Bilans energetyczny c.d. Mikołaj Szopa
|
|
- Wojciech Andrzej Tomczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Bilans energetyczny c.d. Mikołaj Szopa
2 Bilans promieniowania słonecznego oraz ziemskiego atmosferze (Trenberth, K.E., J.T. Fasullo, and J. Kiehl, 2009). 2
3 Model klimatu - zerowe przybliżenie bez atmosfery Fo stała słoneczna R R2Fo stała słoneczna 4 R2σT4 T R2Fo A A - planetarne albedo stosunek strumienia promieniowania odbitego do padającego.
4 Pojęcie temperatury efektywnej W rzeczywistych warunkach albedo planetarnego wynosi około 30% (A=0.3) a równowaga radiacyjna określa średnią temperaturę efektywną. Temperatura efektywna jest niższa od średniej temperatury panującej obecnie na przy powierzchni Ziemi o około 33 K. Jest to temperatura, jaką miałaby Ziemia przy braku atmosfery ale przy założeniu rzeczywistego albeda planetarnego. Zakładając albedo planetarne na poziomie 12% temperatura ta wynosi około 270 K (różnica 18K) Głównym zjawiskiem odpowiedzialnym za wyższą temperaturę na Ziemi jest efekt cieplarniany. Temperatura efektywną określa temperaturę warstwy atmosfery, która efektywnie wypromieniowanie energię w kosmos. Jeśli założyć, że atmosfera jest przeźroczysta dla promieniowania to temperatura efektywna określa temperaturę powierzchni Ziemi.
5 Porównanie najbliższych planet
6 Model klimatu - zerowe przybliżenie z atmosferą Ponieważ mamy atmosferę promieniowanie emitowane przez powierzchnię Ziemi jest przez nią częściowo absorbowane i remitowane. Fo stała słoneczna atmosfera σte4 T R2Fo A 2 2 efektywna emisja w kosmos 2 4 πr F o =πr F o A+ 4 πr σt e
7 Kilka uwag do modelu Obecnie albedo samej powierzchni Ziemi wynosi około 14% jednak gdyby na Ziemi było o 33 K chłodniej (temperatura powietrza byłaby równa temperaturze efektywnej) znacząco zwiększył by się zasięg lodowców i pokrywy śnieżnej co wpłynęłoby na wyższe albedo. Przedstawiono model opisu systemu klimatycznego widzianego z kosmosu. Przytoczony bilans energii na górnej granicy atmosfery mimo, że nie uwzględnia atmosfery jest dokładnie taki sam jak w przypadku atmosfery.
8 Zmienność albeda Ziemi na górnej granicy atmosfery
9 Średnie dobowa wartość promieniowania słonecznego na szczycie atmosfery jako funkcja szerokości geograficznej i miesiąca. Linia przerywana oznacza szerokość geograficzną gdzie występuje górowanie Słońca (Hartmann, 1994).
10 Bilans radiacyjny na górnej granicy atmosfery
11 Chwilowa wartość bilansu radiacyjnego nad Polską w czasie nocy.
12 Średnia roczna wartość energii promieniowania słonecznego absorbowanego przez układ Ziemia-Atmosfera, energia emitowane (promieniowanie długofalowe) oraz ich wartość netto (Hartmann 1994). Średnia roczna wartość energii transportowanej w kierunku północnym potrzebna do zrównoważenia bilansu radiacyjnego pomiędzy równikiem a biegunem. Linia ciągła oznacza bilans radiacyjny na szczycie atmosfery, linia przerywana w atmosferze zaś kropkowana w oceanie (Zhang Rossow, 1997) 12
13 Bilans radiacyjny w atmosferze jest ujemny co oznacza, że mamy tam do czynienia z innym źródłem energii, który równoważy wychładzanie radiacyjne.
14 Równowaga radiacyjno-konwekcyjna W czasie konwekcji następuje transport pary wodnej, która w pewnych warunkach może kondensować. W czasie tego procesu wydzielane jest ciepło przemiany fazowej, które jest istotnym źródłem energii w dolnej atmosferze. Mówimy o transporcie ciepła utajonego. Tak, więc transport ciepła od powierzchni do atmosfery zmniejsza spadek temperatury z wysokością. Ustala się stan równowagi zwanej równowagą radiacyjno-konwekcyjną. Średni spadek temperatury z wysokością wynosi w tym przypadku 0.65oC na każde 100 metrów.
15 Przy braku konwekcji mielibyśmy do czynienia z równowagą radiacyjną, która ustaliła by pionowy spadek temperatur z wysokością znacznie większy niż 10o na 1km.
16 Profile temperatury z wysokością przy założeniu równowagi radiacyjnej oraz różnego składu atmosfery.
17 Czy jednak w całej kolumnie atmosfery występuje ujemny bilans radiacyjny? Po wyżej troposfery bilans jest w przybliżeniu zerowy co oznacza, że mamy tam równowagę radiacyjną. Pochłanianie promieniowania UV przez ozon i tlen równoważy wypromieniowanie energii w kosmos.
18 Zmiany temperatury z wysokością Za spadek temperatury z wysokością odpowiadają własności optyczne atmosfery. Gdyby w dolnej troposferze występował gaz znacząco absorbujący promieniowanie słoneczne spadek temperatury z wysokością byłby znacznie mniejszy a w konsekwencji występowałyby słabsze ruchy konwekcyjne, mniejsze opady itd. Silna absorpcja promieniowania przez ten gaz minimalizowałaby ubytek ciepła wynikający z emisji promieniowania w kosmos. Tak, więc niepotrzebny byłby tak duży transport ciepła od powierzchni ziemi za pośrednictwem konwekcji.
19 Metoda wyznaczania równowagi radiacyjnej Korzystając z modelu transferu radiacyjnego wyznaczamy strumienie radiacyjne dla założonego stanu atmosfery (profile termodynamiczne, profile podstawowych gazów atmosferycznych, albedo powierzchni ziemi) Liczymy dywergencje strumienia netto i wyznaczamy tempo zmian temperatury powietrza w [K/dobę] dla każdej pionowej warstwy atmosfery Ustalając krok czasowy na 1 dobę, liczymy nowy profil temperatury powietrza w atmosferze, a następnie przy użyciu modelu transferu radiacyjnego nowe strumienie itd. Po uzyskaniu zbieżności otrzymujemy profil temperatury odpowiadający równowadze radiacyjnej
20 Metoda wyznaczania równowagi radiacyjnokonwekcyjnej W tym przypadku poza modelem transferu radiacyjnego musimy dysponować modelem konwekcji, który określi strumienie ciepła odczuwalnego oraz utajonego. Procedura wyznaczenia profilu temperatury odbywa się podobnie do przypadku równowagi radiacyjnokonwekcyjnej.
21 Wymuszenie radiacyjne wymuszenie NTOA( A, Teff, T) Fo stała słoneczna Fo/4 TeffσT4 A /4 A - planetarne albedo W stanie równowagi: Fo (1-A)/4=Teff T4
22 Rozpatrzmy bilans promieniowania na górnej granicy atmosfery, gdzie strumień netto N wyraża się wzorem N = ( 1 A)FS FL W stanie równowagi radiacyjnej średnia wartość (uśredniona po czasie charakterystycznym dla skali zmian klimatu) strumienia netto wynosi zero N 0 Badania pokazują, że system klimatyczny nie jest w równowadze. Odchylenie od tego stanu jest bardzo małe i wynosi dziesiętne części procenta promieniowania słonecznego dochodzącego do Ziemi. W pierwszym przybliżeniu OLR może być zapisany jako funkcja temperatury powierzchni Ziemi Ts w postaci FL(Ts) = Teff Ts4 gdzie Teff jest efektywną transmisją promieniowania długofalowego w atmosferze i zależy głównie od całkowitej zawartości pary wodnej oraz CO 2 w pionowej kolumnie powietrza.
23 Rozważmy małe zaburzenie od stanu równowagi, dla którego strumień netto na górnej granicy atmosfery zmienia się od wartości N(Ts) do N(Ts)+ N. Zakładamy, że układ Ziemia-Atmosfera osiąga nową quasi-równowagę. Nowy stan może być zapisany jako suma wymuszenia radiacyjnego N oraz odpowiedzi atmosfery zgodnie ze wzorem N ΔN + ΔTs = 0 Ts Zmiany temperatury powierzchni Ziemi wywołane wymuszaniem radiacyjnym możemy zapisać w postaci ΔTs = αδn gdzie oznacza współczynnik wrażliwości klimatu na zmiany radiacyjne i wyraża się wzorem N α = Ts 1
24 Na podstawie wzoru na strumień netto na górnej granicy atmosfery współczynnik ten można przedstawić w postaci FL Fs ( 1 A) α = Ts Ts 1 Zauważmy, że zdefiniowane powyżej zmiany temperatury powierzchni Ziemi związane są bezpośrednio z wymuszeniem radiacyjnym N. Pośredni efekt związany jest z procesami zależnymi od temperatury powierzchni Ziemi, które mają charakter pozytywnych lub negatywnych sprzężeń zwrotnych. Dla przykładu wzrost temperatury powierzchni Ziemi wzmaga ewaporację, prowadząc w ten sposób do wzrostu wilgotności wzmacniającego efekt cieplarniany.
25 Bardziej realistyczny model systemu klimatycznego uwzględnia, że pochłonięty przez układ Ziemia-Atmosfera strumień promieniowania słonecznego oraz strumień promieniowania długofalowego emitowany w przestrzeń kosmiczną zależy od szeregu parametrów. Umownie oznaczanych przez q1, q2,.... Każdy z nich zależy natomiast od temperatury powierzchni Ziemi. Wówczas wymuszenie radiacyjne można zapisać postaci N q1 N q2 ΔN ΔTs = 0 q1 Ts q2 Ts Zmiana temperatury podobnie jak powyżej wynosi ΔTs = αδn gdzie tym razem współczynnik wrażliwości klimatu na zmiany radiacyjne 1 wyraża się wzorem F α= L T s i N qi qi Ts
26 Wróćmy jednak do pierwotnego prostszego modelu, w którym mamy tylko efekt bezpośredni. Według modeli radiacyjnych podwojenie dwutlenku węgla spowoduje wymuszanie radiacyjne na poziomie 4 W/m2. Zastanówmy się, jak duże zmiany temperatury może spowodować to wymuszenie radiacyjne? Korzystamy w tym celu z definicji współczynnika wrażliwości klimatu na wymuszenia radiacyjne zakładając, że temperatura powierzchni Ziemi nie wpływa na albedo planetarne. 1 FL α = Ts Założenie to jest bardzo silne, gdyż łatwo sobie wyobrazić, że wzrost temperatury prowadzi do wzrostu wilgotności oraz stopnia zachmurzenia, a w konsekwencji planetarnego albeda.
27 Podstawiając wartość strumienia długofalowego na górnej granicy atmosfery mamy Ts α= 4 FL Podstawiając do wzoru na bezpośrednią zmianę temperatury powietrza otrzymujemy ΔTs = αδn = 1.2 K Szacowany, przy użyciu modeli klimatu wzrost temperatury związany z podwojeniem CO2, jest większy i wynosi: 2.4 K. Przyczyną tego są sprzężenia zwrotne np. podniesienie się temperatury powietrza powoduje większe parowanie i wzrost zawartości pary wodnej w atmosferze. Wpływ zaś pary wodnej na efekt cieplarniany jest większy, niż CO 2, co prowadzi do niedoszacowania zmian temperatury. W rzeczywistości problem ten jest bardziej skomplikowany, gdyż wzrost zawartości pary wodnej prowadzi do większego zachmurzenia i wzrostu albeda, redukcji ocieplania.
28 Parametr sprzężenia zwrotnego Analizując problemy wymuszania radiacyjnego wygodnie jest wprowadzić parametr sprzężenie zwrotnego (Feedback Parametr) jako 1 λ= α Wartości tego parametru przedstawia poniższa tabela Wm-2K-1 model 3.8 Ziemia jako ciało doskonale czarne 3.3 Realistyczny model radiacyjny Ziemi Z uwzględnieniem sprzężenia zwrotnego pary wodnej Z uwzględnieniem wszystkich sprzężeń zwrotnych (chmury, lodowce-albedo)
29 Chociaż sama wartość wymuszenia radiacyjnego w przypadku dwutlenku węgla jest prosta do oszacowania przy użyciu modelu transferu promieniowania, to wyznaczenie współczynnika wrażliwości klimatu na zmiany radiacyjne (parametr sprzężenia zwrotnego) jest trudne i stanowi jedno z większych zadań dla globalnych modeli klimatycznych (np. GCM- global climate model). Obecnie szacuje się, że parametr ten wynosi
30 Zależność wymuszania radiacyjnego od koncentracji gazów CO2 Wymuszanie CFCs CH4 N2O koncentracja
31 Przybliżone formuły opisujące wymuszenie radiacyjne podstawowych gazów cieplarnianych (Myhre et al., 1998)
32 Niezbilansowanie energii na górnej granicy atmosfery W latach : bilans energii 0.0 W/m2 (na podstawie obserwacji satelitarnych projekt ERBE project [Levitus et al. 2005]) W 2003 bilans energii W/m2 [Hansen et al., 2005], na podstawie modelu klimatu W latach : W/m2 [Trenberth et al., 2009], na podstawie obserwacji satelitarnych detektor CERES W latach : W/m2 [Hansen et al., 2011], oszacowanie na podstawie oceanicznych pomiarów ARGO i modelu klimatu W 2012: W/m2 na podstawie obserwacji satelitarnych
33 Wymuszanie radiacyjne aerozoli chwilowe wymuszanie RF = (F F )aerosol (F F )clear Wymuszenie radiacyjne aerozoli jest zdefiniowane jako perturbacja energii absorbowanej przez ziemski system klimatyczny związaną z obecnością aerozoli w atmosferze. Bezpośrednie wymuszanie radiacyjne przez aerozol jest zdefiniowane jako różnica pomiędzy strumieniem netto promieniowania w obecności oraz bez aerozoli podczas braku zachmurzenia. ΔTs = αrf FNET α = Ts ± 0.25K / W / m2
34 Wpływ aerozoli i chmur na system klimatyczny
35 Zanieczyszczenia atmosfery zwane inaczej aerozolami to małe cząstki stałe lub ciekłe powstające w sposób naturalny oraz w wyniku działalności gospodarczej człowieka. Rodzaje aerozoli: sól morska drobiny piasku pyły antropogeniczne lub naturalne (wulkaniczny) fragmenty roślin sadza (elemental carbon), organic carbon siarczany, azotany związki organiczne i nieorganiczne Aerozole naturalne. Aerozole antropogeniczne
36 Wielkość i kształt cząstek aerozolu
37 Zmętnienie atmosfery powstałe w wyniku obecności aerozoli
38
39 Podział aerozoli ze względu na ich rozmiar W rozkładzie wielości aerozoli wyróżniany 3 charakterystyczne grupy cząstek: cząstki Aitkena (nucleation mod), r<0.05 m cząstki małe (accumulation mod), 0.05<r<0.5 m cząstki duże (coarse mod), r>0.5 m Szczególnie istotne znaczenie w atmosferze z klimatycznego punktu widzenia mają ostatnie dwa typy cząstek.
40 Produkcja aerozoli produkcja mechaniczna (powstawanie soli morskiej podczas załamywania fal morskich czy wynoszenie pyłu pustynnego w czasie burz pyłowych) spalanie biomasy spalanie przemysłowe (pyły, gazy) konwersja gazu do cząstek np. do kwasu siarkowego czy azotowego
41 Usuwanie aerozoli z atmosfery Sucha depozycja Sedymentacja osiadanie grawitacyjne (efektywnie usuwane tylko duże cząstki) Wilgotna depozycja (wymywanie przez krople chmurowe lub krople deszczu). Efektywne usuwanie cząstek z klasy akumulacyjnej
42 Wpływ aerozolu na klimat 1) Efekt bezpośredni poprzez rozpraszanie i pochłanianie promieniowania słonecznego dochodzącego do powierzchni Ziemi. 2) Efekt pośredni oddziaływanie aerozolu na własności chmur oraz ich czas życia Aerozole chłodzą klimat!
43 Efekt bezpośredni -prosty model radiacyjny Fo Fo (1-exp(- )) Fo(1- )(1-exp(- )) - grubość optyczna aerozolu - albedo pojedynczego rozpraszania = scat / ext - cześć promieniowania rozpraszania do tyłu Dla molekuł =0.5 Dla aerozoli ( ) Fo (1- )(1-exp(- )) Foexp(- ) Rs Transmisja przez warstwę aerozolu t= exp( ) + (1 )(1 exp( )) Odbicie od warstwy aerozolu r= (1 exp( ))
44 F or Fot2Rs Promieniowanie wychodzące z atmosfery: Fr= Fo (r + t2rs + t2rs2r + t2rs3 r2 +...) Fo Fr= Fo [r + t2rs /(1 Rsr)] Fo(1- )(1-exp(- )) Zmiana albeda planetarnego przez aerozol: Rs=[r + t2rs /(1 Rsr)] Rs Fot FotRs Rs
45 Spektralna zależność albeda pojedynczego rozpraszania dla różnych typów aerozolu, Streamer Spektralna zależność parametru asymetrii dla różnych typów aerozolu (na podstawie kodu Streamer)
46 tak więc aerozole nad ciemną powierzchnią Ziemi zawsze ochładzają klimat. aerozole nad bardzo jasnymi powierzchniami (śnieg) ogrzewają klimat. w przypadku pośrednim ochładzanie bądź ogrzewanie zależy od własności optycznych aerozoli oraz własności odbijających podłoża. jednak zawsze obecność aerozoli prowadzi do redukcji promieniowania przy powierzchni Ziemi a zatem ochładzania.
47 Zmiana planetarnego albeda układu Ziemia-Atmosfera w zależności od albeda pojedynczego rozpraszania i grubości optycznej przy współczynniku rozpraszania do tyłu równego 0.2. Zmiana planetarnego albeda układu Ziemia-Atmosfera w zależności od grubości optycznej aerozolu oraz albeda pojedynczego rozpraszania przy współczynniku rozpraszania do tyłu równego 0.4.
48 Zmiany temperatury związane z obecnością aerozolu Wymuszanie radiacyjne w tym przypadku wynosi ΔN = ΔRs FS Współczynnik wrażliwości klimatu na zmiany radiacyjne podobnie, jak w przypadku efektu cieplarnianego ma 1 postać FL Ts = α = 4 FL TS Zmiana temperatury powietrza wyrażamy wzorem T ΔTS = αδn = S 4 FL ΔRs FS Po uwzględnieniu bilansu promieniowania na górnej granicy atmosfery w postaci otrzymujemy ΔTS = TS ΔRs 4 1 Rs
49 Zakładając zmianę globalnego albeda, związana z obecnością aerozoli, na poziomie 1% otrzymujemy zmianę temperatury o ok. 1K. Z przedstawionych wykresów wynika, że zmiany albeda mogą być większe niż 1% zatem chłodzenie aerozolowe może być znacznie większe. Zależy to oczywiście od lokalnych właściwości optycznych aerozolu. Jednak wymuszanie zmian klimatu przez aerozol jak widać jest tego samego rzędu, co wywołane stale rosnącym efektem cieplarnianym.
50 Globalne zaciemnienie w XX wieku. 12/14/16 Krzysztof Markowicz kmark@igf.fuw.edu.pl
51 Grubość optyczna aerozolu
52 Wymuszanie radiacyjne aerozolu wyznaczone na podstawie pomiarów satelitarnych
53 Wymuszanie radiacyjne aerozolu wyznaczone na podstawie pomiarów satelitarnych
54 Pierwszy pośredni wpływ aerozoli Chmury czyste i zanieczyszczone Czyste powietrze, mała ilość jąder kondensacji. Mała koncentracja. Duże rozmiary kropelek. Zanieczyszczone powietrze, duża ilość jąder kondensacji. Duża koncentracja. Małe rozmiary kropelek.
55 Optyczny model chmury Albedo chmury w przybliżeniu dwu-strumieniowym R= F F = ( 1 g)τ τ = 2 + ( 1 g)τ τ g gdzie g jest parametrem asymetrii związanym z rozpraszaniem promieniowania na kropelkach lub kryształach lodu, zaś grubością optyczna chmury. Przyjmując parametr asymetrii dla chmury równy około g=0.85 otrzymujemy R τ τ + 13 Rozważmy jednorodną chmurę o monodyspersyjnym rozkładzie wielkości τ = hπr 2Qext N o Przyjmując, że dla obszaru widzialnego parametr wielkości x=2 r/ >>1 stąd Qext=2
56 Wyznaczamy zależność albeda chmur R od liczby kropelek N przy stałej zawartości wody ciekłej (LWC) dr dn o dr dτ = LWC dτ dn o Zakładając, że LWC nie zależy od wysokości stąd LWC = dlwc = 0 = 4 3 πr ρwhn o 3 4 πhρw (dn o r 3 + 3N o r 2 ) = dn o = r 3N o Obliczmy wielkość dτ 2πh(dN o r 2 + 2r N o ) dn o 2 = = + 2 τ N r 2πhN o r o dτ dn o 2 dn o 1 dn o = = τ No 3 No 3 No
57 dr τ + 13 τ 13 = = dτ (τ + 13 )2 (τ + 13 )2 ostatecznie dr dr dτ 13 1 τ 13 1 = = = R dn 2 o LWC dτ dno (τ + 13 ) 3 N o 3N o τ + 13 dr R 13R R( 1 R) = = dn 3No o LWC 3N o τ Tylko w przypadku chmur zawierających mała liczbę kropel N<100 cm-3 albedo chmury zależy silnie od koncentracji tym samym zawartości aerozoli.
58 Wpływ aerozolu na bilans radiacyjny podsumowanie
59 Czy chmury są doskonale czarne?
60 Prosty radiacyjny model izotermicznej chmury Bilans energii całej chmury jest ujemy i wynosi 4 T H = εσts4 2εσT 4 = εσts4 1 2 Ts Ochładzanie to jest tym silniejsze im wyższa jest temperatura chmury a zatem im bliżej ziemi znajduje się chmura.
61 Rozważmy bilans promieniowania długofalowego na dolnej oraz górnej powierzchni chmury. Ograniczenie się tylko do promieniowania długofalowego odpowiada sytuacji nocnej. Strumień netto na dolnej granicy chmury wynosi 4 4 Nbase = F F σ(ts Tbase ) gdzie Tbase jest temperaturą podstawy chmury, zaś Ts temperaturą powierzchni ziemi Przy czym założyliśmy, że chmura jest na tyle gruba, że można ją traktować jak ciało doskonale czarne. Powyższy wzór jest tylko oszacowaniem górnym gdyż, nie całe promieniowanie emitowane przez powierzchnie ziemi osiąga podstawę chmury. Rozpatrzymy chmurę o grubości 700 m o podstawie znajdującej się na poziomie 300 m. Niech temperatura powierzchni ziemi wynosi 288 K, zaś do postawy chmury panuje suchoadiabatyczny gradient temperatury. Zatem temperatura na wysokości podstawy chmury wynosi 285 K. W tym przypadku strumień netto na wysokości podstawy chmury wynosi Nbase 16 W/m2.
62 Strumień netto na szycie chmury można zapisać w postaci Ponieważ w chmurze gradient temperatury z wysokością jest gradientem wilgotnoadiabatycznym (6 K/km), dlatego temperatura na szczycie chmury wynosi około 281 K. Ponadto, jeśli przyjmiemy, ze zdolność emisyjna atmosfery po wyżej chmury wynosi 0.8 (w rzeczywistej atmosferze zmienia się od 0.7 w Arktyce do 0.95 w rejonach tropikalnych) to strumień netto na szczycie chmury wynosi ok. 211 W/m2. Zauważmy, że z definicji strumieni netto wynika, że podstawa chmury jest słabo grzana (16 W/m2), zaś wierzchołek chmury silnie chłodzony (211 W/m2). Zatem, chmura jest silnie chłodzona jako całość (196 W/m2). Obliczmy, jakie jest tempo ochładzania radiacyjnego chmury K/dzień
63 Chmury wysokie ogrzewają a niskie chłodzą Th Albedo 10-30% Albedo 60-80% Tl Ts Ts Tl Ts>> Th
64 Wymuszanie radiacyjne chmur
65 Wymuszanie radiacyjne chmur na podstawie modelu: SW W/m2 LW 20.5 W/m2 NET W/m2
66
67 1. Przypadek szklanej szyby (przeźroczysta dla promieniowania słonecznego asw = 0 i całkowicie nieprzeźroczysta dla promieniowania długofalowego alw= 1. Ts = Te K 2. Temperatura powierzchni Ziemi jest wyższa od atmosfery tylko wtedy, gdy a LW > asw (warunek występowania troposfery). W obecnej atmosferze warunek ten jest spełniony. Gdyby sprężyć całą parę wodną do jednej warstwy, to miałaby ona zdolność aborcyjną dla promieniowania krótkofalowego równą 0.25, zaś zdolność emisyjną dla promieniowania długofalowego 0.9. Podstawiając te wartości otrzymujemy temperaturę powierzchni Ziemi równą 286 K, zaś atmosfery K.
68 3. Przypadek tzw. zimy nuklearnej. Jeśliby spalić wszystkie lasy na ziemi oraz budynki powstający smog miałaby w przybliżeniu zdolność absorpcyjną równą jedności, zaś zdolność emisyjną w podczerwieni około 0.9. W tym przypadku temperatura powierzchni Ziemi wyniosłaby 249 K, zaś atmosfery 255 K. Tak więc atmosfera byłaby stabilna i doszłoby do zaniku troposfery. 4. Im większa różnica pomiędzy zdolnością absorpcyjna promieniowania długofalowego słonecznego tym większa różnica temperatury powierzchni Ziemi i atmosfery. 5. Na wartość zdolności absorpcyjnej promieniowania długofalowego największy wpływ na zawartość gazów cieplarnianych (para wodna, CO2, ozon, metan itd.). 6. W zakresie promieniowania słonecznego istotną rolę odgrywają aerozole atmosferyczne. 7. Chmury wpływają na wartość zdolności absorpcyjnej w zakresie SW i LW. Stąd też wpływ chmur na klimat jest zróżnicowany (zależy od parametrów optycznych i temperatury chmur).
Bilans energii i pojęcie wymuszania radiacyjnego. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski
Bilans energii i pojęcie wymuszania radiacyjnego Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Pojecie bilansu energetycznego na górnej granicy atmosfery. Bilans energetyczny
Klimat i bilans energetyczny. Mikołaj Szopa
Klimat i bilans energetyczny Mikołaj Szopa Na podstawie swoich obserwacji badacze atmosfery proponują bardzo uproszczone modele bilansu energetycznego między powierzchnią i atmosferą ziemską. Albedo
EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone).
Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Promieniowanie termiczne emitowane z powierzchni planety nie może wydostać się bezpośrednio
Fizyka Procesów Klimatycznych Wykład 1
Fizyka Procesów Klimatycznych Wykład 1 prof. dr hab. Szymon Malinowski Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski malina@igf.fuw.edu.pl dr hab. Krzysztof Markowicz Instytut Geofizyki, Wydział
Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2
Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące
Fizyka Procesów Klimatycznych Wykład 12 Aerozol
Fizyka Procesów Klimatycznych Wykład 12 Aerozol prof. dr hab. Szymon Malinowski Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski malina@igf.fuw.edu.pl dr hab. Krzysztof Markowicz Instytut Geofizyki,
Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 3 Wstęp do Geofizyki - Fizyka atmosfery 2 /43 Powietrze opisuje się równaniem stanu gazu doskonałego,
Spis treści. Fizyka wczoraj, dziś, jutro. Astronomia dla każdego. Olimpiady, konkursy, zadania. Z naszych lekcji
Spis treści Fizyka wczoraj, dziś, jutro Ekonofizyka w świecie baniek, 4 krachów i emocji Ryszard Kutner Co w fizyce piszczy? 9 Zbigniew Wiśniewski Fizyka z puszką coca-coli 30 Juliusz Domański Astronomia
Wpływ aerozolu i chmur na bilans energii w atmosferze. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski
Wpływ aerozolu i chmur na bilans energii w atmosferze Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Rola aerozolu i chmur w bilansie radiacyjnym Odmienny wpływ w zakresie
7. EFEKT CIEPLARNIANY
7. EFEKT CIEPLARNIANY 7.01. Efekt cieplarniany-wprowadzenie 7.02. Widmo promieniowania docierającego do powierzchni Ziemi i emitowanego z powierzchni Ziemi 7.03. Temperatura efektywna Ziemi 7.04. Termiczny
Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce?
Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce? Kilka pytao na początek Czy obecnie obserwujemy zmiany klimatu? Co, poza działaniem człowieka, może wpływad na zmiany klimatu?
Menu. Pomiar bilansu promieniowania Ziemi
Menu Pomiar bilansu promieniowania Ziemi Uśredniając globalnie, Ziemia jest 0.75 C cieplejsza niż była w 1860. Jedenaście z ostatnich 12 lat jest w 12 najcieplejszych lat od czasu 1850. Ocieplenie jest
Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi
Atmosfera struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Składniki stałe Ziemia Mars Wenus Nitrogen (N2) Oxygen (O2) Argon (Ar) Neon, Helium, Krypton 78.08% 20.95% 0.93%
Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 2 Wstęp do Geofizyki - Fizyka atmosfery 2 /47 http://climatescience.jpl.nasa.gov/images/ccs/earth_energy-780x551.jpg
Układ klimatyczny. kriosfera. atmosfera. biosfera. geosfera. hydrosfera
Układ klimatyczny kriosfera atmosfera biosfera geosfera hydrosfera 1 Klimat, bilans energetyczny 30% 66% T=15oC Bez efektu cieplarnianego T=-18oC 2 Przyczyny zmian klimatycznych Przyczyny zewnętrzne: Zmiana
Meteorologia i Klimatologia Ćwiczenie IV. Poznań,
Meteorologia i Klimatologia Ćwiczenie IV Poznań, 27.10.2008 www.amu.edu.pl/~nwp Woda w atmosferze i jej przemiany fazowe Zapotrzebowanie energetyczne przemian fazowych wody jest istotnym czynnikiem kształtującym
Efekt cieplarniany i warstwa ozonowa
Efekt cieplarniany i warstwa ozonowa Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało pochłaniające całkowicie każde promieniowanie, które padnie na jego powierzchnię, niezależnie od
Krzysztof Markowicz. Badania zmian klimatu Ziemi
Krzysztof Markowicz Badania zmian klimatu Ziemi Wstęp Obecnie nie mamy wątpliwości, że klimat na Ziemi zmieniał się w okresie historycznym. Zmienia wielokrotnie przychodziła przez długie okresy zlodowacenia
Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi
Atmosfera struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Składniki stałe Ziemia Mars Wenus Nitrogen (N2) Oxygen (O2) Argon (Ar) Neon, Helium, Krypton 78.08% 20.95% 0.93%
Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność
TEMPERATURA Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność dwóch układów pozostających w równowadze
Naturalne i antropogeniczne zmiany klimatu
Zmiany klimatu Naturalne i antropogeniczne zmiany klimatu Duża zmienność w przeszłości Problem z odzieleniem wpływów naturalnych i antropogenicznych Mechanizm sprzężeń zwrotnych Badania naukowe Scenariusze
Prezentacja grupy A ZAPRASZAMY
Prezentacja grupy A Pojecie kluczowe: Globalne i lokalne problemy środowiska. Temat: Jaki wpływ mają nasze działania na globalne ocieplenie? Problem badawczy: Jaki wpływ ma zużycie wody na globalne ocieplenie?
SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE
SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE 1. WPROWADZENIE.. 9 1.1. Klimatyczne kontrowersje i metoda naukowa..10 Stanowisko nauki odnośnie obecnej zmiany klimatu i jej przyczyn. Metoda naukowa, literatura recenzowana
FIZYKA I CHEMIA GLEB. Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001
FIZYKA I CHEMIA GLEB Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001 Tematyka wykładów Bilans wodny i cieplny gleb, właściwości
Czym oddychamy - projekt szkolnego monitoringu jakości powietrza
Czym oddychamy - projekt szkolnego monitoringu jakości powietrza Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki UW kmark@igf.fuw.edu.pl http://edu.polandad.pl Problem jakości powietrza w Polsce
ZIMOWE WARSZTATY BADAWCZE FIZYKI ATMOSFERY SIECI NAUKOWEJ POLAND-AOD
ZIMOWE WARSZTATY BADAWCZE FIZYKI ATMOSFERY SIECI NAUKOWEJ POLAND-AOD 1 Celem warsztatów jest poznanie procesów fizycznych z udziałem aerozolu atmosferycznego zachodzących w dolnej troposferze w rejonie
Menu. Badania temperatury i wilgotności atmosfery
Menu Badania temperatury i wilgotności atmosfery Wilgotność W powietrzu atmosferycznym podstawową rolę odgrywa woda w postaci pary wodnej. Przedostaje się ona do atmosfery w wyniku parowania z powieszchni
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Ściąga eksperta. Skład i budowa atmosfery oraz temperatura powietrza. - filmy edukacyjne on-line Strona 1/5
Skład i budowa atmosfery oraz temperatura powietrza Skład i budowa atmosfery oraz temperatura powietrza Atmosfera to najbardziej zewnętrzna część powłoki otulającej Ziemię. Pozwala ona na rozwój życia
Fizyka Procesów Klimatycznych Wykład 2
Fizyka Procesów Klimatycznych Wykład 2 prof. dr hab. Szymon Malinowski Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski malina@igf.fuw.edu.pl dr hab. Krzysztof Markowicz Instytut Geofizyki, Wydział
Meteorologia i Klimatologia Ćwiczenie II Poznań,
Meteorologia i Klimatologia Ćwiczenie II Poznań, 17.10.2008 Bilans promieniowania układu Ziemia - Atmosfera Promieniowanie mechanizm wysyłania fal elektromagnetycznych Wyróżniamy 2 typy promieniowania:
Powietrze opisuje się równaniem stanu gazu doskonałego, które łączy ze sobą
Opis powietrza - 1 Powietrze opisuje się równaniem stanu gazu doskonałego, które łączy ze sobą Temperaturę Ciśnienie Gęstość Jeśli powietrze zawiera parę wodną w stanie nasycenia, należy brać pod uwagę
Energia słoneczna i cieplna biosfery Zasoby energii słonecznej
Dr inż. Mariusz Szewczyk Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki 35-959 Rzeszów, ul. W. Pola 2 Energia słoneczna i cieplna biosfery Zasoby energii
Procesy fizyczne prowadzące do rozwoju i zaniku epizodów aerozolowych. Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski
Procesy fizyczne prowadzące do rozwoju i zaniku epizodów aerozolowych Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Nazewnictwo aerozol czy pył zawieszony? Aerozole atmosferyczne
Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1
2016 Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1 Elżbieta Niemierka Wydział Inżynierii Środowiska Politechniki Wrocławskiej 2016-01-07 1. SPIS TREŚCI 2. Gaz cieplarniany - definicja...
Globalne ocieplenie okiem fizyka
Globalne ocieplenie okiem fizyka Szymon Malinowski Wydział Fizyki Uniwersytetu Warszawskiego oraz naukaoklimacie.pl 29 września 2016 Zmiany średniej temperatury powierzchni Ziemi (GISTEMP) Zmiany rozkładu
Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie
Zmiany klimatyczne a rolnictwo w Polsce ocena zagrożeń i sposoby adaptacji Warszawa, 30.09.2009 r. Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie Jerzy Kozyra Instytut Uprawy Nawożenia
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
FIZYKA CHMUR. Szymon Malinowski. Wydział Fizyki Uniwersytetu Warszawskiego
FIZYKA CHMUR Szymon Malinowski Wydział Fizyki Uniwersytetu Warszawskiego Czym jest chmura? Chmury są skupiskiem bardzo drobnych (średnica 2-100 mikrometrów) kropelek wody i/lub kryształków lodu. W zależności
Analiza działania kolektora typu B.G z bezpośrednim grzaniem. 30 marca 2011
Analiza działania kolektora typu B.G z bezpośrednim grzaniem. 30 marca 2011 Założenia konstrukcyjne kolektora. Obliczenia są prowadzone w kierunku określenia sprawności kolektora i wszelkie przepływy energetyczne
ZIMOWE WARSZTATY BADAWCZE FIZYKI ATMOSFERY SIECI NAUKOWEJ POLAND-AOD
ZIMOWE WARSZTATY BADAWCZE FIZYKI ATMOSFERY SIECI NAUKOWEJ POLAND-AOD 1 Celem warsztatów jest poznanie procesów fizycznych z udziałem aerozolu atmosferycznego zachodzących w dolnej troposferze w rejonie
Lokalną Grupę Działania. Debata realizowana w ramach projektu. wdrażanego przez
Odchylenie od normy (1961-1990; o C) 2016-09-12 Debata realizowana w ramach projektu wdrażanego przez Lokalną Grupę Działania a finansowanego przez Fundację na rzecz Rozwoju Polskiego Rolnictwa ze środków
Przedmioty realizowane w ramach studiów na różnych Wydziałach SGGW:
Przedmioty realizowane w ramach studiów na różnych Wydziałach SGGW: AGROMETEOROLOGIA/ AGROMETEOROLOGY atmosfera oraz powierzchnia czynna - atmosfera. Promieniowanie Słońca, Ziemi i atmosfery; rola promieniowania
GLOBALNE CYKLE BIOGEOCHEMICZNE obieg siarki
GLOBALNE CYKLE BIOGEOCHEMICZNE oieg siarki W organizmie ludzkim: mięśnie: 5000-11000 ppm, kości: 500-2400 ppm, krew 1,8 g/l Całkowita zawartość (70 kg): 140 g. Rozpowszechnienie siarki (wagowo) Ziemia
Andrzej Jaśkowiak Lotnicza pogoda
Andrzej Jaśkowiak Lotnicza pogoda - Meteorologia dla pilotów ROZDZIAŁ 1. Atmosfera ziemska ROZDZIAŁ 2. Woda w atmosferze ROZDZIAŁ 3. Temperatura ROZDZIAŁ 4. Stabilność powietrza ROZDZIAŁ 5. Ciśnienie atmosferyczne
Wpływ aerozoli absorbujących na własności optyczne śniegu i wymuszanie radiacyjne
Wpływ aerozoli absorbujących na własności optyczne śniegu i wymuszanie radiacyjne Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski Rola aerozoli absorbujących Aerozole absorbujące
Zmiany w środowisku naturalnym
Zmiany w środowisku naturalnym Plan gospodarki niskoemisyjnej jedną z form dążenia do czystszego środowiska naturalnego Opracował: Romuald Meyer PGK SA Czym jest efekt cieplarniany? Ziemia posiada atmosferę
ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski
ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Bilans energetyczny atmosfery
Bilans energetyczny atmsfery izyka IV Prezentacje przygtwał Paweł Dębski 9008 013/01 Pjecie bilansu energetyczneg na górnej g granicy atmsfery. Bilans energetyczny całej planty kreślny jest przez strumień
Uczniowska Kampania Klimatyczna, czyli jak uczniowie
Uczniowska Kampania Klimatyczna, czyli jak uczniowie pomagają naukowcom badać klimat Krzysztof Markowicz 1. Ogólne informacje o projekcie Od wiosny 2013 roku realizowany jest w Polsce projekt edukacyjny
Początki początków - maj br.
Dotychczasowe doświadczenia w zakresie egzekwowania i ujmowania zagadnień klimatycznych w składanych dokumentach na etapie ooś w województwie kujawsko - pomorskim Rdoś Bydgoszcz Początki początków - maj
Globalne ocieplenie okiem fizyka
Globalne ocieplenie okiem fizyka Szymon Malinowski Wydział Fizyki Uniwersytetu Warszawskiego oraz naukaoklimacie.pl 29 września 2016 Zmiany średniej temperatury powierzchni Ziemi (GISTEMP) Zmiany rozkładu
WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA
ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność
WYZWANIA EKOLOGICZNE XXI WIEKU
WYZWANIA EKOLOGICZNE XXI WIEKU ZA GŁÓWNE ŹRÓDŁA ZANIECZYSZCZEŃ UWAŻANE SĄ: -przemysł -transport -rolnictwo -gospodarka komunalna Zanieczyszczenie gleb Przyczyny zanieczyszczeń gleb to, np.: działalność
Wiatry OKRESOWE ZMIENNE NISZCZĄCE STAŁE. (zmieniające swój kierunek w cyklu rocznym lub dobowym)
Wiatry Co to jest wiatr? Wiatr to poziomy ruch powietrza w troposferze z wyżu barycznego do niżu barycznego. Prędkość wiatru wzrasta wraz z różnicą ciśnienia atmosferycznego. W N Wiatry STAŁE (niezmieniające
Powietrze życiodajna mieszanina gazów czy trucizna, która nie zna granic?
Powietrze życiodajna mieszanina gazów czy trucizna, która nie zna granic? Projekt realizuje: Zanieczyszczenia powietrza Projekt realizuje: Definicja Rodzaje zanieczyszczeń Przyczyny Skutki (dla człowieka,
całkowite rozproszone
Kierunek: Elektrotechnika, II stopień, semestr 1 Technika świetlna i elektrotermia Laboratorium Ćwiczenie nr 14 Temat: BADANIE KOLEKTORÓW SŁONECZNYCH 1. Wiadomości podstawowe W wyniku przemian jądrowych
Wyznaczanie stałej słonecznej i mocy promieniowania Słońca
Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne
TECHNIKA A EKOLOGIA Jarosław Mrozek
Atmosfera jest powłoką gazową otaczającą kulę ziemską. Składa się ona z kilku, warstw różniących się gęstością, temperaturą, ciśnieniem i składem powietrza. Najistotniejsze funkcje atmosfery, polegają
Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści
Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści Przedmowa Wykaz waŝniejszych oznaczeń i symboli IX XI 1. Emisja zanieczyszczeń
Praca kontrolna semestr IV Przyroda... imię i nazwisko słuchacza
Praca kontrolna semestr IV Przyroda.... imię i nazwisko słuchacza semestr 1. Ilustracja przedstawia oświetlenie Ziemi w pierwszym dniu jednej z astronomicznych pór roku. Uzupełnij zdania brakującymi informacjami,
Problemy zanieczyszczenia powietrza w Polsce i innych krajach europejskich
Problemy zanieczyszczenia powietrza w Polsce i innych krajach europejskich Barbara Toczko Departament Monitoringu i Informacji o Środowisku Główny Inspektorat Ochrony Środowiska 15 listopada 2012 r. Wyniki
GLOBALNE OCIEPLENIE OKIEM FIZYKA
GLOBALNE OCIEPLENIE OKIEM FIZYKA Szymon Malinowski Instytut Geofizyki Wydział Fizyki Uniwersytetu Warszawskiego http://pl.wikipedia.org/wiki/globalne_ocieplenie Globalne ocieplenie obserwowane od połowy
Techniczne podstawy promienników
Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,
Pomiary całkowitej zawartości pary wodnej w pionowej kolumnie atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Pomiary całkowitej zawartości pary wodnej w pionowej kolumnie atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Czas trwania: 10 minut Czas obserwacji: tuż przed
Higrometry Proste pytania i problemy TEMPERATURA POWIETRZA Definicja temperatury powietrza energia cieplna w
3 SPIS TREŚCI WYKAZ DEFINICJI I SKRÓTÓW... 9 WSTĘP... 13 METEOROLOGICZNE WARUNKI WYKONYWANIA OPERACJI W TRANSPORCIE. POJĘCIA PODSTAWOWE... 15 1. PODSTAWY PRAWNE FUNKCJONOWANIA OSŁONY METEOROLOGICZNEJ...
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Wyznaczanie bilansu energii i albeda powierzchni ziemi Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Wyznaczanie bilansu energii i albeda powierzchni ziemi Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Czas trwania: 30 minut Czas obserwacji: dowolny Wymagane warunki meteorologiczne:
CYKL: ZANIECZYSZCZENIE POWIETRZA
Magdalena Szewczyk Dział programowy : Ekologia CYKL: ZANIECZYSZCZENIE POWIETRZA temat lekcji : Przyczyny i rodzaje zanieczyszczeń powietrza. Cele lekcji w kategoriach czynności uczniów ( cele operacyjne):
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej
Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl
Krzysztof Markowicz. Pomiary grubości optycznej aerozoli przy pomocy sunphotometru
Krzysztof Markowicz Pomiary grubości optycznej aerozoli przy pomocy sunphotometru Aerozole w atmosferze generalnie rozpraszają promieniowanie słoneczne, przy czym parametry tego rozpraszania zależą od
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA Prof. M. Kamiński Gdańsk 2015 PLAN Znaczenie procesowe wymiany ciepła i zasady ogólne Pojęcia i definicje podstawowe Ruch ciepła na drodze przewodzenia Ruch ciepła na
Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Atmospheric Science. An Introductory Survey, J. Wallace, P. W. Hobbs Fizyka Atmosfery, Iribarne i Cho The Atmosphere,
Typy strefy równikowej:
Strefa równikowa: Duży dopływ energii słonecznej w ciągu roku, strefa bardzo wilgotna spowodowana znacznym parowaniem. W powietrzu występują warunki do powstawania procesów konwekcyjnych. Przykładem mogą
Meteorologia i Klimatologia
Meteorologia i Klimatologia Ćwiczenie I Poznań, 17.10.2008 mgr Bartosz Czernecki pok. 356 Instytut Geografii Fizycznej i Kształtowania Środowiska Przyrodniczego (Zakład Klimatologii) Wydział Nauk Geograficznych
Ocena stanu ochrony cieplnej budynku.
Ocena stanu ochrony cieplnej budynku. Prezentacja audiowizualna opracowana w ramach projektu Nowy Ekspert realizowanego przez Fundację Poszanowania Energii Ochrona cieplna budynku - Jej celem jest zapewnienie
Podstawowe obserwacje meteorologiczne Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Podstawowe obserwacje meteorologiczne Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Czas trwania: 15 minut Czas obserwacji: przed lub po pomiarach fotometrem słonecznym
Klaudia Stasiak Klaudia Sadzińska Klasa II c LO ZAGROŻENIA ZWIĄZANE Z EMISJĄ PYŁÓW I GAZÓW DLA ŚRODOWISKA
Klaudia Stasiak Klaudia Sadzińska Klasa II c LO ZAGROŻENIA ZWIĄZANE Z EMISJĄ PYŁÓW I GAZÓW DLA ŚRODOWISKA Zanieczyszczone powietrze W ostatnich latach odnotowuje się występowanie epizodów bardzo wysokich
Fizyka układów planetarnych. Wenus. Wykład 3
Fizyka układów planetarnych Wenus Wykład 3 parametr wartość okres synodyczny 583 d (1 rok i 7 mies) rozm. kątowy 10 66 WENUS MERKURY HORYZONT Słońce pod horyzontem Źródło: NASA Źródło: NASA Źródło: Wordpress
Wykorzystanie energii słonecznej
Wykorzystanie energii słonecznej Podaż energii promieniowania słonecznego na płaszczyznę poziomą i nachyloną Część 1 Zdzisław Kusto Politechnika Gdańska Stała Stała słoneczna: 0 = 0 1353 1353 W // m 2
Planowanie Projektów Odnawialnych Źródeł Energii Energia słońca
Slajd 1 Lennart Tyrberg, Energy Agency of Southeast Sweden Planowanie Projektów Odnawialnych Źródeł Energii Energia słońca Przygotowane przez: Mgr inż. Andrzej Michalski Zweryfikowane przez: Dr inż. Andrzej
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Spis treści. PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13
Spis treści PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13 Wykład 16: TERMODYNAMIKA POWIETRZA WILGOTNEGO ciąg dalszy 21 16.1. Izobaryczne chłodzenie i ogrzewanie powietrza wilgotnego.. 22 16.2. Izobaryczne
Klimat w Polsce w 21. wieku
Klimat w Polsce w 21. wieku na podstawie numerycznych symulacji regionalnych Małgorzata Liszewska Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego UNIWERSYTET WARSZAWSKI 1/42 POGODA
Środowisko symulacji parametry początkowe powietrza
Środowisko symulacji parametry początkowe powietrza Wstęp O wartości dobrze przygotowanego modelu symulacyjnego świadczy grupa odpowiednio opisanych parametrów wejściowych. Pozornie najbardziej widoczna
API pomiaru radiacji słonecznej i czynników zależnych
API pomiaru radiacji słonecznej i czynników zależnych z wykorzystaniem systemu Copernicus Atmosphere Monitoring Service (CAMS) Źródła energii Źródła energii pozostające do dyspozycji człowieka możemy podzielić
przyziemnych warstwach atmosfery.
Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych
Dwutlenek węgla a zmiany klimatyczne
Ryszard Wilk Sławomir Sładek Politechnika Śląska Dwutlenek węgla a zmiany klimatyczne Streszczenie W referacie przedstawiono w skrócie główne kierunki polityki energetycznej Unii Europejskiej. Ukierunkowanie
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?
Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
LABORATORIUM METROLOGII
LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta
Energia słoneczna i cieplna biosfery Pojęcia podstawowe
Dr inż. Mariusz Szewczyk Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki 35-959 Rzeszów, ul. W. Pola 2 Energia słoneczna i cieplna biosfery Pojęcia podstawowe
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
PIONOWA BUDOWA ATMOSFERY
PIONOWA BUDOWA ATMOSFERY Atmosfera ziemska to powłoka gazowa otaczająca planetę Ziemię. Jest utrzymywana przy powierzchni przez grawitację planety. Chroni naszą planetę przed promieniowaniem ultrafioletowym,