RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

Wielkość: px
Rozpocząć pokaz od strony:

Download "RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski"

Transkrypt

1 RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski

2 Plan wykładu Rendering cieni wprowadzenie Cienie w grafice komputerowej Rendering off-line i rendering w czasie rzeczywistym Cienie rozmyte i ostre Mapy cieni dla różnych źródeł światła Zasada działania techniki Światła punktowe Światła kierunkowe Reflektory, latarki, itp.

3 Plan wykładu c.d. Filtrowanie map cienia Technika PCF (Percentage Closer Filtering) Mapy cienia oparte o wariancję Technika VSM (Variance Shadow Maps) Głębokie mapy cienia (ang. Deep Shadow Maps) Cienie od obiektów półprzeźroczystych Cienie wolumetryczne

4 Literatura L. Williams, Casting Curved Shadows on Curved Surfaces, SIGGRAPH 1978 W. Reeves i inni, Rendering Antialiased Shadows with Depth Maps, SIGGRAPH 1987 M. Bunnell, F. Pellacini, Shadow Map Antialiasing, GPU Gems, 2004 R. Fernando, Percentage-Closer Soft Shadows, NVIDIA R. Dimitrov, Cascaded Shadow Maps, NVIDIA 2007

5 Literatura c.d. W. Donnelly, A. Lauritzen, Variance Shadow Maps, SI3D 2006 T. Lokovic, E. Veach, Deep Shadow Maps, SIGGRAPH 2000 D. Filion, R. McNaughton, StarCraft II: Effects and Techniques, SIGGRAPH 2008 S. Rottger i inni, Shadow Volumes Revisited, WSCG 2002

6 Rendering cieni wprowadzenie Cienie pozwalają na zwiększenie realizmu oglądanych scen 3D Cienie stanowią też istotną wskazówkę odnośnie rozłożenia obiektów w przestrzeni Jest to szczególnie ważne gdy oglądamy obraz płaski, bez głębi To wszystko powoduje, że cienie są obowiązkowym elementem niemalże każdej aplikacji stosującej grafikę 3D, zarówno czasu rzeczywistego jak i offline

7 Cienie w grafice komputerowej W zaawansowanych algorytmach renderingu offline cienie są generowane automatycznie Cienie w śledzeniu promieni Cienie w metodzie energetycznej Istnienie cieni zakłada sam projekt algorytmów, ich usunięcie natomiast na ogół powoduje trudności, a często wręcz uniemożliwia poprawne działanie tych technik

8 Cienie w grafice komputerowej

9 Cienie w grafice komputerowej

10 Cienie w grafice komputerowej W grafice czasu rzeczywistego, opartej o schemat rasteryzacji trójkątów, w wersji podstawowej algorytmu cieni nie ma Algorytm ten można (i należy) rozszerzyć o rendering cieni Niestety jest to trudne, głównie ze względu na ograniczoną precyzję, i dość kosztowne obliczeniowo Kompromis: na scenie z kilkunastoma (kilkudziesięcioma) światłami tylko kilka z nich rzuca cienie

11 Cienie w grafice komputerowej

12 Cienie rozmyte i ostre Źródła światła w rzeczywistości mają pewne określone rozmiary i rozbieżność kątową Modele stosowane w grafice czasu rzeczywistego pomijają ten szczegół, który jest istotny z punktu widzenia poprawnego renderingu cieni Światła punktowe i reflektory zajmują punkt w przestrzeni Światła kierunkowe emitują promienie równoległe, bez rozbieżności kątowej

13 Cienie rozmyte i ostre c.d. Cienie rozmyte powstają w tych miejscach, w których światło jest częściowo zasłonięte Dokładnie: w tych punktach, w których rzut światła na sferę wokół punktu jest częściowo przesłonięty przez rzuty obiektów sceny na tą sferę Dotyczy to kąta bryłowego, pod jakim widać światło, więc nie ma to znaczenia, czy światło jest kierunkowe, czy znajduje się na scenie W obu przypadkach modele świateł w grafice czasu rzeczywistego generują rzut w postaci punktu

14 Cienie rozmyte i ostre c.d. Punkt nie może być częściowo zasłonięty, więc bez specjalnych chwytów i sztuczek wszystkie cienie miałyby ostre krawędzie Założenia uwzględniane przy różnych chwytach: Cienie powinny być ostre blisko obiektu rzucającego cień Wraz ze wzrostem odległości i wielkości rzutu światła na sferę cienie powinny być coraz bardziej rozmyte Ze względu na koszt obliczeniowy, często rozmycie jest niezależne od odległości od obiektu rzucającego cień

15 Cienie rozmyte i ostre c.d.

16 Cienie rozmyte i ostre c.d.

17 Mapy cieni Aby obliczyć stopień zacienienia danego punktu, oprócz danych źródła światła, potrzebne są jeszcze informacje o wszystkich innych obiektach na scenie Informacje takie są dostępne w renderingu off-line Niestety nie są one dostępne w grafice czasu rzeczywistego opartej o algorytm rasteryzacji Technika: minimalny zbiór danych potrzebny do renderingu cieni zapisywany jest w teksturze, tzw. mapie cienia, która jest następnie uwzględniana w trakcie renderingu

18 Mapy cieni generacja Teksele mapy cienia dla danego źródła światła przechowują odległości odpowiadających im punktów na scenie od tego źródła światła Aby wygenerować mapę cienia należy wykonać rendering sceny z punktu widzenia źródła światła Test głębi musi być aktywny Wyjściem programu fragmentów jest wyłącznie odległość od źródła światła Mapa cienia będzie zawierać odległości najbliższych obiektów licząc od źródła światła

19 Mapy cieni rendering Mapa cienia jest dodatkową teksturą na każde źródło światła uwzględniane w trakcie jednego przebiegu W czasie renderingu należy policzyć odległość cieniowanego w danej chwili punktu od źródła światła Jeżeli ta odległość jest większa niż odległość zapisana w mapie cienia, to punkt jest w cieniu W przeciwnym wypadku jest oświetlony

20 Mapy cieni projekcja Aby wygenerować mapę cienia należy odpowiednio dobrać macierz projekcji i teksturę do typu i parametrów źródła światła Te parametry trzeba też uwzględnić przy odczycie z mapy cienia Błędnie dobrane parametry projekcji mogą znacznie pogorszyć dokładność albo nawet uniemożliwić poprawne działanie tej techniki

21 Mapy cieni: światła punktowe Mapa cienia jest teksturą sześcienną Konieczne jest 6 przebiegów renderingu, po jednym na każdą ścianę Macierz widoku: Pozycja taka jak źródła światła, Kierunek do przodu wzdłuż jednej z 6 osi, Kierunek w górę ze specyfikacji mapy sześciennej Macierz projekcji: Kąty /2 w pionie i poziomie

22 Mapy cieni: światła kierunkowe Mapa cienia jest zwykłą teksturą 2D Macierz widoku: Pozycja dowolny punkt, np. środek sceny, najprościej punkt (0, 0, 0) Kierunek do przodu kierunek światła Kierunek do góry dowolny Macierz projekcji Projekcja ortogonalna Skala i przesunięcie dobrane tak, aby objąć całą scenę

23 Mapy cieni: światła kierunkowe Macierz projekcji obejmującej całą (potencjalnie bardzo dużą) scenę, wraz z mapą cienia o względnie małej rozdzielczości powoduje potencjalne problemy z precyzją metody Technika kaskadowych map cienia rozwiązanie trudności Temat jednego z projektów, metoda nie będzie omawiana na wykładzie

24 Mapy cieni: reflektory Światła punktowe, które świecą w ograniczonym stożku wokół kierunku światła Jeżeli rozwartość stożka jest wyraźnie większa niż /2 można traktować reflektor podobnie jak światło punktowe, z kierunkiem światła w macierzy widoku Poprawia to precyzję, jednak kosztem ilości obliczeń 5 przebiegów renderingu zamiast jednego 6. przebieg (tył) nie jest potrzebny

