WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: Matematyka klasa III ZSZ. Wymagania podstawowe. (ocena dostateczna)
|
|
- Amelia Gajewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Nauczyciel: Lucyna Gonsior WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: Matematyka klasa III ZSZ Dział programowy Wymagania konieczne (ocena dopuszczająca) Wymagania podstawowe (ocena dostateczna) Wymagania rozszerzające (ocena dobra) Wymagania dopełniające (ocena bardzo dobra) 1. Wyrażenia algebraiczne. Proporcjonalność odwrotna. podaje proste przykłady wyrażeń algebraicznych, odczytuje i zapisuje proste wyrażenia algebraiczne, oblicza wartości liczbowe nieskomplikowanych wyrażeń algebraicznych, zna wzory skróconego mnożenia. odczytuje i zapisuje wyrażenia algebraiczne oraz oblicza ich wartości liczbowe, dodaje i odejmuje proste sumy algebraiczne, wykonuje mnożenie sumy algebraicznej przez liczbę wymierną, wykonuje proste mnożenie sum algebraicznych, stosuje wzory skróconego mnożenia w prostych przykładach, wykonuje działania na nieskomplikowanych wyrażeniach algebraicznych. poprawnie odczytuje i zapisuje wyrażenia algebraiczne oraz oblicza ich wartości liczbowe, przekształca nieskomplikowane wyrażenia algebraiczne, w tym ze wzorami skróconego mnożenia, wykonuje działania na sumach i jednomianach z uwzględnieniem kolejności wykonywania działań, przekształca proste wzory matematyczne, fizyczne i chemiczne, opisuje treści zadania za pomocą wyrażenia algebraicznego, sprawnie wykonuje działania na sumach algebraicznych i jednomianach oraz przedstawia ich wynik w najprostszej postaci, przekształca wzory matematyczne, fizyczne i chemiczne, sprawnie stosuje wzory skróconego mnożenia, sprawnie rozkłada sumy algebraiczne na czynniki poprzez wyłączenie wspólnego czynnika poza nawias, grupowanie wyrazów i stosowanie wzorów skróconego mnożenia, biegle oblicza wartość liczbową wyrażeń
2 rozkłada sumy algebraiczne na czynniki przez wyłączenie wspólnego czynnika poza nawias i stosując wzory skróconego mnożenia. algebraicznych, poprawnie opisuje treść zadania za pomocą wyrażenia algebraicznego, opisuje sytuacje praktyczne za pomocą wyrażeń algebraicznych złożonych. 2. Funkcja kwadratowa. podaje przykłady funkcji kwadratowej w postaci ogólnej, odczytuje ze wzoru współczynniki funkcji kwadratowej, oblicza wartość jednomianu kwadratowego dla danego argumentu (proste przypadki), szkicuje wykres jednomianu kwadratowego (proste przypadki). podaje przykłady funkcji kwadratowej w postaci ogólnej, odczytuje ze wzoru współczynniki funkcji kwadratowej, oblicza wartość jednomianu rozpoznaje jednomiany kwadratowe, określa kierunek ramion paraboli bez rysowania wykresu jednomianu kwadratowego, odczytuje z wykresu miejsce zerowe jednomianu kwadratowego. oblicza współrzędne wierzchołka paraboli będącej wykresem funkcji kwadratowej, oblicza wyróżnik funkcji kwadratowej, szkicuje wykres funkcji kwadratowej w postaci określa dziedzinę i zbiór wartości jednomianu kwadratowego, oblicza ze wzoru wartość jednomianu kwadratowego dla danego argumentu, sprawdza, czy punkt należy do wykresu jednomianu kwadratowego, szkicuje wykres jednomianu kwadratowego, określa monotoniczności jednomianu kwadratowego. funkcje kwadratową w postaci ogólnej zapisuje w postaci kanonicznej, opisuje jednomian kwadratowy za pomocą wzoru, odczytuje, dla jakich argumentów jednomian kwadratowy przyjmuje wartości dodatnie, a dla jakich ujemne. interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci kanonicznej oraz w postaci ogólnej, szkicuje wykres funkcji kwadratowej w postaci ogólnej, oblicza największą lub najmniejszą wartość funkcji
3 kwadratowego dla danego argumentu (proste przypadki), szkicuje wykres jednomianu kwadratowego (proste przypadki). odczytuje z wykresu miejsca zerowe funkcji kwadratowej, podaje miejsca zerowe funkcji kwadratowej danej w postaci iloczynowej. określa liczbę pierwiastków równania kwadratowego. określa liczbę pierwiastków równania kwadratowego, rozwiązuje proste równanie kwadratowe. sprawdza, czy dana liczba jest rozwiązaniem podanej nierówności, zaznacza na osi liczbowej zbiór rozwiązań nierówności kwadratowej, rozwiązuje proste nierówności kwadratowe. kanonicznej, określa kierunek ramion paraboli bez szkicowania wykresu funkcji kwadratowej. oblicza miejsca zerowe funkcji kwadratowej (o ile istnieją), przedstawia (o ile to możliwe) funkcję kwadratową w postaci iloczynowej. rozwiązuje równanie kwadratowe niezupełne typu: ax 2 +c= 0, ax 2 + bx = 0. rozwiązuje równanie kwadratowe niezupełne typu: ax 2 +c =0, ax 2 +bx=0, stosuje w prostych przypadkach równania do rozwiązywania zadań tekstowych. rozwiązuje nierówności kwadratowe, zapisuje zbiór rozwiązań nierówności kwadratowej, używając symboli z teorii określa zbiór wartości funkcji kwadratowej w przedziale, oblicza ze wzoru wartość funkcji kwadratowej dla danego argumentu, oblicza współrzędne punktu przecięcia wykresu funkcji kwadratowej z osią Y, odczytuje z wykresu niektóre własności funkcji (maksymalne przedziały, w których funkcja rośnie, maleje, punkty, w których funkcja przyjmuje w danym przedziale wartość największą lub najmniejszą). bada, czy daną funkcję kwadratową można przedstawić w postaci iloczynowej, bada liczbę miejsc zerowych funkcji kwadratowej, interpretuje współczynniki występujące we wzorze funkcji kwadratowej kwadratowej zapisanej w postaci ogólnej, oblicza najmniejszą i największą wartość funkcji kwadratowej w przedziale. stosuje do rozwiązywania zadań poznaną wiedzę dotyczącą funkcji kwadratowej i jej własności. rozwiązuje równania kwadratowe. stosuje równania kwadratowe do rozwiązywania zadań tekstowych. rozwiązuje zadania tekstowe z wykorzystaniem nierówności kwadratowej. wykorzystuje własności funkcji kwadratowej do interpretacji zagadnień geometrycznych i fizycznych, także osadzonych w kontekście praktycznym. ma opanowany pełny zakres wiedzy i umiejętności.
4 rozwiązuje elementarne zadania praktyczne z zastosowaniem własności funkcji kwadratowej. do rozwiązywania prostych zbiorów. rozwiązuje proste zadania praktyczne z zastosowaniem funkcji kwadratowej. do rozwiązywania typowych samodzielnie rozwiązuje zadania na ocenę dostateczną. w postaci iloczynowej (o ile istnieje), oblicza współrzędne punktów przecięcia paraboli z osiami układu współrzędnych oraz współrzędne jej wierzchołka. stosuje wzory skróconego mnożenia na kwadrat sumy i kwadrat różnicy do rozwiązywania równań kwadratowych. stosuje wzory skróconego mnożenia na kwadrat sumy i kwadrat różnicy do rozwiązywania równań kwadratowych, rozwiązuje trudniejsze równania kwadratowe. rozwiązuje proste zadania prowadzące do nierówności kwadratowej. rozwiązuje zadania praktyczne z zastosowaniem własności funkcji kwadratowej w sytuacjach typowych.
5 do rozwiązywania 3. Trygonometria. zna twierdzenie Pitagorasa, wskazuje trójkąty prostokątne w figurze. zna twierdzenie odwrotne do twierdzenia Pitagorasa. zna wzór na obliczanie długości przekątnej kwadratu, zna wzór na obliczanie długości wysokości trójkąta równobocznego, oblicza długość przeciwprostokątnej, korzystając z twierdzenia Pitagorasa. Pitagorasa w prostych zadaniach o trójkątach. określa sinus, cosinus, tangens kąta ostrego. oblicza długość przyprostokątnych, korzystając z twierdzenia Pitagorasa, wyznacza odległości między dwoma punktami. sprawdza, czy trójkąty o danych bokach są prostokątne. zna wzór na obliczanie pola trójkąta równobocznego, wyprowadza wzór na obliczanie długości przekątnej kwadratu, oblicza długości przekątnych kwadratów, znając długości boków, oblicza wysokości lub pola trójkątów równobocznych, znając długości ich boków. rozwiązuje zadania tekstowe związane z przekątnymi kwadratów i wysokościami trójkątów równobocznych. wyprowadza wzór na obliczanie długości wysokości trójkąta równobocznego, oblicza wysokości lub pola trójkątów równobocznych, znając długości ich boków, oblicza długości boków lub pola kwadratów, znając długości ich przekątnych, oblicza długości boków lub pola trójkątów równobocznych, znając ich wysokości. sprawdza, czy trójkąty o danych bokach są prostokątne, jeżeli długości boków wyrażone są liczbami niewymiernymi, odwrotne do twierdzenia Pitagorasa w zadaniach tekstowych. Pitagorasa w zadaniach rachunkowych. odwrotne do twierdzenia Pitagorasa w zadaniach tekstowych. oblicza długość boku lub pole trójkąta równobocznego, znając jego wysokość, rozwiązuje zadania tekstowe związane z przekątną kwadratu i wysokością trójkąta równobocznego. Pitagorasa w zadaniach rachunkowych. oblicza wartość funkcji sinus lub cosinus obu kątów ostrych trójkąta prostokątnego o danych przyprostokątnych, rozwiązuje zadania
6 zna wartości funkcji trygonometrycznych dla katów: 30, 45, 60. odczytuje z tablic kąt o danej wartości funkcji trygonometrycznej, odczytuje z tablic wartości funkcji trygonometrycznych danego kąta. określa funkcje sinus, cosinus, tangens kąta ostrego w trójkątach prostokątnych, zna wartości funkcji trygonometrycznych dla katów: 30, 45, 60, wykonuje proste obliczenia z wykorzystaniem funkcji trygonometrycznych. zna zależności między funkcją sinus i cosinus tego samego kąta. zna związki między funkcjami trygonometrycznymi tego samego kąta. wykorzystuje definicje i wyznacza wartości funkcji sinus, cosinus, tangens kątów ostrych. zna wartości funkcji trygonometrycznych dla katów: 30, 45, 60 i wykorzystuje je w zadaniach. odczytuje z tablic i oblicza wartości funkcji trygonometrycznych za pomocą kalkulatora. wykonuje rachunki z wykorzystaniem funkcji trygonometrycznych, oblicza miarę kąta ostrego, dla której funkcja trygonometryczna przyjmuje daną wartość. zna i stosuje zależności między sinusem i cosinusem tego samego kąta. zna i stosuje podstawowe tożsamości trygonometryczne: sin 2 + cos 2 = 1, oblicza długości boków lub pola kwadratów, znając długości ich przekątnych. Pitagorasa w zadaniach o trójkątach, prostokątach, trapezach, rombach, Pitagorasa w zadaniach rachunkowych i konstrukcyjnych. oblicza wartość funkcji sinus, cosinus, tangens kąta ostrego w trójkącie prostokątnym o danych długościach boków trójkąta, oblicza wartość funkcji tangens obu kątów ostrych trójkąta prostokątnego o danych przyprostokątnych. oblicza wartości funkcji trygonometrycznych kąta ostrego. korzysta z przybliżonych wartości funkcji trygonometrycznych odczytanych z tablic. tekstowe. oblicza z definicji wartości funkcji trygonometrycznych kąta o mierze 30, 45, 60, wyznacza miarę kąta, gdy dana jest wartość funkcji trygonometrycznej tego kąta. korzysta z przybliżonych wartości funkcji trygonometrycznych odczytanych z tablic lub obliczonych za pomocą kalkulatora w zadaniach tekstowych. rozwiązuje typowe zadania wymagające ciekawych pomysłów i metod. wyznacza wartości funkcji trygonometrycznych kąta na podstawie jednej z nich. dowodzi tożsamości trygonometryczne. oblicza w zadaniu miarę kąta ostrego, dla której funkcja trygonometryczna przyjmuje daną wartość.
7 zna zależności między funkcjami trygonometrycznymi tego samego kąta. oblicza pole trójkąta, równoległoboku, jeśli dane są długości dwóch kolejnych boków i miara kąta zawartego między nimi, wykonuje proste rachunki z wykorzystaniem funkcji trygonometrycznych. do rozwiązywania prostych sin tg, tg ctg = 1. cos stosuje proste zależności między funkcjami trygonometrycznymi. oblicza pola i obwody figur geometrycznych z wykorzystaniem funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym, wykonuje rachunki z wykorzystaniem funkcji trygonometrycznych. do rozwiązywania typowych oblicza wartość funkcji sinus, cosinus, tangens kąta ostrego w trójkącie prostokątnym o danych długościach boków trójkąta, oblicza sinusy lub cosinusy kątów, jakie te przekątne tworzą z bokami. oblicza wartości pozostałych funkcji trygonometrycznych, mając daną wartość funkcji sinus albo wartość funkcji cosinus. przekształca proste wyrażenia z zastosowaniem poznanych tożsamości trygonometrycznych. stosuje związki między funkcjami trygonometrycznymi w dowodzeniu prostych tożsamości trygonometrycznych. stosuje funkcje trygonometryczne do obliczania nachylenia stoku, kąta padania promieni słonecznych, kąta wzniesienia, stosuje funkcje trygonometryczne do obliczeń praktycznych: np. oblicza długość krawędzi dachu lub jego wysokość. ma opanowany pełny zakres wiedzy i umiejętności. rozwiązuje zadania geometryczne z wykorzystaniem funkcji trygonometrycznych kąta ostrego w trójkącie
8 prostokątnym. do rozwiązywania 4. Stereometria. wskazuje na modelu prostopadłościanu proste równoległe, prostopadłe i skośne. wskazuje na modelu kąt dwuścienny. wskazuje na modelu graniastosłupa krawędzie, ściany i wierzchołki. rysuje siatki graniastosłupów. wskazuje na modelu ostrosłupa krawędzie, ściany i wierzchołki, rysuje siatki ostrosłupów. wskazuje i zaznacza na modelu i rysunku podstawowe elementy walca, stożka i kuli, zaznacza na modelu graniastosłupa proste prostopadłe, równoległe. rozpoznaje i nazywa w graniastosłupach i ostrosłupach kąty między odcinkami, rozpoznaje i nazywa w walcach i w stożkach kąt między odcinkami. oblicza sumę długości krawędzi graniastosłupa. oblicza pole i objętość prostopadłościanu i sześcianu, wskazuje przekroje graniastosłupów. oblicza sumę długości krawędzi ostrosłupa, wskazuje na modelu graniastosłupa ściany prostopadłe i równoległe. zaznacza na rysunku kąt liniowy kąta dwuściennego, zaznacza kąt między odcinkami i płaszczyznami w graniastosłupach, ostrosłupach, walcach i stożkach. oblicza pola przekrojów graniastosłupów. oblicza długości odcinków w graniastosłupach, stosując twierdzenie Pitagorasa, oblicza pola i objętości graniastosłupów. oblicza długości odcinków w ostrosłupach, stosując znajduje rzut prostokątny punktu (prostej) na płaszczyznę. zaznacza kąt nachylenia prostej do płaszczyzny, korzystając z jego definicji. rozwiązuje zadanie tekstowe związane z sumą długości krawędzi. stosuje trygonometrię do obliczania pól i objętości graniastosłupów. rozwiązuje zadanie tekstowe związane z sumą długości krawędzi, stosuje trygonometrię do obliczania pól i objętości ostrosłupa. oblicza przekroje walca, stożka i kuli, stosuje trygonometrię do
9 wykonuje proste obliczenia rachunkowe związane z poznanymi bryłami. do rozwiązywania prostych wskazuje przekroje ostrosłupów. oblicza pole powierzchni i objętość brył, gdy zna potrzebne wielkości, wskazuje przekroje walca, stożka i kuli. do rozwiązywania typowych twierdzenie Pitagorasa, oblicza pola i objętości w ostrosłupach, oblicza pola przekrojów ostrosłupów. oblicza pole powierzchni i objętość brył obrotowych z wykorzystaniem twierdzenia Pitagorasa. w zadaniach. obliczania pól i objętości walców i stożków. ma opanowany pełny zakres wiedzy i umiejętności. 5. Statystyka odczytuje dane przedstawione w postaci diagramów, wykresów i tabel (proste przypadki). oblicza średnią arytmetyczną, średnią ważoną i medianę (proste przypadki). przedstawia zebrane dane empiryczne w postaci diagramu słupkowego, tabeli, wykresu. do rozwiązywania prostych interpretuje dane przedstawione w postaci diagramów, wykresów i tabel (proste przypadki). oblicza średnią arytmetyczną, średnią ważoną i medianę. przedstawia dane w postaci diagramu procentowego prostokątnego. do rozwiązywania typowych odczytuje dane przedstawione w postaci diagramów, wykresów i tabel, interpretuje dane przedstawione w postaci diagramów, wykresów i tabel. oblicza średnią arytmetyczną, średnią ważoną i medianę (także w przypadku danych pogrupowanych). zbiera, porządkuje i opracowuje dane empiryczne, sprawnie odczytuje dane przedstawione w postaci diagramów, wykresów i tabel, sprawnie interpretuje dane przedstawione w postaci diagramów, wykresów i tabel. sprawnie oblicza średnią arytmetyczną, średnią ważoną i medianę (także w przypadku danych pogrupowanych). przedstawia dane w postaci diagramu procentowego kołowego.
10 przedstawia dane w postaci różnych diagramów przedstawia dane, odpowiednio je grupując. w zadaniach. ma opanowany pełny zakres wiedzy i umiejętności. Wymagania edukacyjne z matematyki zasady oceniania 1. W roku szkolnym 2016/2017 w klasie 3w stosuje się średnią ważoną. Zgodnie ze statutem ustala się następujący system wag: Formy pracy ucznia podlegająca ocenie Waga Praca i aktywność na lekcji, prowadzenie dokumentacji pracy na lekcji, praca domowa, umiejętność czytania ze zrozumieniem, posiadanie uczniowskiego wyposażenia (książka, zeszyt itp.) 1 Odpowiedź ustna, kartkówka, praca projektowa, twórcze rozwiązywanie problemów 2 Prace klasowe, sprawdziany, testy, badanie wyników nauczania, sukcesy w konkursach przedmiotowych 3 2. Graniczną wartością, od której ustala się wyższą śródroczną i roczną ocenę klasyfikacyjną, jest 0,6, tzn. uczeń otrzymuje: ocenę celujący gdy średnia ważona jest równa bądź wyższa od 5,6; ocenę bardzo dobry gdy średnia ważona jest równa bądź wyższa od 4,6; ocenę dobry gdy średnia ważona jest równa bądź wyższa od 3,6; ocenę dostateczny gdy średnia ważona jest równa bądź wyższa od 2,6; ocenę dopuszczający gdy średnia ważona jest równa bądź wyższa od 1,6; ocenę niedostateczny gdy średnia ważona jest niższa od 1,6. 3. Stosuje się znaki "+" i " " w bieżącym ocenianiu. Znak "+" oznacza osiągnięcia ucznia bliższe wyższej kategorii wymagań, a znak "-" niższej kategorii wymagań. Stosuje się znaki plus "+" oraz minus "-" za nieprzygotowanie do lekcji, aktywność, zadania domowe lub ich brak oraz cząstkowe odpowiedzi. Za trzy plusy uczeń uzyskuje ocenę bdb z wagą 1, a za trzy minusy ocenę ndst z wagą Ogólne kryteria ocen z matematyki 1) stopień celujący otrzymuje uczeń, który opanował treści i umiejętności o wysokim stopniu trudności w zakresie treści określonych programem nauczania dla danej klasy; 2) stopień bardzo dobry otrzymuje uczeń, który opanował treści i umiejętności określone na poziomie wymagań dopełniającym, czyli:
11 a) opanował pełny zakres wiedzy i umiejętności określony programem nauczania przedmiotu w danej klasie, b) sprawnie posługuje się zdobytymi wiadomościami, rozwiązuje samodzielnie problemy teoretyczne i praktyczne ujęte programem nauczania, c) potrafi zastosować posiadaną wiedzę i umiejętności do rozwiązania zadań problemów w nowych sytuacjach; 3) stopień dobry otrzymuje uczeń, który opanował poziom wymagań rozszerzających, czyli: a) poprawnie stosuje wiedzę i umiejętności, b) rozwiązuje samodzielnie typowe zadania teoretyczne i praktyczne; 4) stopień dostateczny otrzymuje uczeń, który opanował poziom wymagań podstawowych, czyli: a) opanował wiadomości i umiejętności stosunkowo łatwe, użyteczne w życiu codziennym i absolutnie niezbędne do kontynuowania nauki na wyższym poziomie 5) stopień dopuszczający otrzymuje uczeń, który opanował poziom wymagań koniecznych, czyli: a) opanował wiadomości i umiejętności umożliwiające świadome korzystanie z lekcji, b) rozwiązuje z pomocą nauczyciela podstawowe zadania teoretyczne i praktyczne; 6) stopień niedostateczny otrzymuje uczeń, który nie opanował poziomu wymagań koniecznych. Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz: nie radzi sobie ze zrozumieniem najprostszych pojęć, algorytmów i twierdzeń; popełnia rażące błędy w rachunkach; nie potrafi (nawet przy pomocy nauczyciela, który między innymi zadaje pytania pomocnicze) wykonać najprostszych ćwiczeń i zadań; nie wykazuje najmniejszych chęci współpracy w celu uzupełnienia braków i nabycia podstawowej wiedzy i umiejętności. 5. Progi procentowe ocen przy wystawianiu ocen z prac pisemnych: 98% - 100% - stopień celujący 90% - 97,99% - stopień bardzo dobry 75% - 89,99% - stopień dobry 50% - 74,99% - stopień dostateczny 30% - 49,99% - stopień dopuszczający 0% - 29,99% - stopień niedostateczny 6. Zasady przeprowadzania prac pisemnych: 1) Kartkówka obejmująca materiał z trzech ostatnich lekcji lub zadanie domowe nie musi być zapowiedziana, kartkówka trwa do 15 minut, 2) Praca klasowa obejmująca materiał całego działu musi być zapowiedziana z co najmniej tygodniowym wyprzedzeniem i poprzedzona lekcją powtórzeniową; 3) Termin pracy klasowej powinien być uzgodniony z klasą, aby nie pokrywał się z terminem już zapowiedzianej pracy pisemnej; 4) Pracę klasową uczniowie piszą przez całą lekcję; 5) Wewnątrzszkolne badanie wyników nauczania to zapowiedziany z co najmniej miesięcznym wyprzedzeniem pisemny sprawdzian, obejmujący wszystkie wiadomości i umiejętności ucznia na danym etapie edukacyjnym. Czas trwania od minut; 6) Uczeń, który opuścił klasówkę (pracę klasową, sprawdzian, test, sprawdzian diagnostyczny, badanie wyników nauczania i in.) z przyczyn usprawiedliwionych, jest zobowiązany ją napisać w ciągu dwóch tygodni od dnia powrotu do szkoły. Termin i czas wyznacza nauczyciel tak, aby nie zakłócać procesu nauczania pozostałych uczniów. a) w przypadku ponownej nieobecności ucznia w ustalonym terminie uczeń pisze pracę klasową (lub inne pisemne sprawdzenie wiadomości) po powrocie do szkoły. Zaliczenie polega na napisaniu pracy klasowej (lub innego pisemnego sprawdzenia wiadomości) o tym samym stopniu trudności b) nieobecność nieusprawiedliwiona ucznia na klasówce traktowana jest jako odmowa odpowiedzi w formie pisemnej i równoznaczna z wystawieniem mu oceny ndst; c) brak zaliczenia pracy pisemnej z przyczyn usprawiedliwionych nauczyciel oznacza wpisując n w rubrykę ocen. Po upływie dwóch tygodni, od pojawienia się takiego wpisu w dzienniku lub powrotu ucznia po dłuższej nieobecności do szkoły i niewykorzystaniu przez ucznia szansy na napisanie pracy, nauczyciel wpisuje w miejsce n ocenę ndst.
12 7. Zasady poprawiania prac pisemnych: 1) Uczeń może poprawić ocenę z pracy klasowej w nieprzekraczalnym terminie dwóch tygodni. Uczeń, który otrzymał ocenę niedostateczną z pracy klasowej jest zobowiązany ją poprawić; 2) Ocena uzyskana ze sprawdzianu lub testu może być poprawiona na takich samych zasadach jak ocena z pracy klasowej; 3) Krótkie sprawdziany kartkówki nie podlegają obowiązkowej poprawie; 4) Uczeń może poprawić ocenę z odpowiedzi ustnej podczas kolejnej odpowiedzi ustnej lub w formie krótkiej wypowiedzi pisemnej; 5) Na lekcji powtórzeniowej uczeń może poprawić kartkówki dotyczące aktualnie powtarzanego materiału; 6) Ocena uzyskana za wykonane ćwiczenie lub z pracy domowej może zostać poprawiona w podobnej formie w terminie uzgodnionym z nauczycielem; 7) Ocena uzyskana z poprawy jest wpisywana jako kolejna w dzienniku; 8) Przy poprawianiu oceny obowiązuje zakres materiału, jaki obowiązywał w dniu pisania sprawdzianu, kartkówki lub odpowiedzi ustnej; 9) Każda poprawa oceny następuje po uzgodnieniu tego faktu z nauczycielem; 10) Przyjmuje się, że w przypadku poprawiania oceny, ocena z poprawy ma taką samą wagę jak ocena poprawiana. 11) Jeśli uczeń z poprawy otrzymał drugą ocenę niedostateczną, to przy klasyfikacji traktuje się to jako jedną ocenę niedostateczną. 8. Uczniowi przysługuje jedno nieprzygotowanie (np.) w ciągu okresu bez podania przyczyny, z wyłączeniem zajęć, na których odbywają się klasówki. Uczeń zgłasza nieprzygotowanie na początku lekcji i fakt ten zostaje odnotowany przez nauczyciela w dzienniku za pomocą skrótu "np."
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
l. 4bA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZAES OZSZEZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); wymagania rozszerzające (dobry);
1 wyznacza współrzędne punktów przecięcia prostej danej
Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA
Rok szkolny 2018/19 klasa 3w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA opisać za pomocą wyrażeń algebraicznych związki między
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I ZSZ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I ZSZ dopuszczający dostateczny dobry bardzo dobry celujący LICZBY RZECZYWISTE potrafi: -dopasować liczbę do odpowiedniego zbioru -wykonać
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.)
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Zastosowanie przez nauczyciela wcześniej opisanych metod nauczania, form pracy i środków dydaktycznych oraz korzystanie z niniejszego programu nauczania
WYMAGANIA NA OCENĘ 12. Równania kwadratowe Uczeń demonstruje opanowanie umiejętności ogólnych rozwiązując zadania, w których:
str. 1 / 1. Równania kwadratowe sprawdza, czy liczba jest pierwiastkiem równania, po uporządkowaniu równania określa jego rodzaj (zupełne, niezupełne), rozwiązuje proste uporządkowane równania zupełne
Wymagania edukacyjne z matematyki. w Zasadniczej Szkole Zawodowej
Ogólne kryteria oceny z matematyki Ocena niedostateczna Otrzymuje ją uczeń, który: Wymagania edukacyjne z matematyki w Zasadniczej Szkole Zawodowej nie opanował elementarnych wiadomości wynikających z
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
w najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14
z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,
Funkcja kwadratowa Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Zawód: FRYZJER, STOLARZ, MECHANIK POJAZDÓW SAMOCHODOWYCH, BLACHARZ SAMOCHODOWY I inne Rok szkolny 2012/2013 Przedmiot: MATEMATYKA Numer programu
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry);
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
ZASADNICZEJ SZKOLE ZAWODOWEJ
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych (semestralnych) ocen klasyfikacyjnych z przedmiotu matematyka w ZASADNICZEJ SZKOLE ZAWODOWEJ w Regionalnym Centrum Edukacji
Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA
. Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu matematyka w zakresie podstawowym dla zasadniczej szkoły zawodowej. Klasa I
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu matematyka w zakresie podstawowym dla zasadniczej szkoły zawodowej Klasa I Temat Wymagania konieczne (ocena dopuszczająca) Wymagania podstawowe (ocena
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu matematyka w zakresie podstawowym dla szkoły branżowej stopnia I
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu matematyka w zakresie podstawowym dla szkoły branżowej stopnia I Temat Wymagania konieczne (ocena dopuszczająca) Wymagania podstawowe (ocena dostateczna)
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
ZASADNICZA SZKOŁA ZAWODOWA
M ATE M ATY K A ZASADNICZA SZKOŁA ZAWODOWA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Dział programowy : LICZBY I WYRAŻENIA Ocenę niedostateczną uczeń uzyska, jeśli nie spełnia wymagań koniecznych: - nie
Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era
Wymagania edukacyjne z matematyki dla Zasadniczej Szkoły Zawodowej Opracowanie: Dorota Ponczek, Karolina Wej; Wyd. Nowa Era Ocena: dopuszczający dostateczny dobry bardzo dobry celujący Funkcja liniowa
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu matematyka w zakresie podstawowym dla klasy pierwszej zasadniczej szkoły zawodowej
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu matematyka w zakresie podstawowym dla klasy pierwszej zasadniczej szkoły zawodowej Temat konieczne podstawowe rozszerzające dopełniające wykraczające
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)
Rok szkolny 2018/19 klasa 4bB oraz 4iA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania
Plan wynikowy z rozkładem materiału
Plan wynikowy z rozkładem materiału Zamieszczone poniżej zestawienie zagadnień omawianych na lekcjach matematyki to propozycja połączenia planu wynikowego z rozkładem materiału. Dzięki takiemu rozwiązaniu
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
MATEMATYKA Szkoła Branżowa
Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA rok szkolny 2018/2019 MATEMATYKA Szkoła Branżowa I. Formy i metody sprawdzania i oceniania osiągnięć ucznia: 1. Praca klasowa
Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
DZIAŁ II: PIERWIASTKI
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych
WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12
WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA rok szkolny 2017/2018 Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 1 Liczby rzeczywiste i działania na nich liczby naturalne na osi liczbowej. wykonywać
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz
Przedmiotowy system oceniania z matematyki w ZSZ Klasa I
Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Dopuszczający Uczeń z potrafi : -zamienić ułamek zwykły na dziesiętny i odwrotnie -rozróżnia liczby wymierne i niewymierne -zna definicję liczby
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
Wymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie
1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM KLASA II DZIAŁ I POTĘGI I PIERWIASTKI Poziomy wymagań edukacyjnych: K - konieczny
Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie
ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ
ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY VI SZKOŁY PODSTAWOWEJ Materiał przedstawia Zasady Oceniania z matematyki dla klasy VI szkoły podstawowej.
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI
Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
Wymagania edukacyjne na poszczególne oceny
Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE