Klimat i bilans energetyczny. Mikołaj Szopa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Klimat i bilans energetyczny. Mikołaj Szopa"

Transkrypt

1 Klimat i bilans energetyczny Mikołaj Szopa

2 Na podstawie swoich obserwacji badacze atmosfery proponują bardzo uproszczone modele bilansu energetycznego między powierzchnią i atmosferą ziemską.

3

4

5 Albedo jest to stosunek ilości promieniowania odbitego do padającego na daną powierzchnię

6

7 Duża część, bo ok. 70% docierającej do powierzchni Ziemi energii słonecznej, steruje procesami obiegu wody w cyklu hydrologicznymi.

8

9 Przepływ ciepła na Ziemi Ilość promieniowania słonecznego docierającego do powierzchni Ziemi, jest nierównomiernie rozłożona na całej jej powierzchni. Wynika to z faktu: nachylenia osi obrotu Ziemi do płaszczyzny ekliptyki, większego nagrzewania obszarów w pobliżu równika (niskie szerokości geograficzne), zwiększonego odbicia i zmniejszonego pochłaniania światła słonecznego w wyższych szerokościach geograficznych. Cyrkulacja atmosferyczna

10

11

12

13 Rzeźba dna oceanicznego

14 Pionowy rozkład temperatury wody w oceanie Temperatura wody jest kolejnym istotnym parametrem hydrologicznym pozwalającym na dokonanie strukturalnego podziału wód oceanicznych. Głównym źródłem dostarczania ciepła do oceanu światowego jest promieniowanie słoneczne. Ze względu na kryterium temperaturowe, wody podzielono na wody powierzchniowe i głębinowe, oddzielone warstwą termokliny. Termoklinę stanowi warstwę wody, w której występuje duży gradient zmiany temperatury z głębokością.

15 Dynamika wód oceanicznych Falowanie morza

16 Podział fal morskich dotyczy głębokości akwenu, po którym fale się przemieszczają. W tym wypadku fale dzielimy na tarcia cząsteczek wody o dno, prędkość fali i jej długość ulegają zmniejszeniu

17 Fale wiatrowe Fale wiatrowe są to fale powstające w wyniku oddziaływania wiatru z powierzchnią morza. Na tworzące się fale działa siła grawitacji, stabilizująca cały układ. Kiedy długość fal kapilarnych przekroczy 1,47 cm, stają się one falami grawitacyjnymi. Dzieje się tak przy prędkości wiatru ok. 6 7 m/s.

18 W falach wiatrowych głębokowodnych, cząsteczki wody zataczają okręgi wokół położenia równowagi. Na podstawie teorii fal o małej amplitudzie, można wyznaczyć średnicę ich orbit ze wzoru średnica orbit zmniejsza się wraz z głębokością

19 W przypadku fal płytkowodnych, gdzie zaczyna działać siła tarcia o dno. Cząsteczki powierzchniowe zaczynają zataczać elipsy, ze średnicami pionowymi równymi wysokości fali i wydłużonymi średnicami poziomymi. Przy samym dnie mamy jedynie do czynienia z poziomym ruchem cząsteczek ruchem oscylacyjnym.

20 Skala Beauforta siły wiatru i stanu morza.

21 Fale baryczne Fale baryczne są falami powstającymi wskutek szybkiego przemieszczania się nad danym akwenem układów barycznych przeważnie niżów. W zasięgu obszaru obniżonego ciśnienia, następuje podniesienie lustra wody, co powoduje powstanie fali barycznej. Szacuje się, że przy spadku ciśnienia o 1 hpa w stosunku do ciśnienia odniesienia 1013 hpa, poziom lustra wody podnosi się o 1 cm (Trzeciak, 2000). Obszar niskiego ciśnienia docierając do lądu, może spowodować spiętrzenie wody dochodzące nawet do kilku metrów.

22 Fale sejsmiczne (tsunami) Swobodne fale sejsmiczne są falami długimi o długości średnio od 100 do 200 km, poruszającymi się z dużą prędkością. Na otwartym oceanie wysokość fali tsunami jest niewielka, zaledwie kilka centymetrów często niezauważalna. Docierając do brzegu fala zwalnia i wypiętrza się, zwiększając swoją wysokość do kilkudziesięciu metrów.

23 Wysokość pływów

24 Prądy wiatrowe Prądy wiatrowe powstają wskutek powstających naprężeń ścinających na styku woda wiatr, oraz napierania wiatru na nawietrzną stronę fal. Prądy wiatrowe sięgają do głębokości ok. 200 m Wraz z głębokością ich siła jak i kierunek ulegają zmianie. Zjawisko to przedstawia spirala Ekmana Spirala Ekmana, model obrazujący jednorodny słup wody wprawiony w ruch przez wiatr wiejący nad powierzchnią wody. Przypowierzchniowe masy wody znajdujące się pod działaniem dwóch sił: siły tarcia wiatru wprowadzającego je w ruch postępowy i skierowanej w prawo (na półkuli północnej) siły Coriolisa.

25 Chmury

26

27

28

29 Pogoda i klimat. Pogoda chwilowy stan atmosfery opisywany przez wielkości fizyczne takie jak: temperatura powietrza, ciśnienie atmosferyczne, wilgotność, natężenie promieniowania słonecznego, prędkość i kierunek wiatru, stopień i rodzaj zachmurzenie, opady itd. Klimat charakterystycznych dla danego obszaru przebieg warunków atmosferycznych określony na podstawie długoletnich (minimum 30-sto letnich) obserwacji. Różnice pomiędzy pogodą a klimatem doskonale opisuje zdanie: Climate is what you expect, weather is what you get".

30 Klimat - definicja fizyczna W ujęciu fizycznym klimat zdefiniowany jest poprzez statystykę stanów atmosfery. Klimat definiuje się przez pojęcia statystyczne takie jak średnia, wariancja, odchylenie standardowe, momenty wyższych rzędów, kwantyle czy funkcję gęstości prawdopodobieństwa. Znajomość statystki stanów atmosferycznych pozwala nam określić jakich warunków atmosferycznych należy oczekiwać w danym okresie czasu, np. jakie jest prawdopodobieństwo, że średnia temperatura jakiegoś miesiąca w przyszłości będzie w przedziale od -3 do -4oC. Można to zrobić przy założeniu, że funkcja gęstości nie zmienia się w czasie (brak zmian klimatycznych). Z matematycznego punktu widzenia oznacza to, że mamy do czynienia ze stacjonarnym procesem losowym.

31 Temperatury latem w Europie po 1500 roku

32 Przykład: zmiany w rozkładzie temperatur Częstość wzrost wariancji Częstość wzrost średniej chłodno średnio ciepło chłodno średnio Częstość wzrost średniej i wariancji chłodno średnio ciepło ciepło

33 częstość Przykład: zmiany w rozkładzie intensywności opadów słabe umiarkowane silne

34 Anomalie pogodowe i klimatyczne Czyli odchylenie od wartości średniej (przeciętej) Pojęcie to stosowane jest często do analizy zmienności warunków pogodowych Z definicji tej wielkości wynika, że praktycznie każdego dnia doświadczamy anomalii pogodowych Czy anomalie pogodowe świadczą o zmianach klimatu? Nie, gdyż anomalie są naturalnie związanie z klimatem Dopiero gdy anomalia utrzymuje się przez odpowiedni długi okres czasu (30 lat) może to świadczyć o zmianach klimatycznych. Wówczas nie mówimy już o anomalii pogodowej lecz anomalii klimatycznej

35 Anomalie pogodowe i klimatyczne

36 Anomalie c.d. Czy chłodne lato jakiegoś roku może dowodzić, że nie mamy do czynienia z globalnym ociepleniem? Czy śnieżna i mroźna zima jakiegoś roku może być dowodem na brak globalnego ocieplenia? Odpowiedz na te pytania nasuwa się sama gdy przeanalizujemy rozkłady prawdopodobieństwa temperatury.

37

38 Dygresja: Oscylacja Północno-Atlantycka NAO Faza dodatni łagodne ale dynamiczne zimy w Polsce Faza ujemna surowe zimy w Polsce Indeks NAO został zdefiniowany w latach 20. XX w. przez Gilberta Walkera z wykorzystaniem południkowej znormalizowanej różnicy ciśnienia atmosferycznego między dwoma quasistacjonarnymi układami barycznymi Wyżem Azorskim i Niżem Islandzkim

39 Indeks NAO

40 Czy możemy przewidywać zmiany klimatyczne gdy nie potrafimy przewidzieć pogody na kilka tygodni na przód? Modele klimatu mają bardzo podobną strukturę do modeli prognozujących pogodę na kuli ziemskiej, ale są od nich mimo wszystko różne. W prognozie pogody symulacje są dosyć krótkie - maksymalnie kilka dni. Modele prognozy pogody wymagają bardzo precyzyjnych danych początkowych - zazwyczaj obserwacji ze stacji synoptycznych połączonych z asymilacją danych. Modele prognozy są robione zazwyczaj na znacznie gęstszej siatce Mimo, że prognozy numeryczne pogody po kilku dniach tracą dokładność to nie znaczy, że symulacje klimatu są niedokładne. Dzieje się tak dlatego, ponieważ w problemie klimatu istotne są wartości statystyczne (średnie, trendy itd.).

41 System klimatyczny System klimatyczny to złożony układ składający się z pięciu elementów: atmosfera, hydrosfera, kriosfera, biosfera i powierzchnia ziemi w którym zachodzą interakcje między nimi. System klimatyczny jest pod wpływem wewnętrznej dynamiki oraz zewnętrznych zaburzeń (np. aktywność Słoneczna).

42 słabe rozpraszanie promieniowania intensywne rozpraszanie promieniowania atmosfera

43 Skład atmosfery gazy stałe Gaz Symbol % objętości Dlaczego ważny? Azot N2 78,08 Tlen O2 21 Argon Ar 0,9 biosfera Pochłanianie UV, oddychanie Gaz nieaktywny, właściwie nieistotny

44 Skład atmosfery - Gazy zmienne Gaz Symbol Para wodna H2O 0-4 Dwutlenek węgla CO2 0,036 Metan CH4 0,00017 Tlenek azotu N2O 0,00003 Gaz cieplarniany Ozon O3 0, Warstwa ozonowa, pochłania UV 0, Budżet energii; tworzenie chmur Cząstki stałe (pyły, sadze), tzw aerozole % objętości Dlaczego ważny? Transport ciepła, gaz cieplarniany, uczestniczy w tworzeniu różnych zjawisk (chmury) Gaz cieplarniany, biosfera (fotosynteza) Gaz cieplarniany, bardziej wydajny niż CO2

45 Rozkład śladowych gazów w atmosferze Homosfera z<100 km Heterosfera z>100 km

46 Podział atmosfery

47 Hydrosfera Hydrosfera - jedna z geosfer, ogół wód na Ziemi - wody podziemne, powierzchniowe wraz z rzekami, jeziorami, lodowcami, morzami i oceanami, a także parą wodną w powietrzu. Hydrosferę można podzielić na dwie części: oceanosferę i wody na lądach. W większości hydrosferę tworzą wody słone, bo aż 97.5%. Słodka woda to 2.5 %. 2/3 wody słodkiej skoncentrowane jest w lodowcach, trwałej pokrywie śnieżnej i wiecznej zmarzlinie w Antarktyce, Arktyce i w wysokich górach. Pozostała część wody słodkiej przypada na wody podziemne, jeziora, rzeki.

48 Oceany Wody słone to główne oceany. Pokrywają one 70.8% powierzchni Ziemi. Przy czym na półkuli południowej pokrywają 81% a na północnej 61%. Średnia głębokość to 3711 metra. Średnie zasolenie wód wynosi ok. 35 i waha się w granicach: 34.5 w okolicach równika, 38 w strefie około zwrotnikowej, 30 w strefie okołobiegunowej.

49 Struktura pionowa oceanów warstwa mieszania warstwa przejściowa termoklina głębia oceaniczna

50 Różnice pomiędzy oceanem a atmosferą Woda ma około 4 większą pojemność cieplną Masa całej atmosfery jest równoważna około 10-cio metrowej warstwie wody. Atmosfera podgrzewana jest (przez promieniowanie słoneczne) od dołu (od powierzchni Zimie) podczas gdy woda podgrzewana jest od góry. Ma to znaczenie dla rozwoju konwekcji w atmosferze i oceanach.

51 Interakcje pomiędzy atmosferą a oceanem Wymiana: energii pędu pary wodnej dwutlenku węgla soli morskiej (produkcja aerozolu morskiego)

52 Kriosfera powłoka lodowa obejmująca warstwę od górnej troposfery do dolnej granicy gruntów przemarzniętych (wieloletniej zmarzliny). do kriosfery należą lody: morskie, lodowców, lądolodów, wieloletniej zmarzliny i śniegi występujące stale w wysokich górach i na obszarach okołobiegunowych oraz okresowo na znacznych obszarach strefy umiarkowanej. kriosfera wchodzi w ścisły związek z litosferą, atmosferą i hydrosferą lodowce pokrywają dziś ok 10-11% powierzchni wszystkich lądów gdyby stopiła się cała kriosfera poziom oceanu podniósł by się o około 70m (wg National Snow and Ice Data Center)

53 Rola kriosfery w systemie klimatycznym wpływa na poziom światowego oceanu wpływa na bilans energii (wysokie albedo śniegu i lodu) wpływa na cyrkulację oceaniczną w wysokich szerokościach geograficznych być może wpływa na cyrkulację atmosferyczną w niskich szerokościach (np. monsun letni w Indiach)? bierze udział w szeregu sprzężeń zwrotnych w systemie klimatycznym

54 Biosfera Strefa kuli ziemskiej zamieszkana przez organizmy żywe, w której odbywają się procesy ekologiczne. Biosfera obejmuje powietrze, ląd i wodę. Biosfera obejmuje około: 4 km n.p.m. - atmosfera 300 m p.p.m. hydrosfera 40 cm w głąb ziemi - litosfera

55 Rola biosfery w systemie klimatycznym Obieg węgla, produktywności biosfery Wpływ na bilans energii, wymianę pary wodnej (transpiracja) Emisja DMS będącego prekursorem aerozoli

56 Rola litosfery w systemie klimatycznym Rzeźba powierzchni Ziemi i jej budowa wpływają na przebieg procesów zachodzących w atmosferze i hydrosferze (głównie cyrkulacja) różnicując strefowy układ tych elementów środowiska Litosfera ma wpływ na bilans energetyczny planety (poprzez albedo). Strumień ciepła geotermalnego litosfery ma zaniedbywalny wpływ na globalny bilans energetyczny!

57 Procesy klimatyczne To procesy fizyczne zachodzące w atmosferze i oceanach prowadzące do zmian klimatu. Determinują one zmiany naturalne i antropogeniczne systemu klimatycznego oraz jego odpowiedz na zaburzenia (np. wzrost koncentracji gazów cieplarnianych). Ważnym pojęciem w systemie klimatycznym są sprzężenia zwrotne, które związane są z procesami klimatycznymi. Zwiększają (sprzężenie dodatnie) lub zmniejszają (sprzężenie ujemne) zmiany w układzie wywołane pierwotnym zaburzeniem.

58 Model klimatu - zerowe przybliżenie bez atmosfery Fo stała słoneczna R R2Fo stała słoneczna 4 R2σT4 T R2Fo A A - planetarne albedo stosunek strumienia promieniowania odbitego do padającego.

59 Pojęcie temperatury efektywnej W rzeczywistych warunkach albedo planetarnego wynosi około 30% (A=0.3) a równowaga radiacyjna określa średnią temperaturę efektywną. Te = 4 Fo ( 1 A) 255K 4σ Temperatura efektywna jest niższa od średniej temperatury panującej obecnie na przy powierzchni Ziemi o około 33 K. Jest to temperatura, jaką miałaby Ziemia przy braku atmosfery ale przy założeniu rzeczywistego albeda planetarnego. Zakładając albedo planetarne na poziomie 12% temperatura ta wynosi około 270 K (różnica 18K) Głównym zjawiskiem odpowiedzialnym za wyższą temperaturę na Ziemi jest efekt cieplarniany. Temperatura efektywną określa temperaturę warstwy atmosfery, która efektywnie wypromieniowanie energię w kosmos. Jeśli założyć, że atmosfera jest przeźroczysta dla promieniowania to temperatura efektywna określa temperaturę powierzchni Ziemi.

60 Porównanie najbliższych planet

61 Model klimatu - zerowe przybliżenie z atmosferą Ponieważ mamy atmosferę promieniowanie emitowane przez powierzchnię Ziemi jest przez nią częściowo absorbowane i remitowane. Fo stała słoneczna atmosfera σte4 T R2Fo A efektywna emisja w kosmos

62 Kilka uwag do modelu Obecnie albedo samej powierzchni Ziemi wynosi około 14% jednak gdyby na Ziemi było o 33 K chłodniej (temperatura powietrza byłaby równa temperaturze efektywnej) znacząco zwiększył by się zasięg lodowców i pokrywy śnieżnej co wpłynęłoby na wyższe albedo. Przedstawiono model opisu systemu klimatycznego widzianego z kosmosu. Przytoczony bilans energii na górnej granicy atmosfery mimo, że nie uwzględnia atmosfery jest dokładnie taki sam jak w przypadku atmosfery.

63 Zmienność albeda Ziemi na górnej granicy atmosfery

64 Średnie dobowa wartość promieniowania słonecznego na szczycie atmosfery jako funkcja szerokości geograficznej i miesiąca. Linia przerywana oznacza szerokość geograficzną gdzie występuje górowanie Słońca (Hartmann, 1994).

65 Bilans radiacyjny na górnej granicy atmosfery

66 Chwilowa wartość bilansu radiacyjnego nad Polską w czasie nocy.

67 Średnia roczna wartość energii promieniowania słonecznego absorbowanego przez układ Ziemia-Atmosfera, energia emitowane (promieniowanie długofalowe) oraz ich wartość netto (Hartmann 1994). Średnia roczna wartość energii transportowanej w kierunku północnym potrzebna do zrównoważenia bilansu radiacyjnego pomiędzy równikiem a biegunem. Linia ciągła oznacza bilans radiacyjny na szczycie atmosfery, linia przerywana w atmosferze zaś kropkowana w oceanie (Zhang Rossow, 1997). 67

68 Bilans radiacyjny w atmosferze jest ujemny co oznacza, że mamy tam do czynienia z innym źródłem energii, który równoważy wychładzanie radiacyjne.

69 Równowaga radiacyjno-konwekcyjna W czasie konwekcji następuje transport pary wodnej, która w pewnych warunkach może kondensować. W czasie tego procesu wydzielane jest ciepło przemiany fazowej, które jest istotnym źródłem energii w dolnej atmosferze. Mówimy o transporcie ciepła utajonego. Tak, więc transport ciepła od powierzchni do atmosfery zmniejsza spadek temperatury z wysokością. Ustala się stan równowagi zwanej równowagą radiacyjno-konwekcyjną. Średni spadek temperatury z wysokością wynosi w tym przypadku 0.65oC na każde 100 metrów.

70 Przy braku konwekcji mielibyśmy do czynienia z równowagą radiacyjną, która ustaliła by pionowy spadek temperatur z wysokością znacznie większy niż 10o na 1km.

71 Profile temperatury z wysokością przy założeniu równowagi radiacyjnej oraz różnego składu atmosfery.

72 Czy jednak w całej kolumnie atmosfery występuje ujemny bilans radiacyjny? Po wyżej troposfery bilans jest w przybliżeniu zerowy co oznacza, że mamy tam równowagę radiacyjną. Pochłanianie promieniowania UV przez ozon i tlen równoważy wypromieniowanie energii w kosmos.

73 Zmiany temperatury z wysokością Za spadek temperatury z wysokością odpowiadają własności optyczne atmosfery. Gdyby w dolnej troposferze występował gaz znacząco absorbujący promieniowanie słoneczne spadek temperatury z wysokością byłby znacznie mniejszy a w konsekwencji występowałyby słabsze ruchy konwekcyjne, mniejsze opady itd. Silna absorpcja promieniowania przez ten gaz minimalizowałaby ubytek ciepła wynikający z emisji promieniowania w kosmos. Tak, więc niepotrzebny byłby tak duży transport ciepła od powierzchni ziemi za pośrednictwem konwekcji.

74 Metoda wyznaczania równowagi radiacyjnej Korzystając z modelu transferu radiacyjnego wyznaczamy strumienie radiacyjne dla założonego stanu atmosfery (profile termodynamiczne, profile podstawowych gazów atmosferycznych, albedo powierzchni ziemi) Liczymy dywergencje strumienia netto i wyznaczamy tempo zmian temperatury powietrza w [K/dobę] dla każdej pionowej warstwy atmosfery Ustalając krok czasowy na 1 dobę, liczymy nowy profil temperatury powietrza w atmosferze, a następnie przy użyciu modelu transferu radiacyjnego nowe strumienie itd. Po uzyskaniu zbieżności otrzymujemy profil temperatury odpowiadający równowadze radiacyjnej

75 Metoda wyznaczania równowagi radiacyjnokonwekcyjnej W tym przypadku poza modelem transferu radiacyjnego musimy dysponować modelem konwekcji, który określi strumienie ciepła odczuwalnego oraz utajonego. Procedura wyznaczenia profilu temperatury odbywa się podobnie do przypadku równowagi radiacyjnokonwekcyjnej.

76 Wymuszenie radiacyjne wymuszenie NTOA( A, Teff, T) Fo stała słoneczna Fo/4 TeffσT4 A /4 A - planetarne albedo W stanie równowagi: Fo (1-A)/4=Teff T4

77 Rozpatrzmy bilans promieniowania na górnej granicy atmosfery, gdzie strumień netto N wyraża się wzorem N = (1 A) FS FL W stanie równowagi radiacyjnej średnia wartość (uśredniona po czasie charakterystycznym dla skali zmian klimatu) strumienia netto wynosi zero N >0 Badania pokazują, że system klimatyczny nie jest w równowadze. Odchylenie od tego stanu jest bardzo małe i wynosi dziesiętne części procenta promieniowania słonecznego dochodzącego do Ziemi. W pierwszym przybliżeniu OLR może być zapisany jako funkcja temperatury powierzchni Ziemi Ts w postaci FL(Ts)=Teff Ts4 gdzie Teff jest efektywną transmisją promieniowania długofalowego w atmosferze i zależy głównie od całkowitej zawartości pary wodnej oraz CO2 w pionowej kolumnie powietrza.

78 Rozważmy małe zaburzenie od stanu równowagi, dla którego strumień netto na górnej granicy atmosfery zmienia się od wartości N(Ts) do N(Ts)+ N. Zakładamy, że układ Ziemia-Atmosfera osiąga nową quasi-równowagę. Nowy stan może być zapisany jako suma wymuszenia radiacyjnego N oraz odpowiedzi atmosfery zgodnie ze wzorem N ΔN + ΔTs = 0 Ts Zmiany temperatury powierzchni Ziemi wywołane wymuszaniem radiacyjnym możemy zapisać w postaci ΔTs = αδn gdzie oznacza współczynnik wrażliwości klimatu na zmiany radiacyjne i wyraża się wzorem N α = T s 1

79 Na podstawie wzoru na strumień netto na górnej granicy atmosfery współczynnik ten można przedstawić w postaci FL Fs ( 1 A) α = Ts Ts 1 Zauważmy, że zdefiniowane powyżej zmiany temperatury powierzchni Ziemi związane są bezpośrednio z wymuszeniem radiacyjnym N. Pośredni efekt związany jest z procesami zależnymi od temperatury powierzchni Ziemi, które mają charakter pozytywnych lub negatywnych sprzężeń zwrotnych. Dla przykładu wzrost temperatury powierzchni Ziemi wzmaga ewaporację, prowadząc w ten sposób do wzrostu wilgotności wzmacniającego efekt cieplarniany.

80 Bardziej realistyczny model systemu klimatycznego uwzględnia, że pochłonięty przez układ Ziemia-Atmosfera strumień promieniowania słonecznego oraz strumień promieniowania długofalowego emitowany w przestrzeń kosmiczną zależy od szeregu parametrów. Umownie oznaczanych przez q1, q2,.... Każdy z nich zależy natomiast od temperatury powierzchni Ziemi. Wówczas wymuszenie radiacyjne można zapisać postaci N q1 N q2 ΔN ΔTs = 0 q1 Ts q2 Ts Zmiana temperatury podobnie jak powyżej wynosi ΔTs = αδn gdzie tym razem współczynnik wrażliwości klimatu na zmiany radiacyjne wyraża się wzorem 1 F α= L T s i N qi qi Ts

81 Wróćmy jednak do pierwotnego prostszego modelu, w którym mamy tylko efekt bezpośredni. Według modeli radiacyjnych podwojenie dwutlenku węgla spowoduje wymuszanie radiacyjne na poziomie 4 W/m2. Zastanówmy się, jak duże zmiany temperatury może spowodować to wymuszenie radiacyjne? Korzystamy w tym celu z definicji współczynnika wrażliwości klimatu na wymuszenia radiacyjne zakładając, że temperatura powierzchni Ziemi nie wpływa na albedo planetarne. FL α = T s 1 Założenie to jest bardzo silne, gdyż łatwo sobie wyobrazić, że wzrost temperatury prowadzi do wzrostu wilgotności oraz stopnia zachmurzenia, a w konsekwencji planetarnego albeda.

82 Podstawiając wartość strumienia długofalowego na górnej granicy atmosfery mamy α = Ts 4 FL Podstawiając do wzoru na bezpośrednią zmianę temperatury powietrza otrzymujemy ΔTs = αδn = 1.2 K Szacowany, przy użyciu modeli klimatu wzrost temperatury związany z podwojeniem CO2, jest większy i wynosi: 2.4 K. Przyczyną tego są sprzężenia zwrotne np. podniesienie się temperatury powietrza powoduje większe parowanie i wzrost zawartości pary wodnej w atmosferze. Wpływ zaś pary wodnej na efekt cieplarniany jest większy, niż CO2, co prowadzi do niedoszacowania zmian temperatury. W rzeczywistości problem ten jest bardziej skomplikowany, gdyż wzrost zawartości pary wodnej prowadzi do większego zachmurzenia i wzrostu albeda, redukcji ocieplania.

83 Parametr sprzężenia zwrotnego Analizując problemy wymuszania radiacyjnego wygodnie jest wprowadzić parametr sprzężenie zwrotnego (Feedback Parametr) jako 1 λ= α Wartości tego parametru przedstawia poniższa tabela Wm-2K-1 model 3.8 Ziemia jako ciało doskonale czarne 3.3 Realistyczny model radiacyjny Ziemi Z uwzględnieniem sprzężenia zwrotnego pary wodnej Z uwzględnieniem wszystkich sprzężeń zwrotnych (chmury, lodowce-albedo)

84 Chociaż sama wartość wymuszenia radiacyjnego w przypadku dwutlenku węgla jest prosta do oszacowania przy użyciu modelu transferu promieniowania, to wyznaczenie współczynnika wrażliwości klimatu na zmiany radiacyjne (parametr sprzężenia zwrotnego) jest trudne i stanowi jedno z większych zadań dla globalnych modeli klimatycznych (np. GCM- global climate model). Obecnie szacuje się, że parametr ten wynosi

85 Niezbilansowanie energii na górnej granicy atmosfery W latach : bilans energii 0.0 W/m2 (na podstawie obserwacji satelitarnych projekt ERBE project [Levitus et al. 2005]) W 2003 bilans energii W/m2 [Hansen et al., 2005], na podstawie modelu klimatu W latach : W/m2 [Trenberth et al., 2009], na podstawie obserwacji satelitarnych detektor CERES W latach : W/m2 [Hansen et al., 2011], oszacowanie na podstawie oceanicznych pomiarów ARGO i modelu klimatu W 2012: W/m2 na podstawie obserwacji satelitarnych

86 Wymuszanie radiacyjne aerozoli chwilowe wymuszanie RF = (F F )aerosol (F F )clear Wymuszenie radiacyjne aerozoli jest zdefiniowane jako perturbacja energii absorbowanej przez ziemski system klimatyczny związaną z obecnością aerozoli w atmosferze. Bezpośrednie wymuszanie radiacyjne przez aerozol jest zdefiniowane jako różnica pomiędzy strumieniem netto promieniowania w obecności oraz bez aerozoli podczas braku zachmurzenia. ΔTs = αrf FNET α = Ts ± 0.25K / W / m 2

87 Wpływ aerozoli i chmur na system klimatyczny

88 Zanieczyszczenia atmosfery zwane inaczej aerozolami to małe cząstki stałe lub ciekłe powstające w sposób naturalny oraz w wyniku działalności gospodarczej człowieka. Rodzaje aerozoli: sól morska drobiny piasku pyły antropogeniczne lub naturalne (wulkaniczny) fragmenty roślin sadza (elemental carbon), organic carbon siarczany, azotany związki organiczne i nieorganiczne Aerozole naturalne. Aerozole antropogeniczne

89 Wielkość i kształt cząstek aerozolu

90 Zmętnienie atmosfery powstałe w wyniku obecności aerozoli

91

92 Podział aerozoli ze względu na ich rozmiar W rozkładzie wielości aerozoli wyróżniany 3 charakterystyczne grupy cząstek: cząstki Aitkena (nucleation mod), r<0.05 m cząstki małe (accumulation mod), 0.05<r<0.5 m cząstki duże (coarse mod), r>0.5 m Szczególnie istotne znaczenie w atmosferze z klimatycznego punktu widzenia mają ostatnie dwa typy cząstek.

93 Produkcja aerozoli produkcja mechaniczna (powstawanie soli morskiej podczas załamywania fal morskich czy wynoszenie pyłu pustynnego w czasie burz pyłowych) spalanie biomasy spalanie przemysłowe (pyły, gazy) konwersja gazu do cząstek np. do kwasu siarkowego czy azotowego

94 Usuwanie aerozoli z atmosfery Sucha depozycja Sedymentacja osiadanie grawitacyjne (efektywnie usuwane tylko duże cząstki) Wilgotna depozycja (wymywanie przez krople chmurowe lub krople deszczu). Efektywne usuwanie cząstek z klasy akumulacyjnej

95 Wpływ aerozolu na klimat 1) Efekt bezpośredni poprzez rozpraszanie i pochłanianie promieniowania słonecznego dochodzącego do powierzchni Ziemi. 2) Efekt pośredni oddziaływanie aerozolu na własności chmur oraz ich czas życia Aerozole chłodzą klimat!

96 Efekt bezpośredni -prosty model radiacyjny Fo Fo (1-exp(- )) Fo(1- )(1-exp(- )) Fo (1- )(1-exp(- )) Foexp(- ) Rs - grubość optyczna aerozolu w - albedo pojedynczego rozpraszania w = scat / ext - cześć promieniowania rozpraszania do tyłu Dla molekuł =0.5 Dla aerozoli ( ) Transmisja przez warstwę aerozolu t= exp(- )+ (1- )(1-exp(- )) Odbicie od warstwy aerozolu r= (1-exp(- ))

97 tak więc aerozole nad ciemną powierzchnią Ziemi zawsze ochładzają klimat. aerozole nad bardzo jasnymi powierzchniami (śnieg) ogrzewają klimat. w przypadku pośrednim ochładzanie bądź ogrzewanie zależy od własności optycznych aerozoli oraz własności odbijających podłoża. jednak zawsze obecność aerozoli prowadzi do redukcji promieniowania przy powierzchni Ziemi a zatem ochładzania.

98 Zmiany temperatury związane z obecnością aerozolu Wymuszanie radiacyjne w tym przypadku wynosi ΔN = ΔRs FS Współczynnik wrażliwości klimatu na zmiany radiacyjne podobnie, jak w przypadku efektu cieplarnianego ma 1 postać FL Ts = α = T 4 FL S Zmiana temperatury powietrza wyrażamy wzorem ΔTS = αδn = TS ΔRs FS 4 FL Po uwzględnieniu bilansu promieniowania na górnej granicy atmosfery w postaci otrzymujemy ΔTS = TS ΔRs 4 1 Rs

99 Zakładając zmianę globalnego albeda, związana z obecnością aerozoli, na poziomie 1% otrzymujemy zmianę temperatury o ok. 1K. Z przedstawionych wykresów wynika, że zmiany albeda mogą być większe niż 1% zatem chłodzenie aerozolowe może być znacznie większe. Zależy to oczywiście od lokalnych właściwości optycznych aerozolu. Jednak wymuszanie zmian klimatu przez aerozol jak widać jest tego samego rzędu, co wywołane stale rosnącym efektem cieplarnianym.

100 Pierwszy pośredni wpływ aerozoli Chmury czyste i zanieczyszczone Czyste powietrze, mała ilość jąder kondensacji. Mała koncentracja. Duże rozmiary kropelek. Zanieczyszczone powietrze, duża ilość jąder kondensacji. Duża koncentracja. Małe rozmiary kropelek.

101 Optyczny model chmury Albedo chmury w przybliżeniu dwu-strumieniowym R= F F = ( 1 g)τ τ = 2 + ( 1 g)τ τ g gdzie g jest parametrem asymetrii związanym z rozpraszaniem promieniowania na kropelkach lub kryształach lodu, zaś t grubością optyczna chmury. Przyjmując parametr asymetrii dla chmury równy około g=0.85 otrzymujemy τ R τ + 13 Rozważmy jednorodną chmurę o monodyspersyjnym rozkładzie wielkości τ = hπr 2Qext N o Przyjmując, że dla obszaru widzialnego parametr wielkości x=2pr/l >>1 stąd Qext=2

102 Wyznaczamy zależność albeda chmur R od liczby kropelek N przy stałej zawartości wody ciekłej (LWC) dr dr dτ = dn o LWC dτ dno Zakładając, że LWC nie zależy od wysokości stąd 4 3 LWC = πr ρwhn o 3 4 dlwc = 0 = πhρw (dn o r 3 + 3N o r 2 ) = dn = o r 3No Obliczmy wielkość dτ 2πh(dN o r 2 + 2r N o ) dn o 2 = = + 2 τ No r 2πhN o r dτ dn o 2 dn o 1 dn o = = τ No 3 No 3 No

103 dr τ + 13 τ 13 = = 2 dτ (τ + 13 ) (τ + 13 )2 ostatecznie dr dr dτ 13 1 τ 13 1 = = = R dn 2 3N dτ dn (τ + 13 ) o o 3 N o τ + 13 o LWC dr R 13R R( 1 R) = = dn 3No o LWC 3No τ Tylko w przypadku chmur zawierających mała liczbę kropel N<100 cm-3 albedo chmury zależy silnie od koncentracji tym samym zawartości aerozoli.

104 Wpływ aerozolu na bilans radiacyjny podsumowanie

105 Czy chmury są doskonale czarne?

106 Prosty radiacyjny model izotermicznej chmury Bilans energii całej chmury jest ujemy i wynosi 4 T H = εσts 2εσT = εσts 1 2 Ts Ochładzanie to jest tym silniejsze im wyższa jest temperatura chmury a zatem im bliżej ziemi znajduje się chmura.

107 Rozważmy bilans promieniowania długofalowego na dolnej oraz górnej powierzchni chmury. Ograniczenie się tylko do promieniowania długofalowego odpowiada sytuacji nocnej. Strumień netto na dolnej granicy chmury wynosi 4 Nbase = F F σ(ts4 Tbase ) gdzie Tbase jest temperaturą podstawy chmury, zaś Ts temperaturą powierzchni ziemi Przy czym założyliśmy, że chmura jest na tyle gruba, że można ją traktować jak ciało doskonale czarne. Powyższy wzór jest tylko oszacowaniem górnym gdyż, nie całe promieniowanie emitowane przez powierzchnie ziemi osiąga podstawę chmury. Rozpatrzymy chmurę o grubości 700 m o podstawie znajdującej się na poziomie 300 m. Niech temperatura powierzchni ziemi wynosi 288 K, zaś do postawy chmury panuje suchoadiabatyczny gradient temperatury. Zatem temperatura na wysokości podstawy chmury wynosi 285 K. W tym przypadku strumień netto na wysokości podstawy chmury wynosi Nbase 16 W/m2.

108 Strumień netto na szycie chmury można zapisać w postaci 4 N top σ(ttop εta4 ) Ponieważ w chmurze gradient temperatury z wysokością jest gradientem wilgotnoadiabatycznym (6 K/km), dlatego temperatura na szczycie chmury wynosi około 281 K. Ponadto, jeśli przyjmiemy, ze zdolność emisyjna atmosfery po wyżej chmury wynosi 0.8 (w rzeczywistej atmosferze zmienia się od 0.7 w Arktyce do 0.95 w rejonach tropikalnych) to strumień netto na szczycie chmury wynosi ok. 211 W/m 2. Zauważmy, że z definicji strumieni netto wynika, że podstawa chmury jest słabo grzana (16 W/m2), zaś wierzchołek chmury silnie chłodzony (211 W/m2). Zatem, chmura jest silnie chłodzona jako całość (196 W/m2). Obliczmy, jakie jest tempo ochładzania radiacyjnego chmury Nbase N top dt 14 dtrad C p ρδz K/dzień

109 Chmury wysokie ogrzewają a niskie chłodzą Th Albedo 10-30% Albedo 60-80% Tl Ts Ts Tl Ts>> Th

110 1. Przypadek szklanej szyby (przeźroczysta dla promieniowania słonecznego asw = 0 i całkowicie nieprzeźroczysta dla promieniowania długofalowego alw= 1. Ts = Te K Ta = Te 2. Temperatura powierzchni Ziemi jest wyższa od atmosfery tylko wtedy, gdy a LW > asw (warunek występowania troposfery). W obecnej atmosferze warunek ten jest spełniony. Gdyby sprężyć całą parę wodną do jednej warstwy, to miałaby ona zdolność aborcyjną dla promieniowania krótkofalowego równą 0.25, zaś zdolność emisyjną dla promieniowania długofalowego 0.9. Podstawiając te wartości otrzymujemy temperaturę powierzchni Ziemi równą 286 K, zaś atmosfery K.

111 3. Przypadek tzw. zimy nuklearnej. Jeśliby spalić wszystkie lasy na ziemi oraz budynki powstający smog miałaby w przybliżeniu zdolność absorpcyjną równą jedności, zaś zdolność emisyjną w podczerwieni około 0.9. W tym przypadku temperatura powierzchni Ziemi wyniosłaby 249 K, zaś atmosfery 255 K. Tak więc atmosfera byłaby stabilna i doszłoby do zaniku troposfery. 4. Im większa różnica pomiędzy zdolnością absorpcyjna promieniowania długofalowego słonecznego tym większa różnica temperatury powierzchni Ziemi i atmosfery. 5. Na wartość zdolności absorpcyjnej promieniowania długofalowego największy wpływ na zawartość gazów cieplarnianych (para wodna, CO2, ozon, metan itd.). 6. W zakresie promieniowania słonecznego istotną rolę odgrywają aerozole atmosferyczne. 7. Chmury wpływają na wartość zdolności absorpcyjnej w zakresie SW i LW. Stąd też wpływ chmur na klimat jest zróżnicowany (zależy od parametrów optycznych i temperatury chmur).

Na podstawie swoich obserwacji badacze atmosfery proponują bardzo uproszczone modele bilansu energetycznego między powierzchnią i atmosferą ziemską.

Na podstawie swoich obserwacji badacze atmosfery proponują bardzo uproszczone modele bilansu energetycznego między powierzchnią i atmosferą ziemską. Na podstawie swoich obserwacji badacze atmosfery proponują bardzo uproszczone modele bilansu energetycznego między powierzchnią i atmosferą ziemską. Albedo jest to stosunek ilości promieniowania odbitego

Bardziej szczegółowo

Bilans energetyczny c.d. Mikołaj Szopa

Bilans energetyczny c.d. Mikołaj Szopa Bilans energetyczny c.d. Mikołaj Szopa Bilans promieniowania słonecznego oraz ziemskiego atmosferze (Trenberth, K.E., J.T. Fasullo, and J. Kiehl, 2009). 2 Model klimatu - zerowe przybliżenie bez atmosfery

Bardziej szczegółowo

Fizyka Procesów Klimatycznych Wykład 1

Fizyka Procesów Klimatycznych Wykład 1 Fizyka Procesów Klimatycznych Wykład 1 prof. dr hab. Szymon Malinowski Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski malina@igf.fuw.edu.pl dr hab. Krzysztof Markowicz Instytut Geofizyki, Wydział

Bardziej szczegółowo

Bilans energii i pojęcie wymuszania radiacyjnego. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski

Bilans energii i pojęcie wymuszania radiacyjnego. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Bilans energii i pojęcie wymuszania radiacyjnego Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Pojecie bilansu energetycznego na górnej granicy atmosfery. Bilans energetyczny

Bardziej szczegółowo

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone).

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Promieniowanie termiczne emitowane z powierzchni planety nie może wydostać się bezpośrednio

Bardziej szczegółowo

FIZYKA I CHEMIA GLEB. Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001

FIZYKA I CHEMIA GLEB. Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001 FIZYKA I CHEMIA GLEB Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001 Tematyka wykładów Bilans wodny i cieplny gleb, właściwości

Bardziej szczegółowo

Układ klimatyczny. kriosfera. atmosfera. biosfera. geosfera. hydrosfera

Układ klimatyczny. kriosfera. atmosfera. biosfera. geosfera. hydrosfera Układ klimatyczny kriosfera atmosfera biosfera geosfera hydrosfera 1 Klimat, bilans energetyczny 30% 66% T=15oC Bez efektu cieplarnianego T=-18oC 2 Przyczyny zmian klimatycznych Przyczyny zewnętrzne: Zmiana

Bardziej szczegółowo

Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce?

Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce? Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce? Kilka pytao na początek Czy obecnie obserwujemy zmiany klimatu? Co, poza działaniem człowieka, może wpływad na zmiany klimatu?

Bardziej szczegółowo

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2 Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące

Bardziej szczegółowo

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 3 Wstęp do Geofizyki - Fizyka atmosfery 2 /43 Powietrze opisuje się równaniem stanu gazu doskonałego,

Bardziej szczegółowo

Andrzej Jaśkowiak Lotnicza pogoda

Andrzej Jaśkowiak Lotnicza pogoda Andrzej Jaśkowiak Lotnicza pogoda - Meteorologia dla pilotów ROZDZIAŁ 1. Atmosfera ziemska ROZDZIAŁ 2. Woda w atmosferze ROZDZIAŁ 3. Temperatura ROZDZIAŁ 4. Stabilność powietrza ROZDZIAŁ 5. Ciśnienie atmosferyczne

Bardziej szczegółowo

7. EFEKT CIEPLARNIANY

7. EFEKT CIEPLARNIANY 7. EFEKT CIEPLARNIANY 7.01. Efekt cieplarniany-wprowadzenie 7.02. Widmo promieniowania docierającego do powierzchni Ziemi i emitowanego z powierzchni Ziemi 7.03. Temperatura efektywna Ziemi 7.04. Termiczny

Bardziej szczegółowo

Wiatry OKRESOWE ZMIENNE NISZCZĄCE STAŁE. (zmieniające swój kierunek w cyklu rocznym lub dobowym)

Wiatry OKRESOWE ZMIENNE NISZCZĄCE STAŁE. (zmieniające swój kierunek w cyklu rocznym lub dobowym) Wiatry Co to jest wiatr? Wiatr to poziomy ruch powietrza w troposferze z wyżu barycznego do niżu barycznego. Prędkość wiatru wzrasta wraz z różnicą ciśnienia atmosferycznego. W N Wiatry STAŁE (niezmieniające

Bardziej szczegółowo

Falowanie czyli pionowy ruch cząsteczek wody, wywołany rytmicznymi uderzeniami wiatru o powierzchnię wody. Fale wiatrowe dochodzą średnio do 2-6 m

Falowanie czyli pionowy ruch cząsteczek wody, wywołany rytmicznymi uderzeniami wiatru o powierzchnię wody. Fale wiatrowe dochodzą średnio do 2-6 m Ruchy wód morskich Falowanie Falowanie czyli pionowy ruch cząsteczek wody, wywołany rytmicznymi uderzeniami wiatru o powierzchnię wody. Fale wiatrowe dochodzą średnio do 2-6 m wysokości i 50-100 m długości.

Bardziej szczegółowo

Prezentacja grupy A ZAPRASZAMY

Prezentacja grupy A ZAPRASZAMY Prezentacja grupy A Pojecie kluczowe: Globalne i lokalne problemy środowiska. Temat: Jaki wpływ mają nasze działania na globalne ocieplenie? Problem badawczy: Jaki wpływ ma zużycie wody na globalne ocieplenie?

Bardziej szczegółowo

Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność

Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność TEMPERATURA Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność dwóch układów pozostających w równowadze

Bardziej szczegółowo

Menu. Badania temperatury i wilgotności atmosfery

Menu. Badania temperatury i wilgotności atmosfery Menu Badania temperatury i wilgotności atmosfery Wilgotność W powietrzu atmosferycznym podstawową rolę odgrywa woda w postaci pary wodnej. Przedostaje się ona do atmosfery w wyniku parowania z powieszchni

Bardziej szczegółowo

Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi

Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Atmosfera struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Składniki stałe Ziemia Mars Wenus Nitrogen (N2) Oxygen (O2) Argon (Ar) Neon, Helium, Krypton 78.08% 20.95% 0.93%

Bardziej szczegółowo

Praca kontrolna semestr IV Przyroda... imię i nazwisko słuchacza

Praca kontrolna semestr IV Przyroda... imię i nazwisko słuchacza Praca kontrolna semestr IV Przyroda.... imię i nazwisko słuchacza semestr 1. Ilustracja przedstawia oświetlenie Ziemi w pierwszym dniu jednej z astronomicznych pór roku. Uzupełnij zdania brakującymi informacjami,

Bardziej szczegółowo

Meteorologia i Klimatologia Ćwiczenie IV. Poznań,

Meteorologia i Klimatologia Ćwiczenie IV. Poznań, Meteorologia i Klimatologia Ćwiczenie IV Poznań, 27.10.2008 www.amu.edu.pl/~nwp Woda w atmosferze i jej przemiany fazowe Zapotrzebowanie energetyczne przemian fazowych wody jest istotnym czynnikiem kształtującym

Bardziej szczegółowo

Meteorologia i Klimatologia Ćwiczenie II Poznań,

Meteorologia i Klimatologia Ćwiczenie II Poznań, Meteorologia i Klimatologia Ćwiczenie II Poznań, 17.10.2008 Bilans promieniowania układu Ziemia - Atmosfera Promieniowanie mechanizm wysyłania fal elektromagnetycznych Wyróżniamy 2 typy promieniowania:

Bardziej szczegółowo

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach.

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach. Prąd strumieniowy (jet stream) jest wąskim pasem bardzo silnego wiatru na dużej wysokości (prędkość wiatru jest > 60 kts, czyli 30 m/s). Możemy go sobie wyobrazić jako rurę, która jest spłaszczona w pionie

Bardziej szczegółowo

ZAŁĄCZNIK 17 Lotnicza Pogoda w pytaniach i odpowiedziach

ZAŁĄCZNIK 17 Lotnicza Pogoda w pytaniach i odpowiedziach GLOBALNA CYRKULACJA POWIETRZA I STREFY KLIMATYCZNE Terminu klimat używamy do opisu charakterystycznych cech/parametrów pogody dla danego obszaru geograficznego. W skład tych parametrów wchodzą: temperatura,

Bardziej szczegółowo

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 2 Wstęp do Geofizyki - Fizyka atmosfery 2 /47 http://climatescience.jpl.nasa.gov/images/ccs/earth_energy-780x551.jpg

Bardziej szczegółowo

Efekt cieplarniany i warstwa ozonowa

Efekt cieplarniany i warstwa ozonowa Efekt cieplarniany i warstwa ozonowa Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało pochłaniające całkowicie każde promieniowanie, które padnie na jego powierzchnię, niezależnie od

Bardziej szczegółowo

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi

Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Atmosfera struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Składniki stałe Ziemia Mars Wenus Nitrogen (N2) Oxygen (O2) Argon (Ar) Neon, Helium, Krypton 78.08% 20.95% 0.93%

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

NATURALNE ZMIANY CYKLU OBIEGU WODY

NATURALNE ZMIANY CYKLU OBIEGU WODY NATURALNE ZMIANY CYKLU OBIEGU WODY prof. dr hab. inż. MACIEJ MACIEJEWSKI, e-mail: maciej.maciejewski@imgw.pl dr inż. TOMASZ WALCZUKIEWICZ, e-mail: tomasz.walczykiewicz@imgw.pl mgr CELINA RATAJ, e-mail:

Bardziej szczegółowo

Naturalne i antropogeniczne zmiany klimatu

Naturalne i antropogeniczne zmiany klimatu Zmiany klimatu Naturalne i antropogeniczne zmiany klimatu Duża zmienność w przeszłości Problem z odzieleniem wpływów naturalnych i antropogenicznych Mechanizm sprzężeń zwrotnych Badania naukowe Scenariusze

Bardziej szczegółowo

Ściąga eksperta. Skład i budowa atmosfery oraz temperatura powietrza. - filmy edukacyjne on-line Strona 1/5

Ściąga eksperta. Skład i budowa atmosfery oraz temperatura powietrza.  - filmy edukacyjne on-line Strona 1/5 Skład i budowa atmosfery oraz temperatura powietrza Skład i budowa atmosfery oraz temperatura powietrza Atmosfera to najbardziej zewnętrzna część powłoki otulającej Ziemię. Pozwala ona na rozwój życia

Bardziej szczegółowo

Budowa atmosfery ziemskiej. Atmosfera składa się z kilku warstw TROPOSFERA STRATOSFERA MEZOSFERA TERMOSFERA EGZOSFERA

Budowa atmosfery ziemskiej. Atmosfera składa się z kilku warstw TROPOSFERA STRATOSFERA MEZOSFERA TERMOSFERA EGZOSFERA Budowa atmosfery ziemskiej Atmosfera składa się z kilku warstw TROPOSFERA STRATOSFERA MEZOSFERA TERMOSFERA EGZOSFERA Charakterystyka troposfery Spadek temperatury w troposferze Zwykle wynosi ok. 0,65 C

Bardziej szczegółowo

Śródroczny kurs żeglarza jachtowego 2016/2017

Śródroczny kurs żeglarza jachtowego 2016/2017 Śródroczny kurs żeglarza jachtowego 2016/2017 27 Harcerska Drużyna Wodna Hufca Ziemi Mikołowskiej im. Bohaterów Powstań Śląskich Maciej Lipiński Meteorologia Meteorologia Meteorologia (gr. metéōron - unoszący

Bardziej szczegółowo

Menu. Pomiar bilansu promieniowania Ziemi

Menu. Pomiar bilansu promieniowania Ziemi Menu Pomiar bilansu promieniowania Ziemi Uśredniając globalnie, Ziemia jest 0.75 C cieplejsza niż była w 1860. Jedenaście z ostatnich 12 lat jest w 12 najcieplejszych lat od czasu 1850. Ocieplenie jest

Bardziej szczegółowo

Spis treści. Fizyka wczoraj, dziś, jutro. Astronomia dla każdego. Olimpiady, konkursy, zadania. Z naszych lekcji

Spis treści. Fizyka wczoraj, dziś, jutro. Astronomia dla każdego. Olimpiady, konkursy, zadania. Z naszych lekcji Spis treści Fizyka wczoraj, dziś, jutro Ekonofizyka w świecie baniek, 4 krachów i emocji Ryszard Kutner Co w fizyce piszczy? 9 Zbigniew Wiśniewski Fizyka z puszką coca-coli 30 Juliusz Domański Astronomia

Bardziej szczegółowo

Typy strefy równikowej:

Typy strefy równikowej: Strefa równikowa: Duży dopływ energii słonecznej w ciągu roku, strefa bardzo wilgotna spowodowana znacznym parowaniem. W powietrzu występują warunki do powstawania procesów konwekcyjnych. Przykładem mogą

Bardziej szczegółowo

SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE

SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE 1. WPROWADZENIE.. 9 1.1. Klimatyczne kontrowersje i metoda naukowa..10 Stanowisko nauki odnośnie obecnej zmiany klimatu i jej przyczyn. Metoda naukowa, literatura recenzowana

Bardziej szczegółowo

Klimat w Polsce w 21. wieku

Klimat w Polsce w 21. wieku Klimat w Polsce w 21. wieku na podstawie numerycznych symulacji regionalnych Małgorzata Liszewska Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego UNIWERSYTET WARSZAWSKI 1/42 POGODA

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Cechy klimatu Polski. Cechy klimatu Polski. Wstęp

Cechy klimatu Polski. Cechy klimatu Polski. Wstęp Cechy klimatu Polski Cechy klimatu Polski Wstęp Klimat to przeciętne, powtarzające się corocznie stany atmosfery występujące na danym obszarze, określone na podstawie wieloletnich obserwacji i pomiarów

Bardziej szczegółowo

Krzysztof Markowicz. Badania zmian klimatu Ziemi

Krzysztof Markowicz. Badania zmian klimatu Ziemi Krzysztof Markowicz Badania zmian klimatu Ziemi Wstęp Obecnie nie mamy wątpliwości, że klimat na Ziemi zmieniał się w okresie historycznym. Zmienia wielokrotnie przychodziła przez długie okresy zlodowacenia

Bardziej szczegółowo

ZAŁĄCZNIK 2 Lotnicza Pogoda w pytaniach i odpowiedziach

ZAŁĄCZNIK 2 Lotnicza Pogoda w pytaniach i odpowiedziach Przyczyny powstawania wiatru. W meteorologii wiatr zdefiniowany jest jako horyzontalny (poziomy) ruch powietrza spowodowany przez siły, które na nie działają. Różnice temperatur występujące na powierzchni

Bardziej szczegółowo

I. Obraz Ziemi. 1. sfery Ziemi 2. generalizacja kartograficzna. 3. siatka geograficzna a siatka kartograficzna. 4. podział odwzorowań kartograficznych

I. Obraz Ziemi. 1. sfery Ziemi 2. generalizacja kartograficzna. 3. siatka geograficzna a siatka kartograficzna. 4. podział odwzorowań kartograficznych Zagadnienia do małej matury 2013/2014 z geografii klasy dwujęzycznej obejmują tematy określone w zagadnieniach do małej matury z geografii w brzmieniu załączonym na stronie internetowej szkoły, umieszczonych

Bardziej szczegółowo

Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie

Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie Zmiany klimatyczne a rolnictwo w Polsce ocena zagrożeń i sposoby adaptacji Warszawa, 30.09.2009 r. Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie Jerzy Kozyra Instytut Uprawy Nawożenia

Bardziej szczegółowo

Lokalną Grupę Działania. Debata realizowana w ramach projektu. wdrażanego przez

Lokalną Grupę Działania. Debata realizowana w ramach projektu. wdrażanego przez Odchylenie od normy (1961-1990; o C) 2016-09-12 Debata realizowana w ramach projektu wdrażanego przez Lokalną Grupę Działania a finansowanego przez Fundację na rzecz Rozwoju Polskiego Rolnictwa ze środków

Bardziej szczegółowo

ZIMOWE WARSZTATY BADAWCZE FIZYKI ATMOSFERY SIECI NAUKOWEJ POLAND-AOD

ZIMOWE WARSZTATY BADAWCZE FIZYKI ATMOSFERY SIECI NAUKOWEJ POLAND-AOD ZIMOWE WARSZTATY BADAWCZE FIZYKI ATMOSFERY SIECI NAUKOWEJ POLAND-AOD 1 Celem warsztatów jest poznanie procesów fizycznych z udziałem aerozolu atmosferycznego zachodzących w dolnej troposferze w rejonie

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

KONKURS GEOGRAFICZNY

KONKURS GEOGRAFICZNY KOD UCZNIA KONKURS GEOGRAFICZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY 22 października 2012 Ważne informacje: 1. Masz 60 minut na rozwiązanie wszystkich 21 zadań. 2. Zapisuj szczegółowe obliczenia i komentarze

Bardziej szczegółowo

Zmiany w środowisku naturalnym

Zmiany w środowisku naturalnym Zmiany w środowisku naturalnym Plan gospodarki niskoemisyjnej jedną z form dążenia do czystszego środowiska naturalnego Opracował: Romuald Meyer PGK SA Czym jest efekt cieplarniany? Ziemia posiada atmosferę

Bardziej szczegółowo

Fizyka Procesów Klimatycznych Wykład 12 Aerozol

Fizyka Procesów Klimatycznych Wykład 12 Aerozol Fizyka Procesów Klimatycznych Wykład 12 Aerozol prof. dr hab. Szymon Malinowski Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski malina@igf.fuw.edu.pl dr hab. Krzysztof Markowicz Instytut Geofizyki,

Bardziej szczegółowo

Wpływ aerozolu i chmur na bilans energii w atmosferze. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski

Wpływ aerozolu i chmur na bilans energii w atmosferze. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Wpływ aerozolu i chmur na bilans energii w atmosferze Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Rola aerozolu i chmur w bilansie radiacyjnym Odmienny wpływ w zakresie

Bardziej szczegółowo

Higrometry Proste pytania i problemy TEMPERATURA POWIETRZA Definicja temperatury powietrza energia cieplna w

Higrometry Proste pytania i problemy TEMPERATURA POWIETRZA Definicja temperatury powietrza energia cieplna w 3 SPIS TREŚCI WYKAZ DEFINICJI I SKRÓTÓW... 9 WSTĘP... 13 METEOROLOGICZNE WARUNKI WYKONYWANIA OPERACJI W TRANSPORCIE. POJĘCIA PODSTAWOWE... 15 1. PODSTAWY PRAWNE FUNKCJONOWANIA OSŁONY METEOROLOGICZNEJ...

Bardziej szczegółowo

Ściąga eksperta. Wiatr. - filmy edukacyjne on-line

Ściąga eksperta. Wiatr.  - filmy edukacyjne on-line Wiatr wiatr odgrywa niezmiernie istotną rolę na kształtowanie się innych elementów pogody, ponieważ wraz z przemieszczającym się powietrzem przenoszona jest para wodna oraz energia cieplna; wiatr - to

Bardziej szczegółowo

Meteorologia i Klimatologia

Meteorologia i Klimatologia Meteorologia i Klimatologia Ćwiczenie I Poznań, 17.10.2008 mgr Bartosz Czernecki pok. 356 Instytut Geografii Fizycznej i Kształtowania Środowiska Przyrodniczego (Zakład Klimatologii) Wydział Nauk Geograficznych

Bardziej szczegółowo

Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1

Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1 2016 Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1 Elżbieta Niemierka Wydział Inżynierii Środowiska Politechniki Wrocławskiej 2016-01-07 1. SPIS TREŚCI 2. Gaz cieplarniany - definicja...

Bardziej szczegółowo

Zjawiska fizyczne. Autorzy: Rafał Kowalski kl. 2A

Zjawiska fizyczne. Autorzy: Rafał Kowalski kl. 2A Zjawiska fizyczne Autorzy: Rafał Kowalski kl. 2A Co to są zjawiska fizyczne??? Zjawiska fizyczne są to przemiany na skutek, których zmieniają się tylko właściwości fizyczne ciała lub obiektu fizycznego.

Bardziej szczegółowo

CYKL: ZANIECZYSZCZENIE POWIETRZA

CYKL: ZANIECZYSZCZENIE POWIETRZA Magdalena Szewczyk Dział programowy : Ekologia CYKL: ZANIECZYSZCZENIE POWIETRZA temat lekcji : Przyczyny i rodzaje zanieczyszczeń powietrza. Cele lekcji w kategoriach czynności uczniów ( cele operacyjne):

Bardziej szczegółowo

METEOROLOGIA LOTNICZA ćwiczenie 1

METEOROLOGIA LOTNICZA ćwiczenie 1 METEOROLOGIA LOTNICZA ćwiczenie 1 Wstęp Regulamin przedmiotu Efekty kształcenia Materiały na stronie www2.wt.pw.edu.pl/~akw Zaliczenie Dwie kartkówki punktowane: 1. W połowie zajęć. 2. Ostatnie zajęcia.

Bardziej szczegółowo

Przedmioty realizowane w ramach studiów na różnych Wydziałach SGGW:

Przedmioty realizowane w ramach studiów na różnych Wydziałach SGGW: Przedmioty realizowane w ramach studiów na różnych Wydziałach SGGW: AGROMETEOROLOGIA/ AGROMETEOROLOGY atmosfera oraz powierzchnia czynna - atmosfera. Promieniowanie Słońca, Ziemi i atmosfery; rola promieniowania

Bardziej szczegółowo

Powietrze opisuje się równaniem stanu gazu doskonałego, które łączy ze sobą

Powietrze opisuje się równaniem stanu gazu doskonałego, które łączy ze sobą Opis powietrza - 1 Powietrze opisuje się równaniem stanu gazu doskonałego, które łączy ze sobą Temperaturę Ciśnienie Gęstość Jeśli powietrze zawiera parę wodną w stanie nasycenia, należy brać pod uwagę

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Wstęp. Regulamin przedmiotu Efekty kształcenia Materiały na stronie www2.wt.pw.edu.pl/~akw METEOROLOGIA LOTNICZA. Wstęp.

Wstęp. Regulamin przedmiotu Efekty kształcenia Materiały na stronie www2.wt.pw.edu.pl/~akw METEOROLOGIA LOTNICZA. Wstęp. Wstęp METEOROLOGIA LOTNICZA Wstęp Ćwiczenie 1 Regulamin przedmiotu Efekty kształcenia Materiały na stronie www2.wt.pw.edu.pl/~akw 1 Zaliczenie Dwie kartkówki punktowane: 1. W połowie zajęć. 2. Ostatnie

Bardziej szczegółowo

GLOBALNE CYKLE BIOGEOCHEMICZNE obieg siarki

GLOBALNE CYKLE BIOGEOCHEMICZNE obieg siarki GLOBALNE CYKLE BIOGEOCHEMICZNE oieg siarki W organizmie ludzkim: mięśnie: 5000-11000 ppm, kości: 500-2400 ppm, krew 1,8 g/l Całkowita zawartość (70 kg): 140 g. Rozpowszechnienie siarki (wagowo) Ziemia

Bardziej szczegółowo

Badania stanu warstwy ozonowej nad Polską oraz pomiary natężenia promieniowania UV

Badania stanu warstwy ozonowej nad Polską oraz pomiary natężenia promieniowania UV Badania stanu warstwy ozonowej nad Polską oraz pomiary natężenia promieniowania UV Średnia zawartość ozonu w skali globalnej pozostaje o 4% niższa w stosunku do średniej z lat 1964-198, podczas gdy w latach

Bardziej szczegółowo

Energia słoneczna i cieplna biosfery Zasoby energii słonecznej

Energia słoneczna i cieplna biosfery Zasoby energii słonecznej Dr inż. Mariusz Szewczyk Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki 35-959 Rzeszów, ul. W. Pola 2 Energia słoneczna i cieplna biosfery Zasoby energii

Bardziej szczegółowo

Przedmiotowy system oceniania Bliżej geografii Gimnazjum część 1

Przedmiotowy system oceniania Bliżej geografii Gimnazjum część 1 Przedmiotowy system oceniania Bliżej geografii Gimnazjum część 1 1. Geograficzny punkt widzenia 2. Mapa źródłem informacji geograficznej definiować pojęcia: geografia, środowisko przyrodnicze i geograficzne,

Bardziej szczegółowo

Globalne ocieplenie okiem fizyka

Globalne ocieplenie okiem fizyka Globalne ocieplenie okiem fizyka Szymon Malinowski Wydział Fizyki Uniwersytetu Warszawskiego oraz naukaoklimacie.pl 29 września 2016 Zmiany średniej temperatury powierzchni Ziemi (GISTEMP) Zmiany rozkładu

Bardziej szczegółowo

Fizyka Procesów Klimatycznych Wykład 2

Fizyka Procesów Klimatycznych Wykład 2 Fizyka Procesów Klimatycznych Wykład 2 prof. dr hab. Szymon Malinowski Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski malina@igf.fuw.edu.pl dr hab. Krzysztof Markowicz Instytut Geofizyki, Wydział

Bardziej szczegółowo

24 godziny 23 godziny 56 minut 4 sekundy

24 godziny 23 godziny 56 minut 4 sekundy Ruch obrotowy Ziemi Podstawowe pojęcia Ruch obrotowy, inaczej wirowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun Północny i Biegun Południowy.

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Badania naturalnego pola temperatury gruntu w rejonie aglomeracji poznańskiej i przykład ich zastosowania

Badania naturalnego pola temperatury gruntu w rejonie aglomeracji poznańskiej i przykład ich zastosowania Badania naturalnego pola temperatury gruntu w rejonie aglomeracji poznańskiej i przykład ich zastosowania Konferencja Przemarzanie podłoża gruntowego i geotermiczne aspekty budownictwa energooszczędnego

Bardziej szczegółowo

PIONOWA BUDOWA ATMOSFERY

PIONOWA BUDOWA ATMOSFERY PIONOWA BUDOWA ATMOSFERY Atmosfera ziemska to powłoka gazowa otaczająca planetę Ziemię. Jest utrzymywana przy powierzchni przez grawitację planety. Chroni naszą planetę przed promieniowaniem ultrafioletowym,

Bardziej szczegółowo

WYZWANIA EKOLOGICZNE XXI WIEKU

WYZWANIA EKOLOGICZNE XXI WIEKU WYZWANIA EKOLOGICZNE XXI WIEKU ZA GŁÓWNE ŹRÓDŁA ZANIECZYSZCZEŃ UWAŻANE SĄ: -przemysł -transport -rolnictwo -gospodarka komunalna Zanieczyszczenie gleb Przyczyny zanieczyszczeń gleb to, np.: działalność

Bardziej szczegółowo

Środowisko symulacji parametry początkowe powietrza

Środowisko symulacji parametry początkowe powietrza Środowisko symulacji parametry początkowe powietrza Wstęp O wartości dobrze przygotowanego modelu symulacyjnego świadczy grupa odpowiednio opisanych parametrów wejściowych. Pozornie najbardziej widoczna

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Ostateczna postać długotrwałych zmian w określonych warunkach klimatyczno-geologicznych to:

Ostateczna postać długotrwałych zmian w określonych warunkach klimatyczno-geologicznych to: WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: OCHRONA ŚRODOWISKA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Ekologia II.

Bardziej szczegółowo

Składniki pogody i sposoby ich pomiaru

Składniki pogody i sposoby ich pomiaru Składniki pogody I sposoby ich pomiaru Tytuł: Składniki pogody i sposoby ich pomiaru Temat zajęć : Pogoda i klimat, obserwacje meteorologiczne Przedmiot: przyroda Autor: Hedesz Natalia Szkoła: Szkoła Podstawowa

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń potrafi:

Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń potrafi: 1. Geograficzny punkt widzenia 2. Mapa źródłem informacji geograficznej definiować pojęcia: geografia, środowisko przyrodnicze i geograficzne, wymienić elementy środowiska przyrodniczego. podać definicję

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

Analiza działania kolektora typu B.G z bezpośrednim grzaniem. 30 marca 2011

Analiza działania kolektora typu B.G z bezpośrednim grzaniem. 30 marca 2011 Analiza działania kolektora typu B.G z bezpośrednim grzaniem. 30 marca 2011 Założenia konstrukcyjne kolektora. Obliczenia są prowadzone w kierunku określenia sprawności kolektora i wszelkie przepływy energetyczne

Bardziej szczegółowo

Cyrkulacja oceanów. Ocean światowy. Skład wody morskiej. Rozkład zasolenia

Cyrkulacja oceanów. Ocean światowy. Skład wody morskiej. Rozkład zasolenia Ocean światowy Cyrkulacja oceanów Oceany zajmują powierzchnie 361 mln km 2 (tj. 71% powierzchni Ziemi) Ocean Spokojny - 180 mln km 2 Ocean Atlantycki - 106 mln km 2 Ocean Indyjski - 75 mln km 2 Średnia

Bardziej szczegółowo

Początki początków - maj br.

Początki początków - maj br. Dotychczasowe doświadczenia w zakresie egzekwowania i ujmowania zagadnień klimatycznych w składanych dokumentach na etapie ooś w województwie kujawsko - pomorskim Rdoś Bydgoszcz Początki początków - maj

Bardziej szczegółowo

GEOGRAFIA PROGRAM RAMOWY klasa I GIMNAZJUM

GEOGRAFIA PROGRAM RAMOWY klasa I GIMNAZJUM pieczątka/nazwa szkoły GEOGRAFIA PROGRAM RAMOWY klasa I GIMNAZJUM numer i data wpływu pracy do ORPEG Praca kontrolna nr 2 Uwaga! Strona tytułowa stanowi integralną część pracy kontrolnej. Wypełnij wszystkie

Bardziej szczegółowo

NaCoBeZU geografia klasa pierwsza

NaCoBeZU geografia klasa pierwsza NaCoBeZU geografia klasa pierwsza Zagadnienie Geografia jako nauka Wyjaśnisz znaczenie terminu: geografia, środowisko przyrodnicze i geograficzne. Wymienisz źródła wiedzy geograficznej. Wymienisz elementy

Bardziej szczegółowo

Hydrosfera - źródła i rodzaje zanieczyszczeń, sposoby jej ochrony i zasoby wody w biosferze.

Hydrosfera - źródła i rodzaje zanieczyszczeń, sposoby jej ochrony i zasoby wody w biosferze. Hydrosfera - źródła i rodzaje zanieczyszczeń, sposoby jej ochrony i zasoby wody w biosferze. Hydrosfera składa się z kilku wyraźnie różniących się od siebie elementów będących zarazem etapami cyklu obiegu

Bardziej szczegółowo

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 4 Wstęp do Geofizyki - Fizyka atmosfery 2 /45 Wstęp do Geofizyki - Fizyka atmosfery 3 /45 Siła grawitacji

Bardziej szczegółowo

Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści

Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści Przedmowa Wykaz waŝniejszych oznaczeń i symboli IX XI 1. Emisja zanieczyszczeń

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania 1. Geograficzny punkt widzenia 2. Mapa źródłem informacji geograficznej definiować pojęcia: geografia, środowisko przyrodnicze i geograficzne, wymienić elementy środowiska przyrodniczego. podać definicję

Bardziej szczegółowo

całkowite rozproszone

całkowite rozproszone Kierunek: Elektrotechnika, II stopień, semestr 1 Technika świetlna i elektrotermia Laboratorium Ćwiczenie nr 14 Temat: BADANIE KOLEKTORÓW SŁONECZNYCH 1. Wiadomości podstawowe W wyniku przemian jądrowych

Bardziej szczegółowo

,,WPŁYW GLOBALNYCH ZJAWISK KLIMATYCZNYCH NA KLIMAT ZIEMI CHRZANOWSKIEJ

,,WPŁYW GLOBALNYCH ZJAWISK KLIMATYCZNYCH NA KLIMAT ZIEMI CHRZANOWSKIEJ ,,WPŁYW GLOBALNYCH ZJAWISK KLIMATYCZNYCH NA KLIMAT ZIEMI CHRZANOWSKIEJ Plan wykładu: 1-Pojęcie klimatu i pogody oraz czynników klimatycznych. 2-Klimat Chrzanowa i Polski w ujęciu przez dzieje historyczne.

Bardziej szczegółowo

Zmienność wiatru w okresie wieloletnim

Zmienność wiatru w okresie wieloletnim Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa 5.02.2015 Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o. Zmienność wiatru w różnych skalach

Bardziej szczegółowo

Schemat oceniania zadań Etap wojewódzki Konkursu Geograficznego

Schemat oceniania zadań Etap wojewódzki Konkursu Geograficznego Numer zadania 1 2 3 4 5 Schemat oceniania zadań Etap wojewódzki Konkursu Geograficznego Poprawna odpowiedź 134 F; Dolina Śmierci 89,2 C; stacja Wostok 71,1 C; Ojmiakon 23000 mm; Indie 4,1 mm; Dolina Śmierci

Bardziej szczegółowo

TECHNIKA A EKOLOGIA Jarosław Mrozek

TECHNIKA A EKOLOGIA Jarosław Mrozek Atmosfera jest powłoką gazową otaczającą kulę ziemską. Składa się ona z kilku, warstw różniących się gęstością, temperaturą, ciśnieniem i składem powietrza. Najistotniejsze funkcje atmosfery, polegają

Bardziej szczegółowo

Powietrze życiodajna mieszanina gazów czy trucizna, która nie zna granic?

Powietrze życiodajna mieszanina gazów czy trucizna, która nie zna granic? Powietrze życiodajna mieszanina gazów czy trucizna, która nie zna granic? Projekt realizuje: Zanieczyszczenia powietrza Projekt realizuje: Definicja Rodzaje zanieczyszczeń Przyczyny Skutki (dla człowieka,

Bardziej szczegółowo

Dlaczego klimat się zmienia?

Dlaczego klimat się zmienia? Dlaczego klimat się zmienia? WSTĘP Pogoda i klimat są nierozerwalnie związane ze wszystkimi procesami zachodzącymi w atmosferze, których siłą napędową jest energia słoneczna. Ziemia zachowuje równowagę

Bardziej szczegółowo