25 Mapy cieni: reflektory Mapa cienia jest zwykłą teksturą 2D Macierz widoku: Pozycja taka jak źródła światła, Kierunek do przodu kierunek światła Kierunek do góry dowolny Macierz projekcji: Kąty równe rozwartości kątowej stożka światła

26 Mapy cieni przesunięcie głębi Mapa cieni przechowuje dane wektorowe Dane te są zapisane w formacie rastrowym utrata precyzji ze względu na ograniczoną rozdzielczość map cienia Na skutek utraty precyzji renderowana powierzchnia może niepoprawnie rzucać cień sama na siebie Aby zminimalizować ten problem stosuje się tzw. przesunięcie głębi (ang. depth bias)

27 Mapy cieni przesunięcie głębi Dobranie wartości przesunięcia głębi Zbyt mała wartość nie usuwa niewłaściwego zacieniania Zbyt duża powoduje efekt oderwania cieni od obiektów, które je rzucają Może okazać się, że akceptowalne wartości są różne w różnych punktach sceny Wartości te można uzależnić od kąta padania światła na płaszczyznę mapy cienia może to nieco pomóc w ominięciu ww. trudności

28 Mapy cieni przesunięcie głębi

29 Mapy cieni przesunięcie głębi

30 Filtrowanie map cienia Sprawdzanie tylko i wyłącznie czy obiekt jest w cieniu czy nie powoduje ostre krawędzie cieni Zbyt duża rozdzielczość mapy cienia względem rozdzielczości ekranu powoduje aliasing Konieczne jest filtrowanie map cieni Niestety filtrowanie przez GPU nie daje oczekiwanych wyników GPU: result = threshold < filter(shadow_map) Potrzebne: result = filter(threshold < shadow_map)

31 Filtrowanie map cienia c.d. Technika PCF (Percentage Closer Filtering) jest stosowana w celu zgodnego z oczekiwaniami filtrowania map cienia W wersji podstawowej tworzy gładkie krawędzie cieni, jednak ich rozmycie nie zależy od odległości do obiektu rzucającego cień Uśrednianie wartości logicznych wyników porównania głębi dla sąsiednich tekseli Konieczne dużo odczytów z tekstury, koszt obliczeniowy

32 Technika PCSS Technika PCSS (Percentage Closer Soft Shadows) rozmycie zależne od odległości obiektu rzucającego cień od źródła światła Rozmycie cienia zależy od zasięgu filtrowania mapy cienia techniką PCF trzeba odpowiednio dobrać ten zasięg Algorytm wymaga takich samych map cienia jak PCF, różnica jest jedynie w cieniowaniu obiektów

33 Technika PCSS c.d. Algorytm cieniowania: Znalezienie odległości cieniowanego punktu od obiektu blokującego światło (d b ) uśrednianie (filtrowanie) wartości sąsiednich tekseli biorąc pod uwagę tylko odległości bliższe niż cieniowany punkt Oszacowanie wielkości rozmycia cienia (w r ) w r = (d c d b )w s / d b, gdzie w s rozmiar źródła światła, a d c odległość cieniowanego fragmentu od źródła Rozmycie techniką PCF stosując znormalizowane w r jako rozmiar filtru

34 Filtrowanie map cienia c.d.

35 Mapy cienia oparte o wariancję Użycie sprzętowego filtrowania tekstur map cienia zamiast programowego filtrowania wyników porównań z głębokością progową Przechowywanie uproszczonej informacji o rozkładzie głębi na każdym tekselu Potrzebne dwie liczby do zapisu głębi Wartość głębi (M 1 ) Wartość głębi podniesiona do drugiej potęgi (M 2 )

36 Mapy cienia oparte o wariancję Rendering cieni Działanie algorytmu aproksymacja na podstawie statystyki matematycznej Średnia: = M 1 Wariancja: 2 = M 2 M 1 2 Jeżeli odległość od światła bieżącego fragmentu jest mniejsza niż średnia ( ), to obiekt nie jest w cieniu W przeciwnym wypadku współczynnik zacienienia obliczany jest jako p = 2 /( 2 + ( d) 2 ), gdzie d jest odległością cieniowanego fragmentu od światła

37 Mapy cienia oparte o wariancję

38 Mapy cienia oparte o wariancję Działanie techniki opiera się na różnicy pomiędzy wartością filtrowaną podniesioną do kwadratu, a wartością podniesioną do kwadratu, a następnie filtrowaną Rozmycie cieni zależy od wielkości filtra Niestety, technika ta jest jedynie aproksymacją Wadą są tzw. Wycieki światła Bardziej skomplikowane implementację minimalizują tę wadę, ale jej nie usuwają całkowicie

39 Mapy cienia oparte o wariancję

40 Głębokie mapy cienia Użyteczne dla cieni od obiektów typu magła, dym oraz włosy, futro, itp. Dla tych obiektów kluczowe jest rzucanie cienia na samego siebie Przechowują widoczność poprzez teksele dla wszystkich wartości głębi Dla każdego teksela przechowywana jest linia łamana widoczność jako funkcja głębi Istotna jest kompresja informacji ograniczenie ilości wierzchołków linii łamanej

41 Głębokie mapy cienia

42 Głębokie mapy cienia

43 Cienie od obiektów półprzeźroczystych

44 Cienie od obiektów półprzeźroczystych Użycie drugiej mapy cienia i buforu koloru Rendering do pierwszej mapy cienia obiektów nieprzeźroczystych, tak samo jak bez tej techniki Rendering do drugiej mapy cienia obiektów półprzeźroczystych Bufor koloru czyszczony kolorem białym Rendering do buforu koloru obiektów półprzeźroczystych, używając pierwszej mapy cienia jako buforu głębi

45 Cienie od obiektów półprzeźroczystych Rendering cieni: Jeżeli obiekt jest w cieniu od obiektu nieprzeźroczystego, to oświetlenie mnożone jest przez odpowiednio wyliczony współczynnik zacienienia Jeżeli obiekt jest w cieniu od obiektów półprzeźroczystych, to oświetlenie mnożone jest przez kolor z buforu koloru związanego z mapą cienia mieszanego z kolorem białym, przy pomocy analogicznie wyliczanego współczynnika zacienienia

46 Cienie od obiektów półprzeźroczystych

47 Cienie wolumetryczne Potrzebny jest wypełniony bufor głębi Rendering oświetlenia i cieni wykonywany w drugim przebiegu Pozycja światła i wszystkie trójkąty sceny tworzą obcięte ostrosłupy trzy czworokąty na każdy trójkąt Rendering czworokątów cieni z zastosowaniem buforu szablonu oraz testem głębi

48 Cienie wolumetryczne Rendering ścian zwróconych przodem do obserwatora zwiększa licznik szablonu o 1 Rendering ścian zwróconych tyłem do obserwatora zmniejsza licznik szablonu o 1 Fragment jest zacieniony, jeżeli jego licznik szablonu jest równy jeden po zakończeniu renderingu czworokątów cienia

49 Cienie wolumetryczne

50 Cienie wolumetryczne Problem z przycinaniem geometrii bardzo blisko i bardzo daleko od kamery, istnieją rozwiązania Metoda mało wydajna bardzo dużo figur do renderingu, wąskim gardłem staje się prędkość wypełniania GPU Są opracowane pewne optymalizacje, Ale na ogół preferowane są metody oparte o mapy cienia, obecnie one wydaje sie być najlepsze

51 Dziękuję za uwagę

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Opóźnione cieniowanie wprowadzenie Koszt obliczeniowy cieniowania Cieniowanie jedno- i wieloprzebiegowe Cieniowanie opóźnione Schemat opóźnionego

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38 Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego

Bardziej szczegółowo

Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23

Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23 Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Programy geometrii wprowadzenie Miejsce w potoku graficznym Wejścia i wyjścia programów geometrii Wierzchołki, prymitywy, ich nowe rodzaje

Bardziej szczegółowo

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30 Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Obiekty półprzeźroczyste wprowadzenie Test alfa, odrzucanie Mieszanie alfa Obiekty naklejane, ang. decals Konwersja próbki punktowe obraz

Bardziej szczegółowo

Plan wykładu. Akcelerator 3D Potok graficzny

Plan wykładu. Akcelerator 3D Potok graficzny Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie

Bardziej szczegółowo

Gry komputerowe: efekty specjalne cz. 2

Gry komputerowe: efekty specjalne cz. 2 1/43 Gry komputerowe: efekty specjalne cz. 2 Przygotowała: Anna Tomaszewska 2/43 Mapowanie środowiska - definicja aproksymacje odbić na powierzchnie prosto- i krzywoliniowej," oświetlanie sceny." obserwator

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Mapowanie nierówności wprowadzenie Poziomy szczegółowości Cieniowanie w układzie stycznym Generacja wektorów normalnych i stycznych Mapy

Bardziej szczegółowo

Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych

Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Synteza i obróbka obrazu Tekstury Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Tekstura Tekstura (texture) obraz rastrowy (mapa bitowa, bitmap) nakładany na

Bardziej szczegółowo

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do 0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi

Bardziej szczegółowo

Efekty dodatkowe w rasteryzacji

Efekty dodatkowe w rasteryzacji Synteza i obróbka obrazu Efekty dodatkowe w rasteryzacji Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Efekty dodatkowe Cieniowanie i teksturowanie pozwala

Bardziej szczegółowo

Filtrowanie tekstur. Kinga Laurowska

Filtrowanie tekstur. Kinga Laurowska Filtrowanie tekstur Kinga Laurowska Wprowadzenie Filtrowanie tekstur (inaczej wygładzanie) technika polegająca na 'rozmywaniu' sąsiadujących ze sobą tekseli (pikseli tekstury). Istnieje wiele metod filtrowania,

Bardziej szczegółowo

Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe

Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Czym są tekstury? Tekstury są tablicowymi strukturami danych o wymiarze od 1 do 3, których elementami są tzw. teksele.

Bardziej szczegółowo

Julia 4D - raytracing

Julia 4D - raytracing i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja

Bardziej szczegółowo

Zaawansowana Grafika Komputerowa

Zaawansowana Grafika Komputerowa Zaawansowana Komputerowa Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 28 Luty 2017 Michał Chwesiuk Zaawansowana Komputerowa 28 Luty 2017 1/11 O mnie inż.

Bardziej szczegółowo

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy stworzenie grafiki

Bardziej szczegółowo

Oświetlenie obiektów 3D

Oświetlenie obiektów 3D Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

Śledzenie promieni w grafice komputerowej

Śledzenie promieni w grafice komputerowej Dariusz Sawicki Śledzenie promieni w grafice komputerowej Warszawa 2011 Spis treści Rozdział 1. Wprowadzenie....... 6 1.1. Śledzenie promieni a grafika realistyczna... 6 1.2. Krótka historia śledzenia

Bardziej szczegółowo

Architektura Komputerów

Architektura Komputerów Studia Podyplomowe INFORMATYKA Techniki Architektura Komputerów multimedialne Wykład nr. 9 dr Artur Bartoszewski Rendering a Ray Tracing Ray tracing (dosłownie śledzenie promieni) to technika renderowania

Bardziej szczegółowo

WSTĘP DO GRAFIKI KOMPUTEROWEJ

WSTĘP DO GRAFIKI KOMPUTEROWEJ WSTĘP DO GRAFIKI KOMPUTEROWEJ Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 15 Plan wykładu Światło, kolor, zmysł wzroku. Obraz: fotgrafia, grafika cyfrowa,

Bardziej szczegółowo

Karta przedmiotu. Podstawy programowania procesorów graficznych. realizowanego w ramach projektu PO WER

Karta przedmiotu. Podstawy programowania procesorów graficznych. realizowanego w ramach projektu PO WER Karta przedmiotu Podstawy programowania procesorów graficznych realizowanego w ramach projektu PO WER 2017-2019 Wydział Inżynierii Elektrycznej i Komputerowej Kierunek studiów: Informatyka Profil: Ogólnoakademicki

Bardziej szczegółowo

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D autorzy: Michał Dajda, Łojek Grzegorz opiekun naukowy: dr inż. Paweł Rotter I. O projekcie. 1. Celem projektu było stworzenie

Bardziej szczegółowo

Synteza i obróbka obrazu. Algorytmy oświetlenia globalnego

Synteza i obróbka obrazu. Algorytmy oświetlenia globalnego Synteza i obróbka obrazu Algorytmy oświetlenia globalnego Algorytmy oświetlenia Algorytmy oświetlenia bezpośredniego (direct illumination) tylko światło poadające bezpośrednio na obiekty, mniejszy realizm,

Bardziej szczegółowo

WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ

WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ Dr inż.. Jacek Jarnicki Doc. PWr. Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl 1. Układ przedmiotu

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Oświetlenie w grafice czasu rzeczywistego Modele koloru Modele źródeł światła Światła punktowe, kierunkowe i powierzchniowe Model nieba,

Bardziej szczegółowo

21. W STARYM KINIE ŚWIATŁO

21. W STARYM KINIE ŚWIATŁO 21. W STARYM KINIE ŚWIATŁO Otwórz plik: W STARYM KINIE.c4d. Scena zawiera pogrążone w cieniu, szare i czarne elementy wnętrza. Zadanie polega na wydobyciu ich z mroku, zachowując klimat tajemniczości 1.

Bardziej szczegółowo

GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych

GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy

Bardziej szczegółowo

Transformacje. dr Radosław Matusik. radmat

Transformacje. dr Radosław Matusik.   radmat www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja m.in. przestrzeni modelu, świata, kamery oraz projekcji, a także omówienie sposobów oświetlania i cieniowania obiektów. Pierwsze

Bardziej szczegółowo

GRK 4. dr Wojciech Palubicki

GRK 4. dr Wojciech Palubicki GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection

Bardziej szczegółowo

Algorytmy oświetlenia globalnego

Algorytmy oświetlenia globalnego Synteza i obróbka obrazu Algorytmy oświetlenia globalnego Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Algorytmy oświetlenia Algorytmy oświetlenia bezpośredniego

Bardziej szczegółowo

Architektura systemów komputerowych Ćwiczenie 3

Architektura systemów komputerowych Ćwiczenie 3 Architektura systemów komputerowych Ćwiczenie 3 Komputer widziany oczami użytkownika Karta graficzna DirectX technologie łączenia kart 1 dr Artur Bartoszewski - Architektura systemów komputerowych - ćwiczenia

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Postprocessing wprowadzenie Rendering do tekstury Obliczenia w GLSL Odczyt transformacji (transform feedback) Pełnoekranowy czworokąt Rozmywanie

Bardziej szczegółowo

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie

Bardziej szczegółowo

Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny

Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności

Bardziej szczegółowo

Autodesk 3D Studio MAX Teksturowanie modeli 3D

Autodesk 3D Studio MAX Teksturowanie modeli 3D Autodesk 3D Studio MAX Teksturowanie modeli 3D dr inż. Andrzej Czajkowski Instyt Sterowania i Systemów Informatycznych Wydział Informatyki, Elektrotechniki i Automatyki 25 kwietnia 2017 1 / 20 Plan Wykładu

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Zaawansowane teksturowanie wprowadzenie Próbkowanie i rekonstrukcja sygnału Granica Nyquista Filtry do rekonstrukcji Antyaliasing tekstur

Bardziej szczegółowo

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego

Bardziej szczegółowo

Jak tworzyć dobre wizualizacje? Porady do wykorzystania w programie KD Max. MTpartner s.c.

Jak tworzyć dobre wizualizacje? Porady do wykorzystania w programie KD Max. MTpartner s.c. Jak tworzyć dobre wizualizacje? Porady do wykorzystania w programie KD Max MTpartner s.c. 1. Ustawienie widoku 1.1 Zasada mocnych punktów. Jeśli poprowadzimy 2 linie dzielące obraz w pionie na 3 równe

Bardziej szczegółowo

Bartosz Bazyluk POTOK RENDEROWANIA Etapy renderowania w grafice czasu rzeczywistego. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk POTOK RENDEROWANIA Etapy renderowania w grafice czasu rzeczywistego.   Grafika Komputerowa, Informatyka, I Rok POTOK RENDEROWANIA Etapy renderowania w grafice czasu rzeczywistego. http://bazyluk.net/zpsb Grafika Komputerowa, Informatyka, I Rok POTOK RENDEROWANIA W grafice realistycznej stosuje się zwykle podejścia

Bardziej szczegółowo

Gry komputerowe, Informatyka N1, III Rok

Gry komputerowe, Informatyka N1, III Rok Oświetlenie Potok renderowania. Techniki oświetlenia i cieniowania. http://bazyluk.net/dydaktyka Gry komputerowe, Informatyka N1, III Rok POTOK RENDEROWANIA W grafice realistycznej stosuje się zwykle podejścia

Bardziej szczegółowo

PLAN KIERUNKOWY. Liczba godzin: 180

PLAN KIERUNKOWY. Liczba godzin: 180 Klasa V Matematyka Liczba godzin: 180 PLAN KIERUNKOWY Wstępne Wykonuje działania pamięciowo i pisemnie w zbiorze liczb naturalnych Zna i stosuje reguły kolejności wykonywania działań Posługuje się ułamkami

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Polecenie ŚWIATPUNKT - ŚWIATŁO PUNKTOWE

Polecenie ŚWIATPUNKT - ŚWIATŁO PUNKTOWE Polecenie ŚWIATPUNKT - ŚWIATŁO PUNKTOWE Tworzy światło punktowe emitujące światło we wszystkich kierunkach. Lista monitów Wyświetlane są następujące monity. Określ położenie źródłowe : Podaj wartości

Bardziej szczegółowo

Grafika komputerowa i wizualizacja

Grafika komputerowa i wizualizacja Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Model oświetlenia Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obliczenie koloru powierzchni (ang. Lighting) Światło biegnie od źródła światła, odbija

Bardziej szczegółowo

Matematyka z plusem Klasa IV

Matematyka z plusem Klasa IV Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach

Bardziej szczegółowo

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo: WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje

Bardziej szczegółowo

Grafika Komputerowa Wykład 1. Wstęp do grafiki komputerowej Obraz rastrowy i wektorowy. mgr inż. Michał Chwesiuk 1/22

Grafika Komputerowa Wykład 1. Wstęp do grafiki komputerowej Obraz rastrowy i wektorowy. mgr inż. Michał Chwesiuk 1/22 Wykład 1 Wstęp do grafiki komputerowej rastrowy i wektorowy mgr inż. 1/22 O mnie mgr inż. michalchwesiuk@gmail.com http://mchwesiuk.pl Materiały, wykłady, informacje Doktorant na Wydziale Informatyki Uniwersytetu

Bardziej szczegółowo

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

1. Prymitywy graficzne

1. Prymitywy graficzne 1. Prymitywy graficzne Prymitywy graficzne są elementarnymi obiektami jakie potrafi bezpośrednio rysować, określony system graficzny (DirectX, OpenGL itp.) są to: punkty, listy linii, serie linii, listy

Bardziej szczegółowo

Zatem standardowe rysowanie prymitywów wygląda następująco:

Zatem standardowe rysowanie prymitywów wygląda następująco: Instrukcja laboratoryjna 10 Grafika komputerowa 3D Temat: Prymitywy Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny Prymitywy proste figury geometryczne,

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Algorytmy renderingu dla programowalnych jednostek graficznych. prof. dr hab. inż. Maria Pietruszka mgr inż. Dominik Szajerman

Algorytmy renderingu dla programowalnych jednostek graficznych. prof. dr hab. inż. Maria Pietruszka mgr inż. Dominik Szajerman Algorytmy renderingu dla programowalnych jednostek graficznych dyplomant promotor kopromotor Michał Szymczyk prof. dr hab. inż. Maria Pietruszka mgr inż. Dominik Szajerman Cel pracy Przegląd istniejących

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych

1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych 1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych (2,0), (5,6) narysowany przy wykorzystaniu algorytmu Bresenhama

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Grafika komputerowa. Dla DSI II

Grafika komputerowa. Dla DSI II Grafika komputerowa Dla DSI II Rodzaje grafiki Tradycyjny podział grafiki oznacza wyróżnienie jej dwóch rodzajów: grafiki rastrowej oraz wektorowej. Różnica pomiędzy nimi polega na innej interpretacji

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

rgbf<składowa_r,składowa_g,składowa_b,filter>. Dla parametru filter przyjmij kolejno wartości: 0.60, 0.70, 0.80, 0.90, 1.00, np.:

rgbf<składowa_r,składowa_g,składowa_b,filter>. Dla parametru filter przyjmij kolejno wartości: 0.60, 0.70, 0.80, 0.90, 1.00, np.: Temat 2: Przezroczystość. Prostopadłościan, walec i stożek. Przesuwanie i skalowanie obiektów. Omówimy teraz przezroczystość obiektów związaną z ich kolorem (lub teksturą). Za przezroczystość odpowiadają

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Kształcenie w zakresie rozszerzonym. Klasa IV

Kształcenie w zakresie rozszerzonym. Klasa IV Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Grafika realistyczna. Oświetlenie globalne ang. global illumination. Radosław Mantiuk

Grafika realistyczna. Oświetlenie globalne ang. global illumination. Radosław Mantiuk Oświetlenie globalne ang. global illumination Radosław Mantiuk Generowanie obrazów z uwzględnieniem oświetlenia globalnego Cel oświetlenia globalnego obliczenie drogi promieni światła od źródeł światła

Bardziej szczegółowo

Rendering sceny z modelem węzła

Rendering sceny z modelem węzła Rendering sceny z modelem węzła Po zdefiniowaniu materiałów i tekstur na powierzchniach elementów... rozpoczyna się żmudny proces dobierania typu i parametrów oświetlenia (w tym kierunku padania światła

Bardziej szczegółowo

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek).

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). SPRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). Dokończ zdanie. Wybierz stwierdzenie A albo

Bardziej szczegółowo

Karty graficzne możemy podzielić na:

Karty graficzne możemy podzielić na: KARTY GRAFICZNE Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest odbiór i przetwarzanie otrzymywanych od komputera

Bardziej szczegółowo

MATEMATYKA. klasa IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA. klasa IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2017-09-01 MATEMATYKA klasa IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. 1) Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Cieniowanie Bardzo ważnym elementem sceny jest oświetlenie. To właśnie odpowiednie dobranie oświetlenia sprawia,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 3).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2012 Instrukcja dla zdającego 1. Sprawdź, czy arkusz ćwiczeniowy zawiera 28 stron (zadania 1 32). 2. Odpowiedzi

Bardziej szczegółowo

Grafika komputerowa. Model oświetlenia. emisja światła przez źródła światła. interakcja światła z powierzchnią. absorbcja światła przez sensor

Grafika komputerowa. Model oświetlenia. emisja światła przez źródła światła. interakcja światła z powierzchnią. absorbcja światła przez sensor Model oświetlenia emisja światła przez źródła światła interakcja światła z powierzchnią absorbcja światła przez sensor Radiancja radiancja miara światła wychodzącego z powierzchni w danym kącie bryłowym

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Cieniowanie Bardzo ważnym elementem sceny jest oświetlenie. To właśnie odpowiednie dobranie oświetlenia sprawia,

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

OpenGL przezroczystość

OpenGL przezroczystość OpenGL przezroczystość W standardzie OpenGL efekty przezroczystości uzyskuje się poprzez zezwolenie na łączenie kolorów: Kolor piksela tworzy się na podstawie kolorów obiektu przesłanianego i przesłaniającego

Bardziej szczegółowo

Wyświetlanie terenu. Clipmapy geometrii

Wyświetlanie terenu. Clipmapy geometrii Wyświetlanie terenu Clipmapy geometrii Rendering terenu Łatwy do zaimplementowania Darmowe zestawy danych Liczne zastosowania: Wizualizacje geograficzne Symulatory Gry Ogromne ilości danych Gry Od 2x2

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo