma dokładnie 15 14 a) wierzchołków;
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!
Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -
~ A ~ 1. Dany jest trójkąt prostokątny o bokach długości 12, 16 i 20. Zmniejszamy długość każdego boku o 8. Wtedy:
GIM-. Dany jest trójkąt prostokątny o bokach długości 2, 6 i 20. Zmniejszamy długość każdego boku o 8. Wtedy: I. Powstanie trójkąt o polu równym połowie pola trójkąta pierwotnego II. Pole nowego trójkąta
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
SZKOLNA LIGA ZADANIOWA
KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:
KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Wersja testu A 25 września 2011
1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV
LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 12 IX rok 2003/2004 Bukiet 1 O pewnych liczbach A, B i C wiadomo, że: A + B = 32, B + C = 40, C + A = 26. 1. Ile wynosi A
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
KONKURS MATEMATYCZNY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 30 marzec 2017r. godz.
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj
ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3
ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY 18 listopada 2013 r. godz. 13:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 30
Kategoria Szkoły podstawowe
Kategoria Szkoły podstawowe Idąc o 0,096 km na SSW od punktu Y, trafilibyście do punktu z Waszej mapy, którego numer jest liczbą mającą tylko trzy dodatnie dzielniki. Zad. 1. Wrocławskie zoo jest najstarsze
Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa
Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń
2a a a + 5 = 27 6a + 9 = % 18 = = 54
Wojewódzki Konkurs matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap II - rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe
TABELA ODPOWIEDZI. kod ucznia
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 018/019 ETAP SZKOLNY 5 października
Konkurs dla gimnazjalistów Etap szkolny 11 grudnia 2015 roku
Konkurs dla gimnazjalistów Etap szkolny 11 grudnia 2015 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 12. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl
Szkoła Podstawowa Uczymy się dowodzić Opracowała: Ewa Ślubowska ewa.slubowska@wp.pl PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA II etap edukacyjny: klasy IV VI I. Sprawność rachunkowa. Uczeń wykonuje proste
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
P o w o d z e n i a!
Powiatowy Konkurs Matematyczny Dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 17 zadań masz 75 minut.
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku
Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap III etap wojewódzki- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą
V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 01/016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 1
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
Liczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując
Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI CIAGI ARYTMETYCZNE ZADANIE 1 Suma drugiego, czwartego i szóstego wyrazu ciagu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Suma punktów Numer zadania 1-20 21 22 23 Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015R. 1. Test konkursowy zawiera 23 zadania.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania podana
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 2003/2004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla gimnazjum Zestaw I (12 IX) Zadanie 1. Znajdź cyfry A, B, C, spełniające równość: a) AB A = BCB, b) AB A = CCB. Zadanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe
Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3
zestaw nr 3 dla klasy 3 W magazynie stoją dwa worki z ryżem. W pierwszym worku jest trzykrotnie więcej ryżu niż w drugim, a w drugim o 24 kg mniej niż w pierwszym. Ile ryżu znajduje się łącznie w obydwu
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Bukiety matematyczne dla szkoły podstawowej
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 8 X 2002 Bukiet 1 Dany jest sześciokąt ABCDEF, którego wszystkie kąty są równe 120. Proste AB i CD przecinają się w punkcie
Jarosław Wróblewski Matematyka dla Myślących, 2008/09
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).
KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 31 stycznia 2008 r.
KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 3 3 4 5 4 5 48 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 18.11.2016 1. Test konkursowy zawiera 22 zadania. Są to zadania zamknięte
Jarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
KONKURS ZOSTAŃ EUKLIDESEM 11 czerwca 2011
KONKURS ZOSTAŃ EUKLIDESEM 11 czerwca 2011 CZĘŚĆ I Zadanie 1. (1pkt) Liczba całkowita dodatnia jest liczbą palindromiczną, jeśli jej zapis dziesiętny czytany od początku i od kooca jest taki sam (np. 7653567).
Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 MARZEC 2014 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut
kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty (wypełnia komisja) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut 1. Otrzymujesz do rozwiązania 10
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje
Matematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA TRZECIA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 06 - gminny konkurs matematyczny FINAŁ 0 maja 06 KLASA TRZECIA. Przed Tobą zestaw 0 zadań konkursowych. Zanim rozpoczniesz pracę nad
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
MISTRZ MATEMATYKI. Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 2001.
MISTRZ MATEMATYKI Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 00. Zakres materiału: DZIAŁANIA NA ZBIORACH LICZB RZECZYWISTYCH Wykonała: mgr Krystyna
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy
Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść
Zestaw zadań dotyczących liczb całkowitych
V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).