PWM-controlled hydraulic solenoid valves for motor vehicles. Elektrozawory hydrauliczne sterowane sygnałem PWM stosowane w pojazdach samochodowych
|
|
- Jarosław Domagała
- 8 lat temu
- Przeglądów:
Transkrypt
1 Article citation info: Jarosław Goszczak, Bartosz Radzymiński, Andrzej Werner, Zbigniew Pawelski. PWM-controlled hydraulic solenoid valves for motor vehicles. The Archives of Automotive Engineering Archiwum Motoryzacji. 2017; 75(1); 23-38; /AM.VOL75.ART2 PWM-controlled hydraulic solenoid valves for motor vehicles Elektrozawory hydrauliczne sterowane sygnałem PWM stosowane w pojazdach samochodowych Jarosław Goszczak 1, Bartosz Radzymiński 2, Andrzej Werner 3, Zbigniew Pawelski 4 Politechnika Łódzka Abstract Paper presents the characteristics of two hydraulic electro-valves applied in automotive industry, produced by different manufacturers. Such electro-valves are controlled by PWM signal (Pulse With Modulation) and are used to control oil pressure in automatic gearboxes. Paper includes some basic information about PWM signal with its application. In the subsequent chapter, there will be given information about tested valves, acquired by an individual elaboration, including design and the fundamentals of operation. In the followings sections, test bench is described and test results are presented. The temperature turned out as a very important factor which should be taken into account. In case of PWM controlling, for different temperatures some uncertainties of output pressure are possible. To avoid this undesirable phenomenon new control signal is proposed. 1 Politechnika Łódzka, Katedra Pojazdów i Podstaw Budowy Maszyn, ul. Żeromskiego 116, Łódź; jaroslaw.goszczak@p.lodz.pl 2 Politechnika Łódzka, Katedra Pojazdów i Podstaw Budowy Maszyn, ul. Żeromskiego 116, Łódź; bartosz.radzyminski@p.lodz.pl 3 Politechnika Łódzka, Katedra Pojazdów i Podstaw Budowy Maszyn, ul. Żeromskiego 116, Łódź; andrzej.werner@guest.p.lodz.pl 4 Politechnika Łódzka, Katedra Pojazdów i Podstaw Budowy Maszyn, ul. Żeromskiego 116, Łódź; zbigniew.pawelski@p.lodz.pl
2 Different characteristics of electro-valves are included: output pressure as the function of steering signal, the value of force exerted by the slider, responsiveness to a step function of request, regulation possibilities and internal leakages. What is more, occurrence of hysteresis phenomenon is checked. Based on test results a number of conclusions are formulated with some practical pieces of information for the engineers of mechanical systems which contain elements controlled by PWM signal. Streszczenie Artykuł niniejszy zawiera charakterystykę elektrozaworów hydraulicznych stosowanych w pojazdach samochodowych, pochodzących od dwóch producentów, których zmienną sterującą jest sygnał PWM (ang. Pulse With Modulation). Służą one do regulacji ciśnienia w obwodzie elektrohydraulicznym automatycznej skrzyni biegów pojazdów samochodowych. W artykule omówiono po krótce istotę sygnału PWM oraz jego zastosowanie. Scharakteryzowano badane elektrozawory, wraz z podaniem własnej analizy konstrukcyjnej oraz zasady ich działania. Porównano dwa różne rozwiązania zwracając uwagę na istotne, funkcjonalne różnice między nimi oraz zauważone niedoskonałości tychże rozwiązań. W dalszej części artykułu omówiono stanowisko pomiarowe oraz wyniki badań, w których zwrócono uwagę na istotny wpływ temperatury na niejednoznaczność osiąganych ciśnień w przypadku sterowania przy pomocy sygnału PWM- zaproponowano inną zmienną sterującą, a następnie przedstawiono wyniki badań dla różnych wartości temperatury oleju. Zawarto charakterystyki: wytwarzanego ciśnienia w funkcji sygnału sterującego, sprawdzając występowanie zjawiska histerezy, siły wywieranej przez trzpień elektrozaworu, czasu reakcji na skok jednostkowy o amplitudzie pełnego przesterowania, możliwości regulacyjnych oraz przecieków własnych elektrozaworu. Sformułowano szereg wniosków, nasuwających się po przeprowadzeniu badań, będących praktycznymi i istotnymi wskazówkami dla konstruktorów układów mechanicznych w których zastosowanie znajdują elektrozawory sterowane sygnałem PWM lub inne elementy, których zmienną sterującą jest sygnał PWM. Keywords: PWM signal, electro-valve steering, temperature influence Słowa kluczowe: sygnał PWM, elektrozawór sterowany sygnałem PWM, wpływ temperatury na pracę elektrozaworu 1. Wstęp Powszechnie stosowane elektrozawory należy podzielić na: elektrozawory typu otwarty/zamknięty (dwupozycyjne), oraz elektrozawory umożliwiające dowolne otwarcie między pełnym zamknięciem i pełnym otwarciem. Elektromagnes zaworu o ciągłej (bezstopniowej) zmianie otwarcia musi być zasilany prądem o zmieniającym się natężeniu. Powszechnym rozwiązaniem stało się zastosowanie sygnału typu PWM (ang. Pulse With Modulation).
3 Sygnał PWM jest to sygnał prądowy lub napięciowy, o stałej amplitudzie i częstotliwości, natomiast o regulowanym wypełnieniu- więcej o podstawach tego typu sygnału można znaleźć w [2]. Jest on powszechnie stosowany w motoryzacji [3], oraz w sterowaniu silnikami elektrycznymi [1],[9],[10]. Obecnie można znaleźć wiele odmian tego typu sygnału [4], gdyż wciąż poszukuje się metod, mających na celu uzyskanie najmniejszych strat energetycznych i optymalnego wykorzystania pamięci mikrokontrolerów [5], [6]. Częstotliwość sygnału jest tak duża, że daje efekt regulacji płynnej- osiągane częstotliwości to nawet kilka MHz [8]. Na rysunku 1 zaznaczono pojedynczy okres w sygnale PWM. Rys. 1. Sygnał PWM z zaznaczonym okresem T, czasem stanu wysokiego (zasilania) T ON oraz czasem stanu niskiego T OFF [12] Wypełnienie sygnału definiowane jest jako stosunek czasu stanu wysokiego do całego okresu sygnału, czyli: TON Kw 100%. T (1) Zdjęcia analizowanych elektrozaworów, których praca daje efekty bezstopniowej zmiany otwarcia przedstawiono na rysunkach 2 i 3. Składają się one z cewki elektrycznej, wewnątrz której znajduje się trzpień. Trzpień ten w zależności od podawanego sygnału PWM jest wypychany przez pole magnetyczne elektromagnesu przesuwając suwak elektrozaworu. Ten z kolei w zależności od swojego położenia łączy odpowiednie komory w rozdzielaczu hydraulicznym. Na rysunku 2 przedstawiono ogólnie dostępny elektrozawór, przystosowany do pracy z częstotliwością sygnału PWM 300Hz oznaczony w niniejszym artykule jako rozwiązanie/elektrozawór I. Na rysunku 3 ukazano natomiast elektrozawór innego producenta w wersji N/H (oznaczenie to zostanie objaśnione w dalszej części artykułu), oznaczonej jako rozwiązanie II. Oba typy elektrozaworów znajdują powszechne zastosowanie w samochodach osobowych, więc ich napięcie zasilania wynosi 12V.
4 Rys. 2. Widok elektrozaworu I- 2a) [14]. Rys. 3. Widok elektrozaworu II od góry (a), oraz od dołu (b) 2. Zasada działania elektrozaworu Elektrozawór ma za zadanie regulować ciśnienie oleju na swym wyjściu w zależności od zadawanego sygnału PWM, którego wartość określa wypełnienie okresu w jakim dostarczany jest do elektromagnesu prąd. Przepływający prąd przekłada się bezpośrednio na siłę elektromagnesu z jaką jest wypychany trzpień. Ruch trzpienia przenosi się na suwak rozdzielacza hydraulicznego, jak przedstawia rysunek 4. Zaprezentowano na nim najprostszą konstrukcję, opracowaną przez autorów w celu przybliżenia zasady pracy takiego typu elektrozaworu. Rysunek ten umożliwia również porównanie tejże propozycji z nieco bardziej skomplikowaną budową elektrozaworu II i ze znacznie bardziej złożoną konstrukcją elektrozaworu I. Komora ciśnienia wyjściowego p c na skutek ruchu suwaka może być łączona bądź z zasilaniem p s i wtedy p c rośnie, bądź z upustem oleju do ciśnienia atmosferycznego X i wtedy p c maleje. Wartość p c może się więc zmieniać między ciśnieniem atmosferycznym a ciśnieniem zasilania. Ruch suwaka powodowany jest niezrównoważeniem siły od elektromagnesu i siły sprzężenia zwrotnego, proporcjonalnej do ciśnienia p c, a wynikającej z różnicy czynnego pola suwaka po obu stronach komory p c.
5 Rys. 4. Schemat przedstawiający konstrukcję elektrozaworu, wystarczającą do spełnienia założonych funkcji Na rysunku 4 przedstawiono położenie neutralne elektrozaworu, tzn. pozycja suwaka jest taka, że nie następuje ani wzrost ciśnienia p c, ani jego obniżanie. Występuje równowaga sił pochodzących od elektromagnesu (przekazywana przez trzpień na suwak) i siły wypadkowej, będącej skutkiem działania ciśnienia p c na wspomniane dwie powierzchnie tłoczka. Jeżeli nastąpi wzrost siły pochodzącej od elektromagnesu, zostanie otwarty kanał dopuszczający ciśnienie p s. Jeżeli natomiast zostanie zadana mniejsza siła na elektromagnesie, otworzy się kanał upustu oleju, aż do osiągnięcia równowagi sił, co spowoduje ponowne jego przymknięcie. Rysunek nr 5 prezentuje natomiast schemat elektrozaworu oznaczonego numerem II. Rys. 5. Schemat przedstawiający konstrukcję elektrozaworu II W elektrozaworze tym na suwak działają trzy siły: od sprężyny skierowana w lewo i dwie siły pchające w prawo siła elektromagnesu oraz siła sprzężenia zwrotnego, powstająca przez parcie ciśnienia wyjściowego p c na dwie położone naprzeciw siebie powierzchnie jedną o średnicy 8,6 mm i drugą o średnicy 8,1 mm. Na rysunku 5 przedstawiono położenie neutralne elektrozaworu.
6 Siła pochodząca od sprężyny jest praktycznie stała (bo przesunięcia suwaka są bardzo małe). Wzrost siły wywieranej przez elektromagnes, która jest funkcją zadanego sygnału PWM (a dokładniej natężenia prądu przepływającego przez cewkę) i temperatury, pcha suwak w prawo i otwiera okno upustu i w ten sposób zmniejsza ciśnienie p c. Nowy stan równowagi osiągany jest przy zwiększonej, zadanej wartości sygnału PWM i zmniejszonym ciśnieniu. Oznacza to, że ciśnienie na wyjściu jest normalnie wysokie (bez zadawania sygnału PWM i podawania tym samym prądu na cewkę elektrozaworu), o czym świadczą właśnie oznaczenia N/H (ang. Normal High) na obudowie. Elektrozawór ten przystosowany jest do pracy pod ciśnieniem zasilania wynoszącym 20 bar. Tak więc zakres ciśnień wyjściowych p c waha się pomiędzy wartością 20 bar (przy zadanym sygnale PWM wynoszącym 0%) pomniejszoną o straty ciśnienia w kanałach samego elektrozaworu, a ciśnieniem atmosferycznym. Elektrozawór ten występuje również w wersji N/L (ang. Normal Low) [13]. Schemat elektrozaworu oznaczonej numerem I (rysunek 6) jest znacznie bardziej skomplikowany. Na suwak działają siły pochodzące od: elektromagnesu przenoszone przez trzpień oraz siły wypadkowej sprzężenia zwrotnego ujemnego od ciśnienia regulowanego p c. Ciśnienie p c oddziałuje na powierzchnię wynikającą ze średnicy maksymalnej suwaka (Φ7 mm) w komorze F, oraz na powierzchnię wynikającą z średnicy maksymalnej suwaka zmniejszoną o powierzchnię czoła suwaka (o średnicy Φ4,68 mm) w komorze A- stanowi to łącznie sprzężenie zwrotne ujemne równe oddziaływaniu ciśnienia p c na powierzchnię wynikającą ze średnicy Φ4,68mm (0,172 cm 2 ). Trzpień elektromagnesu nie jest mechanicznie związany z suwakiem i aby zapewnić ich wspólny ruch, wewnątrz elektromagnesu znajduje się sprężynka dopychająca czoło trzpienia do czoła suwaka. Komora C jest komorą wypracowywania ciśnienia p c, natomiast komory A,E i F są komorami służącymi do sprzężenia zwrotnego. W położeniu neutralnym nie ma przepływu między komorami D (zasilanie p s) i E (p c), ani między B (upust do zbiornika) i C (p c) i w ten sposób ciśnienie p c nie zmienia się. Jednakże nawet małe przesunięcie (ale większe niż strefa martwa) w prawo powoduje otwarcie przejścia między komorami D i E i jako skutek wzrost ciśnienia p c, oraz odwrotnie przesunięcie w lewo otwiera spust (między komorami C i B) powodując zmniejszenie ciśnienia p c. Przesunięcie suwaka dokonuje się poprzez zmianę zadanego sygnału PWM. Ruch trzpienia w kierunku wysuwania jest mechanicznie ograniczony i w badanym egzemplarzu dochodziło do sytuacji odklejania tłoczka od suwaka i występowania sytuacji nieokreślonego jednoznacznie położenia suwaka. Następstwem było zjawisko pozostawienia ciśnienia p c około 0,5 bar mimo całkowitego zdjęcia sygnału elektrycznego.
7 Rys. 6. Względne położenie suwaka i cylindra elektrozaworu I Zauważona cecha nie jest jedyną wadą omawianego rozwiązania. Podczas badań stwierdzono tendencję elektrozaworu do samowzbudzenia. Prawdopodobnie producent zdając sobie sprawę z tej cechy, wprowadził akumulator energii widoczny na rysunku 2a, składający się z cylinderka, tłoczka i sprężyny. Ciśnienie wyjściowe p c oddziałuje na dolną powierzchnię tłoczka, ściskając sprężynę. Wbudowany akumulator energii ma za zadanie spowolnienie zmian ciśnienia p c, stabilizując działanie zaworu. Dokonano pomiarów średnicy tłoczka znajdującego się wewnątrz cylindra akumulatora i sztywności jego sprężyny. Wiedząc, na ile ta sprężyna jest ściśnięta w położeniach skrajnych (ograniczenia mechaniczne), możliwe było wyznaczenie charakterystyki akumulatora, co pokazano na rysunku 7. Akumulator działa wyłącznie w zakresie 0,36 do 4,95 bar i powyżej tej ostatniej wartości nie odgrywa żadnej roli w zachowaniu dynamicznym elektrozaworu. Rys. 7. Charakterystyka zintegrowanego akumulatora elektrozaworu I
8 Mimo zastosowania akumulatora, elektrozawór w pewnych warunkach wzbudzał się. Przebieg sygnału wzbudzonego elektrozaworu pokazuje rysunek 8. Czerwona linia przedstawia sygnał elektryczny z przetwornika ciśnienia p s umieszczonego na zasilaniu elektrozaworu. Linia żółta to sygnał elektryczny z przetwornika na wyjściu (p c). Zadawany sygnał PWM był niezmienny. Rys. 8. Zrzut z ekranu oscyloskopu przedstawiający zjawisko wzbudzenia elektrozaworu 3. Stanowisko pomiarowe Rysunek 9 przedstawia ogólny schemat stanowiska badawczego. Pompa wyporowa o stałej objętości jednostkowej generuje wydatek oleju Q s o temperaturze t i ciśnieniu p s. Po przejściu przez blok przyłączeniowy olej trafia do elektrozaworu. W zależności od zadawanego sygnału PWM wytwarzane jest ciśnienie wyjściowe (kontrolne) p c. W trakcie badań mierzono wartość przecieków własnych elektrozaworu. Poprzez przecieki wewnętrzne należy rozumieć wydatek oleju wydobywającego się z elektrozaworu w pozycji neutralnej, czyli bez zamierzonego upuszczania oleju. Wynikają one głównie z luzu między suwakiem a cylindrem. Zależą one przede wszystkim od temperatury oleju i ciśnienia wyjściowego. Zawór na wyjściu oleju o ciśnieniu p c symuluje pobór oleju przez odbiorniki. Wydajność oleju wyjściowego może być mierzona przepływomierzem umieszczonym w linii zasilania, po uwzględnieniu przecieków. Główny zbiornik oleju posiada wbudowany system podgrzewania oleju.
9 Do elektrozaworu podawany jest sygnał PWM z generatora. Wpięto układ umożliwiający pomiar natężenia prądu. W linię zasilania elektrozaworu w olej wmontowano przepływomierz, przetworniki ciśnienia oraz temperatury, których sygnały były rejestrowane. Rys. 9. Schemat przedstawiający budowę stanowiska pomiarowego 4. Wyniki pomiarów 4.1. Charakterystyka ciśnienia p c wytworzonego przez elektrozawór w funkcji sygnału sterującego PWM Wykres na rysunku 10 przedstawia krzywe regulowanego ciśnienia p c w funkcji sygnału zadawanego PWM dla dwóch temperatur, dla elektrozaworu I. Ciśnienie zasilania p s wynosiło 15 bar. Rozbieżność poszczególnych krzywych przy zwiększaniu i zmniejszaniu sygnału jest bardzo mała. Ogólnie można przyjąć, iż nie obserwuje się znaczącego zjawiska histerezy dla elektrozaworu (podobnie w przypadku elektrozaworu II) dla danej temperatury. Rozbieżność jest znacząca między krzywymi dla różnych temperatur. Jest to spowodowane tym, iż siła cewki jest proporcjonalna do prądu średniego przepływającego przez cewkę, a nie bezpośrednio do wartości sygnału PWM. Prąd z kolei zależy od oporności cewki, która jest zmienna w zależności od temperatury. Według przeprowadzonych pomiarów rezystancja cewki w temperaturze 18 C wynosi 4,7 Ω, natomiast w temperaturze 90 C wynosi 6,3 Ω. Warto zauważyć, iż temperatury tej nie można utożsamiać z temperaturą oleju, gdyż cewka pod wpływem przepływającego przez nią prądu nagrzewa się (czasem nawet do około 90 C). Podobne obserwacje dotyczą elektrozaworu II, którego charakterystyki przedstawia rysunek 11. Wyniki wyraźnie różnią się między sobą, w funkcji temperatury. W przypadku tego elektrozaworu rezystancja w temperaturze pokojowej (20 C) wynosi 5,2 Ω, natomiast w temperaturze 110 C osiąga wartość 7,2 Ω -do takiej temperatury nagrzewa się ten
10 elektrozawór przy wartości PWM wynoszącej 100% bez przepływającego przez niego i odbierającego ciepło oleju. Opierając się na przedstawionych wynikach badań, ukazujących brak jednoznaczności co do wartości otrzymanego ciśnienia na wyjściu elektrozaworu przy różnych temperaturach zdecydowanie lepszą, pewniejszą i niezależną od temperatury zmienną sterującą jest prąd średni przepływający przez elektrozawór. Charakterystyki ciśnienia p c w funkcji prądu średniego przedstawia rysunek 12. Jako prąd średni przyjęto średnią arytmetyczną z przebiegu wartości prądu w okresie uśredniania. Rys. 10. Wykres ciśnienia p c elektrozaworu I w funkcji sygnału PWM dla różnych temperatur Rys. 11. Wykres ciśnienia p c elektrozaworu II w funkcji sygnału PWM dla różnych temperatur
11 4.2. Charakterystyka ciśnienia p c wytwarzanego przez elektrozawór w funkcji prądu średniego Jeśli przyjmuje się jako zmienną niezależną (na osi odciętych) prąd średni, charakterystyki wykonane dla różnych temperatur nakładają się- rysunek 12. Przyjęcie do opisu tej osi prądu średniego, a nie wartości PWM, uwzględnia nie tylko zakłócenie pochodzące od temperatury, ale również od zmian w napięciu zasilania cewki. Potwierdzenie tej zależności, można również odnaleźć na rysunku 13, przedstawiającym siłę elektromagnesu przy rożnych temperaturach. Rys. 12. Wykres ciśnienia p c w funkcji prądu średniego dla różnych temperatur 4.3. Siła elektromagnesu Przeprowadzono testy w celu poznania siły generowanej przez elektromagnes dla elektrozaworu I. Próby przeprowadzono w temperaturze około 25 C oraz 65 C. Wyniki przedstawia rysunek 13. Ciekawym spostrzeżeniem jest brak wpływu temperatury na siłę generowaną przez cewkę, podczas gdy operuje się prądem średnim a nie sygnałem PWM- brak zauważalnej zmiany indukcyjności cewki. Należy również zauważyć, że wykres nie ma charakteru prostoliniowego, szczególnie dla małych wartości prądu (wypełnienia). Trzeba pamiętać, że cewka ma nie tylko rezystancję, ale również reaktancję. To powoduje, że kształt krzywej jest zakłócony dla małych wartości prądu średniego (sygnału PWM), przez duży udział stanów przejściowych w stosunku do małego wypełnienia sygnału. Jednakże siłownik lub sprzęgło sterowane elektrozaworem często jest wyposażone w sprężynę zwrotną i w celu ruszenia z miejsca trzeba, by ciśnienie p c osiągnęło wartość znacząco większą od zera- wtedy kształt krzywej dla mniejszych wartości nie odgrywa żadnej roli. Właśnie z tego powodu (występowania sprężyny w samym elektrozaworze), podobne zjawisko zakrzywienia krzywych dla małych wartości PWM nie występuje w istotny sposób
12 w elektrozaworze II, co można zaobserwować na charakterystykach ciśnienia wyjściowego w funkcji zadawanego sygnału PWM, rys. 11. Rys. 13. Siła elektromagnesu w funkcji prądu średniego dla różnych temperatur dla elektrozaworu I 4.4. Czas reakcji elektrozaworu W trakcie badań przeprowadzono testy dynamiczne. Reakcję elektrozaworu na zmianę sygnału sterującego w postaci skoku jednostkowego dla konstrukcji I prezentują wykresy na rysunku 14 (wykres dolny przedstawia powiększony fragment wykresu górnego). Na osi głównej należy odczytywać wartości sygnału PWM [%] oraz p c [bar], a na osi pomocniczej prąd średni [ma]. Na osi odciętych podano czas w kolejnych sekundach. Zastosowany na stanowisku generator PWM pozwala wykonać skokową zmianę sygnału już w następnym okresie po wprowadzeniu zmiany zadawania, czyli po 0,003(3)s, gdy częstotliwość sygnału wynosi 300Hz (rys. 14). Pierwsze załamanie krzywej PWM(t) odpowiada skokowej zmianie PWM. To, że na wykresie przebieg PWM(t) przypomina wykładniczy, wynika z zastosowania analogowego miernika PWM, z konieczności uśredniającego ten skokowo zmienny sygnał (odpowiedź elektrozaworu, czyli ciśnienie p c na wykresie zmienia się szybciej niż sygnał zadający PWM, co w rzeczywistości nie ma miejsca). Analogiczne zjawisko dotyczy wartości prądu średniego, uśrednianej ze stałą czasową wynoszącą około 1s.
13 Rys. 14. Wykresy gwałtownej zmiany zadawanego sygnału sterującego w elektrozaworze I 4.5. Przecieki w elektrozaworze Wykres 15 przedstawia pomiary przecieków wewnętrznych w elektrozaworze I przy zasilaniu go ciśnieniem p s=15bar i przy ciśnieniu p c=0, po uśrednieniu z kilku pomiarów. Widoczny jest znaczny wzrost przecieków wraz ze wzrostem temperatury oleju z powodu zmniejszającej się jego lepkości.
14 Rys. 15. Zależność przecieków wewnętrznych w elektrozaworze I w różnych temperaturach 4.6. Możliwości regulacyjne elektrozaworu Na rysunku nr 16 przedstawiono dwie serie pomiarowe dla elektrozaworu I. Przy ciśnieniu zasilania p s wynoszącym 15 bar wysterowano ciśnienia kontrolne p c na wartości 8 bar oraz 12 bar. Następnie stopniowo otwierano zawór zwiększając wydajność oleju, jak przedstawia to wykres 16. Należy zauważyć, iż dla ciśnienia p c=8 bar punkty układają się w przybliżeniu w linii prostej. Nachylenie tej prostej wynika ze stałej sprężyny w elektromagnesie (zwiększanie ugięcia sprężyny, aby bardziej otworzyć kanał zasilający olejem o ciśnieniu p s odbywa się kosztem spadku ciśnienia, co jest widoczne na wykresie jako pochylenie prostych utworzonych z punktów). Punkty dla ciśnienia p c wynoszącego 12 bar, również układają się w linię prostą (poza ostatnim), obrazując zakres regulacji elektrozaworu. Ostatni punkt pomiarowy (tzn. o największej wydajności oleju) wyraźnie wskazuje na zakrzywienie wcześniejszej prostej. Jest to spowodowane faktem, iż kanał zasilania ciśnieniem oleju p s został już całkowicie otwarty i dalszy przebieg charakterystyki nie zależy już od możliwości regulacyjnych zaworu (gdyż te się skończyły), lecz od oporów przepływu przez elektrozawór.
15 Rys. 16. Wykres ciśnienia p c w funkcji wydajności oleju dla dwóch wartości ciśnień p s, ukazujący możliwości regulacyjne elektrozaworu I 4.7. Inne spostrzeżenia i uwagi Po przeanalizowaniu zasady działania elektrozaworów dwóch różnych producentów, nasuwają się pewne wątpliwości odnośnie konstrukcji elektrozaworu oznaczonego jako rozwiązanie I. Wydaje się być zasadne przeniesienie w nim sprężyny z lewej strony suwaka (z trzpienia elektromagnesu), na prawo od suwaka. W ten sposób sprężyna zapewniałaby stały kontakt suwaka z trzpieniem elektromagnesu. W omawianym elektrozaworze brak tej sprężyny dopuszcza sytuację, gdy trzpień jest cofnięty, a suwak nie, co nie zapewnia stałego kontaktu trzpień-suwak, gdyż jedynym powodem dla którego przesuwa się on w lewo jest siła wywierana od ciśnienia sprzężenia zwrotnego w komorze F (rysunek 6). W trakcie badań zauważono zjawisko polegające na tym, iż podczas powolnego zmniejszania wartości sygnału PWM (a więc ciśnienia p c) utrzymywało się pewne ciśnienie resztkowe, które nie było w stanie dalej cofnąć suwaka. Zastosowanie sprężyny po prawej stronie od suwaka dopychałoby go w lewo, zapewniając stały kontakt z trzpieniem elektromagnesu. 5. Wnioski Na podstawie wykonanych badań zaproponowano zmianę w konstrukcji zaworu I polegającą na zastosowaniu sprężyny zapewniającej kontakt trzpienia cewki elektromagnesu z suwakiem, a tym samym jednoznaczność jego położenia w każdym przypadku. Ponadto na podstawie zaprezentowanych wyników badań elektrozaworu I można wysnuć następujące wnioski dotyczące ogółu tego typu elektrozaworów, ze względu na uniwersalność prawidłowości fizycznych: - korzystniejszym jest dla powtarzalności sterowania w różnych temperaturach operowanie wartością prądu średniego, a nie wartością sygnału PWM. Należy zwrócić uwagę, iż przy zapewnieniu stałej temperatury oleju, cewka nagrzewa się pod wpływem przepływającego przez nią prądu, co powoduje zmianę rezystancji uzwojenia
16 - czas przesterowania tego typu elektrozaworów jest bardzo krótki i w typowych zastosowaniach w branży motoryzacyjnej może zostać pominięty - przecieki własne elektrozaworu zależą w sposób znaczny od temperatury oleju a ich wartość jest niepomijalnie duża. Literatura: [1] Agnihotri P, Kaabouch N, Salehfar H, Wen-Chen HU. FPGA-based combined PWM- PFM technique to control DC-DC converters. North American Power Symposium (NAPS), 2010 IEEE Conference.Sept. 2010, ISSN: pp.1-6. [2] Barr M. Pulse Width Modulation. Embedded Systems Programming, September 2001, pp [3] BOSCH. Elektroniczne sterowanie skrzynką biegów ESG. Wydawnictwa Komunikacji i Łączności, [4] Boumâarafa A, Mohamadib T, Messaic N. Improving of the Generation Method of Repeated PWM Based on the Signals Combinations Applied to a PV Pumping system. Energy Procedia 74, 2015, ss [5] Carmela Di Piazza M, Pucci M. Techniques for efficiency improvement in PWM motor drives. Electric Power Systems Research, Volume 136, July pp [6] Gaballah, M, El-Bardini M. Low cost digital signal generation for driving space vector PWM inverter. Ain Shams Engineering Journal, Volume 4, Issue 4, December 2013, pp [7] Goszczak J, Radzymiński B, Werner A, Pawelski Z. Badania samochodowego elektrozaworu sterowanego sygnałem PWM, Logistyka, nr 3/2015, s [8] Koutroulis E, Dollas A, Kalaitzakis K. High-frequency pulse width modulation implementation using FPGA and CPLD ICs. Journal of Systems Architecture 52 (2006). pp [9] Muntean N, Gavris M, Cornea O. Dual input hybrid DC-DC converters. EUROCON - International Conference on Computer as a Tool (EUROCON), 2011 IEEE: Conference April 2011, ISSN pp [10] Nouman Z, Klima B, Knobloch J. Generating PWM Signals With Variable Duty From 0% to 100% Based FPGA SPARTAN3AN. ElevtroRevue. VOL. 4, NO.4, DECEMBER [11] Taghizadeh M, Ghaffari A, Najafi F. Modeling and identification of a solenoid valve for PWM control applications. Mecanique 337, 2009, pp [12] Available from: [cited 2016 Nov 2] [13] Available from: p.html#s3 [cited 2016 Nov 2] [14] Strona internetowa firmy Sonnax - dostawcy cewek elektrycznych do elektrozaworów.
Badania samochodowego elektrozaworu sterowanego sygnałem PWM
GOSZCZAK Jarosław 1 RADZYMIŃSKI Bartosz 1 WERNER Andrzej 1 PAWELSKI Zbigniew 1 Badania samochodowego elektrozaworu sterowanego sygnałem PWM WSTĘP Powszechnie stosowane elektrozawory należy podzielić na:
Analiza bloku elektrohydraulicznego samochodu Nissan Micra w części dotyczącej wypracowania ciśnień do siłowników przekładni CVT
RADZYMIŃSKI Bartosz 1 GOSZCZAK Jarosław 2 WERNER Andrzej 3 PAWELSKI Zbigniew 4 Analiza bloku elektrohydraulicznego samochodu Nissan Micra w części dotyczącej wypracowania ciśnień do siłowników przekładni
WPŁYW PARAMETRÓW ZAKŁÓCAJĄCYCH NA PRACĘ SKRZYNI BIEGÓW WYPOSAŻONEJ W PRZEKŁADNIĘ CVT
Bartosz RADZYMIŃSKI 1, Zbigniew PAWELSKI 2 1 Politechnika Łódzka, bartosz.radzyminski@p.lodz.pl 2 Politechnika Łódzka, zbigniew.pawelski@p.lodz.pl WPŁYW PARAMETRÓW ZAKŁÓCAJĄCYCH NA PRACĘ SKRZYNI BIEGÓW
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna
Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium Ćwiczenie 1 Badanie aktuatora elektrohydraulicznego Instrukcja laboratoryjna Opracował : mgr inż. Arkadiusz Winnicki Warszawa 2010 Badanie
2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora
E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr 5 Charakterystyka rozdzielacza hydraulicznego. Opracowanie: Z.Kudźma, P. Osiński J. Rutański, M. Stosiak Wiadomości wstępne Rozdzielacze
Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności regulacyjnych regulatorów ciśnienia bezpośredniego
Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10
Układy zasilania samochodowych silników spalinowych Bartosz Ponczek AiR W10 ECU (Engine Control Unit) Urządzenie elektroniczne zarządzające systemem zasilania silnika. Na podstawie informacji pobieranych
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń
Instrukcja do ćwiczeń laboratoryjnych. Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing
Instrukcja do ćwiczeń laboratoryjnych Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing Wstęp teoretyczny Poprzednie ćwiczenia poświęcone były sterowaniom dławieniowym. Do realizacji
BADANIA WŁAŚCIWOŚCI HYDRAULICZNEGO NAPĘDU JEDNOSTRONNEGO DZIAŁANIA DLA ZAWORÓW SILNIKOWYCH
BADANIA WŁAŚCIWOŚCI HYDRAULICZNEGO NAPĘDU JEDNOSTRONNEGO DZIAŁANIA DLA ZAWORÓW SILNIKOWYCH MARIUSZ SMOCZYŃSKI 1, TOMASZ SZYDŁOWSKI 2 Politechnika Łódzka Streszczenie W artykule opisano badania właściwości
II. STEROWANIE I REGULACJA AUTOMATYCZNA
II. STEROWANIE I REGULACJA AUTOMATYCZNA 1. STEROWANIE RĘCZNE W UKŁADZIE ZAMKNIĘTYM Schemat zamkniętego układu sterowania ręcznego przedstawia rysunek 1. Centralnym elementem układu jest obiekt sterowania
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
BADANIA LABORATORYJNE ZMODERNIZOWANEGO REGULATORA PRZEPŁYWU 2FRM-16 STOSOWANEGO W PRZEMYŚLE
Szybkobieżne Pojazdy Gąsienicowe (25) nr 1/2010 Paweł GLEŃ BADANIA LABORATORYJNE ZMODERNIZOWANEGO REGULATORA PRZEPŁYWU 2FRM-16 STOSOWANEGO W PRZEMYŚLE Streszczenie. W pracy przedstawiono wyniki badań doświadczalnych,
Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
PL 203461 B1. Politechnika Warszawska,Warszawa,PL 15.12.2003 BUP 25/03. Mateusz Turkowski,Warszawa,PL Tadeusz Strzałkowski,Warszawa,PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203461 (13) B1 (21) Numer zgłoszenia: 354438 (51) Int.Cl. G01F 1/32 (2006.01) G01P 5/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data
Jarosław GOSZCZAK 1* Andrzej WERNER 1 Pierre GAUTHIER 2 Zbigniew PAWELSKI 1
Inżynieria Maszyn, R. 19, z., 014 samochodowa pompa wyporowa łopatkowa, ograniczenie wydajności, kawitacja, ssanie Jarosław GOSZCZAK 1* Andrzej WERNER 1 Pierre GAUTHIER Zbigniew PAWELSKI 1 ROZWIĄZANIE
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium
Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.
Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2
dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono
Urządzenia nastawcze
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Urządzenia nastawcze Laboratorium automatyki (A-V) Opracował: dr inż. Leszek Remiorz Sprawdził:
1. Wstęp. 2. Rozdzielacze hydrauliczne. 3. Przegląd rozwiązań konstrukcyjnych. 4. Obliczenia hydrauliczne przyjętego rozwiązania.
1. Wstęp. 2. Rozdzielacze hydrauliczne. 3. Przegląd rozwiązań konstrukcyjnych. 4. Obliczenia hydrauliczne przyjętego rozwiązania. 5. Rysunki konstrukcyjne, zestawienie całości. 6. Warunki techniczne odbioru.
Regulacja dwupołożeniowa (dwustawna)
Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym
BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM W artykule przedstawiono badania przeprowadzone na modelu
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych
Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany
Sterowanie odbiornikiem hydraulicznym z rozdzielaczem proporcjonalnym
Katedra Eksploatacji Systemów Logistycznych, Systemów Transportowych i Układów Hydraulicznych Politechnika Wrocławska Instrukcja do ćwiczeń laboratoryjnych Sterowanie odbiornikiem hydraulicznym z rozdzielaczem
IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności statycznych siłowników pneumatycznych Ćwiczenie
BADANIE SILNIKA SKOKOWEGO
Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA SKOKOWEGO Warszawa 00. 1. STANOWISKO I UKŁAD POMIAROWY. W skład stanowiska pomiarowego
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
Rozdzielacz proporcjonalny typ USEB6
WN6 Rozdzielacz proporcjonalny typ USEB6 do 1,5 MPa do 2 dm /min WK 420 50 04.2011 ZASOSOWANIE Rozdzielacz proporcjonalny typ USEB6 jest przeznaczony do sterowania kierunkiem i szybkością ruchu odbiornika.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego
Instrukcja do ćwiczeń laboratoryjnych. Układy rewersyjne
Instrukcja do ćwiczeń laboratoryjnych Układy rewersyjne Wstęp Celem ćwiczenia jest budowa różnych układów hydraulicznych pełniących zróżnicowane funkcje. Studenci po odbyciu ćwiczenia powinni umieć porównać
Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE
Modulatory PWM CELE ĆWICZEŃ Poznanie budowy modulatora szerokości impulsów z układem A741. Analiza charakterystyk i podstawowych obwodów z układem LM555. Poznanie budowy modulatora szerokości impulsów
Dlaczego pompa powinna być "inteligentna"?
Dlaczego pompa powinna być "inteligentna"? W ciepłowniczych i ziębniczych układach pompowych przetłaczanie cieczy ma na celu transport ciepła, a nie, jak w pozostałych układach, transport masy. Dobrym
Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny
Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Sterowanie układem hydraulicznym z proporcjonalnym zaworem przelewowym Opracowanie: Z. Kudźma, P. Osiński, M. Stosiak 1 Proporcjonalne elementy
Mechatronika i inteligentne systemy produkcyjne. Aktory
Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację
Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej
Ćwiczenie HP3. Instrukcja
LABORATORIUM NAPĘDÓW HYDRAULICZNYCH I PNEUMATYCZNYCH INSTYTUT MASZYN ROBOCZYCH CIĘŻKICH WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH POLITECHNIKA WARSZAWSKA ul. Narbutta 84, 02-524 Warszawa Ćwiczenie HP3 Dokładność
Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.
1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 1 Charakterystyka zasilacza hydraulicznego Opracowanie: R. Cieślicki, Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak Wrocław 2016 Spis
07 - Zawory i elektrozawory. - Podstawowe zasady, schematy działania - Krzywe natężenia przepływu
- Zawory i elektrozawory - Podstawowe zasady, schematy działania - Krzywe natężenia przepływu INFORMACJE OGÓLNE W układach pneumatycznych zawór jest elementem, który kieruje sprężonym powietrzem, zmieniając
INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki
Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.
BADANIE LUZÓW ROZDZIELACZA HYDRAULICZNEGO W OBNIŻONEJ TEMPERATURZE STUDY ON GAP SIZE OF DIRECTIONAL CONTROL VALVE AT LOW TEMPERATURE
MAREK CIĘŻOBKA, EDWARD LISOWSKI BADANIE LUZÓW ROZDZIELACZA HYDRAULICZNEGO W OBNIŻONEJ TEMPERATURZE STUDY ON GAP SIZE OF DIRECTIONAL CONTROL VALVE AT LOW TEMPERATURE S t r e s z c z e n i e A b s t r a
Zespól B-D Elektrotechniki
Zespól B-D Elektrotechniki Laboratorium Elektroniki i Elektrotechniki Samochodowej Temat ćwiczenia: Badanie sondy lambda i przepływomierza powietrza w systemie Motronic Opracowanie: dr hab inż S DUER 39
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 5 Zastosowanie zaworu zwrotnego sterowanego w układach hydraulicznych maszyn roboczych Opracowanie: P. Jędraszczyk, Z. Kudżma, P. Osiński,
Systemy i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...
Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:
Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu
ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
RÓŻNE ASPEKTY OGRANICZENIA WYDAJNOŚCI POMPY WYPOROWEJ O STAŁEJ OBJĘTOŚCI JEDNOSTKOWEJ
Jarosław GOSZCZAK 1, Andrzej WERNER, Pierre GAUTHIER 3, Zbigniew PAWELSKI 4 1 Politechnika Łódzka, jaroslaw.goszczak@p.lodz.pl Politechnika Łódzka, andrzej.werner@guest.p.lodz.pl 3 PSA Peugeot Citroën
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Ćw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
Badania sprawności prototypowej bezstopniowej przekładni łańcuchowej hybrydowego układu napędowego samochodu osobowego
Article citation info: Radzymiński B. Tests of prototypical efficiency of the variable-speed chain transmission of hybrid driving system for a car. The Archives of Automotive Engineering Archiwum Motoryzacji.
Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy
Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.
Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne
Automatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
LDPY-11 LISTWOWY DWUPRZEWODOWY PRZETWORNIK POŁOŻENIA DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, czerwiec 1997 r.
LISTWOWY DWUPRZEWODOWY PRZETWORNIK POŁOŻENIA DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, czerwiec 1997 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S.JARACZA 57-57A TEL. 0-602-62-32-71 str.2 SPIS TREŚCI
Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.
ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ
Podział regulatorów: I. Regulatory elektroniczne: II. Regulatory bezpośredniego działania: III. Regulatory dwustawne i trójstawne:
REGULATORY CK68 Nie można wyświetlić połączonego obrazu. Plik mógł zostać przeniesiony lub usunięty albo zmieniono jego nazwę. Sprawdź, czy łącze wskazuje poprawny plik i lokalizację. Zadania regulatorów
Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska
Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości Seria Jubileuszowa Każda sprężarka śrubowa z przetwornicą częstotliwości posiada regulację obrotów w zakresie od 50 do 100%. Jeżeli zużycie powietrza
Hamulce elektromagnetyczne. EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie
Hamulce elektromagnetyczne EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie Elektromagnetyczne hamulce i sprzęgła proszkowe Sposób oznaczania zamówienia P Wielkość mechaniczna Odmiana
Opis działania. 1. Opis działania. 1.1.1 Uwagi ogólne
1. Opis działania 1.1.1 Uwagi ogólne Zawory elektromagnetyczne odcinają przepływ medium przy użyciu membrany lub uszczelki gniazda. Zawory elektromagnetyczne zamykają się szczelnie tylko w kierunku przepływu
Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -
Zawory pilotowe Danfoss
Zawory pilotowe Danfoss Pozycja regulatorów bezpośredniego działania pomimo nieustającego rozwoju układów regulacyjnych elektronicznych jest nie do podważenia. Bezobsługowe działanie i trwałość są niewątpliwymi
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
YZ Wskazówka: pola wskazań, które nie są pokazywane lub mają podwójne zastosowanie nie są wymienione w poszczególnych grupach wskazań!
Odczyt bloku wartości mierzonych Audi R8 2008> - Ręczna zautomatyzowana skrzynia biegów 086 Mogą być pokazane następujące bloki wartości mierzonych: YZ Wskazówka: pola wskazań, które nie są pokazywane
Opis ultradźwiękowego generatora mocy UG-500
R&D: Ultrasonic Technology / Fingerprint Recognition Przedsiębiorstwo Badawczo-Produkcyjne OPTEL Sp. z o.o. ul. Otwarta 10a PL-50-212 Wrocław tel.: +48 71 3296853 fax.: 3296852 e-mail: optel@optel.pl NIP
Ćwiczenie Nr 2. Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów
Ćwiczenie Nr 2 Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów 1. Wprowadzenie Sterowanie prędkością tłoczyska siłownika lub wału silnika hydraulicznego
Silniki prądu stałego z komutacją bezstykową (elektroniczną)
Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl
symbol graficzny Kierunek przepływu i oznaczenie czynnika hydraulicznego Kierunek przepływu i oznaczenie czynnika pneumatycznego
/ / Symbole ogólne symbol graficzny opis Kierunek przepływu i oznaczenie czynnika hydraulicznego Kierunek przepływu i oznaczenie czynnika pneumatycznego Zmienność albo nastawialność (pompy, sprężyny, itp.)
Prądy wirowe (ang. eddy currents)
Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko
PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Zdzisław KRZEMIEŃ* prądnice synchroniczne, magnesy trwałe PRACA RÓWNOLEGŁA
Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru
Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC
BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,
Proporcjonalny 3-drogowy regulator przepływu, nabojowy typ WDUD6
Proporcjonalny -drogowy regulator przepływu, nabojowy typ WDUD6 WN6 do 2 MPa do 2 dm /min KARTA KATALGWA - INSTRUKCJA BSŁUGI WK 426 070 12.201 ZASTSWANIE -drogowy regulator przepływu sterowany elektrycznie,
Proporcjonalny 3-drogowy regulator przepływu, nabojowy typ WDUD10
Proporcjonalny 3-drogowy regulator przepływu, nabojowy typ WDUD10 WN10 do 2 MPa do 90 3 dm /min WK 420 270 12.201 ZASTOSOWANIE 3-drogowy regulator przepływu sterowany elektrycznie, proporcjonalnie typ
2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
PODSTAWY AUTOMATYKI IV. URZĄDZENIA GRZEJNE W UKŁADACH AUTOMATYCZNEJ REGULACJI
PODSTAWY AUTOMATYKI IV. URZĄDZENIA GRZEJNE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 4 BADANIE TERMOSTATYCZNYCH GŁOWIC GRZEJNIKOWYCH Rzeszów 2001 2 1. WPROWADZENIE Termostatyczne zawory grzejnikowe
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy
Konstrukcja i testy piezoelektrycznego systemu zadawania siły.
Konstrukcja i testy piezoelektrycznego systemu zadawania siły. Kierownik projektu (stopień/tytuł, imię, nazwisko, e-mail): Imię i nazwisko: dr inż. Dariusz Jarząbek e-mail: djarz@ippt.pan.pl Sprawozdanie
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Wprowadzenie. Napędy hydrauliczne są to urządzenia służące do przekazywania energii mechanicznej z miejsca jej wytwarzania do urządzenia napędzanego.
Napędy hydrauliczne Wprowadzenie Napędy hydrauliczne są to urządzenia służące do przekazywania energii mechanicznej z miejsca jej wytwarzania do urządzenia napędzanego. W napędach tych czynnikiem przenoszącym
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 TRANZYSTORY JAKO ELEMENTY DWUSTANOWE BIAŁYSTOK
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 2 Metody sterowania prędkością odbiornika hydraulicznego w układach z pompą stałej wydajności sterowanie dławieniowe Opracowanie: Z.
Zajęcia laboratoryjne Napęd Hydrauliczny
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 11 Sterowanie objętościowe konwencjonalne Opracowanie: R. Cieślicki, Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak Wrocław 2016 Spis
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
BADANIA EKSPERYMENTALNE ZAWORU CIŚNIENIOWEGO O ZMODYFIKOWANEJ KONSTRUKCJI
Maciej OLEJNIK 1, Andrzej KOSUCKI 1 1 Politechnika Łódzka, 8528@edu.p.lodz.pl, andrzej.kosucki@p.lodz.pl BADANIA EKSPERYMENTALNE ZAWORU CIŚNIENIOWEGO O ZMODYFIKOWANEJ KONSTRUKCJI Streszczenie: W artykule
Ćwiczenie 2. BADANIE DWÓJNIKÓW NIELINIOWYCH STANOWISKO I. Badanie dwójników nieliniowych prądu stałego
Laboratorium elektrotechniki 19 Ćwiczenie BDNE DWÓJNKÓW NELNOWYCH STNOWSKO Badanie dwójników nieliniowych prądu stałego W skład zestawu ćwiczeniowego wchodzą dwa zasilacze stałoprądowe (o regulowanym napięciu