Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 12. Wykorzystanie transformacji Radona i Hougha.
|
|
- Maria Zuzanna Milewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 12 Wykorzystanie transformacji Radona i Hougha. Cel ćwiczenia Celem ćwiczenia jest nabycie umiejętności wykorzystywania transformacji Rodona i Hougha do rekonstrukcji obrazów i wykrywania linii. dr inż Robert Kazała
2 Wprowadzenie Sinogram jest tablicą danych uzyskanych podczas tomografii komputerowej (np. PET). Uzyskuje się go poprzez zapisanie w wierszach tabeli kolejnych wyników projekcji (każda projekcja wykonywana jest pod innym kątem). Nazwa 'sinogram' wywodzi się od sinusoidalnego wyglądu zmian intensywności przedstawionych w tej tablicy. Sinogram nie jest wykorzystywany do diagnostyki, na jego podstawie w wyniku procesu rekonstrukcji uzyskiwany jest obraz przekroju badanego obiektu. Do odtwarzania wykorzystywana jest odwrotna transformata Radona. Sinogram mozna utworzyć dla dowolnego zarejestrowanego obrazu wykonując transformację Radona. W celu rekonstrukcji obrazu wykorzystywane jest odwrotne przekształcenie Radona. Obrazy testowe - Shepp-Logan phantom W celu ułatwienia rozwoju i zapewnienia możliwości porównania algorytmów rekonstrukcji wykorzystuje się specjalne obrazy testowe o znanych właściwościach. Jednym z najczęściej wykorzystywanych jest Shepp-Logan phantom przypominający przekrój ludzkiej głowy, zawierający elipsy z różnymi stopniami pochłaniania. Shepp Logan phantom Radon transform Inverse Radon transform Transformacja Radona Funkcje modułu scikits-image realizujące prostą i odwrotną transformatę Radona. radon skimage.transform.radon(image, theta=none) Funkcja wyliczająca transformatę Radona obrazu dla określonych kątów projekcji.
3 Parametry wejściowe: image obraz wejściowy theta kąty projekcji w stopniach (domyslnie np.arange(180)) Wyjście : output transformata Radona (sinogram) iradon skimage.transform.iradon(radon_image, theta=none, output_size=none, filter='ramp', interpolation='linear') Funkcja wyznaczająca odwrotną transformatę Radona, wykorzystująca algorytm filtrowanej projekcji wstecznej (ang. filtered back projection algorithm) Parametry wejściowe: radon_image obraz zawierający sinogram, w którym każda kolumna odpowiada projekcji wzdłuż innego kąta, theta kąty pod jakimi dokonywana jest rekonstrukcja, domyślnie od 1 do 180 stopni output_size liczba wierszy i kolumn w rekonstruowanym obrazie, filter filtr stosowany do filtrowania w dziedzinie częstotliwości, dostępne filtry to ramp, shepp-logan, cosine, hamming, hann, interpolation metoda interpolacji stosowana w rekonstrukcji, dostępne metody to nearest, linear. Wyjście : output zrekonstruowany obraz frt2 skimage.transform.frt2(a) Funkcja wyliczająca 2-wymiarową skończoną transformatę Radona (FRT) dla tablicy liczb całkowitych o rozmiarze nxn. Parametry wejściowe: a tablica liczb całkowitych o wymiarach nxn Wyjście: tablica zawierająca współczynniki transformaty o wymiarach (n+1) x n.
4 ifrt2 skimage.transform.ifrt2(a) Funkcja wyliczająca 2-wymiarową odwrotną skończoną transformatę Radona dla tablicy o wymiarach (n+1) x n. Parametry wejściowe: a tablica wejściowa o wymiarach (n+1) x n Wyjście : output - tablica o wymiarach nxn Przykład Przykład pokazujący wykorzystanie transformat Radona. import matplotlib.pyplot as plt from skimage.io import imread from skimage import data_dir from skimage.transform import radon, iradon image = imread(data_dir + "/phantom.png", as_grey=true) #image = rescale(image, scale=0.4) plt.figure(figsize=(8, 8.5)) plt.subplot(221) plt.title("original"); plt.imshow(image, cmap=plt.cm.greys_r) plt.subplot(222) projections = radon(image, theta=[0, 45, 90]) plt.plot(projections); plt.title("projections at\n0, 45 and 90 degrees") plt.xlabel("projection axis"); plt.ylabel("intensity"); projections = radon(image) plt.subplot(223) plt.title("radon transform\n(sinogram)"); plt.xlabel("projection axis"); plt.ylabel("intensity"); plt.imshow(projections) reconstruction = iradon(projections) plt.subplot(224) plt.title("reconstruction\nfrom sinogram") plt.imshow(reconstruction, cmap=plt.cm.greys_r) plt.subplots_adjust(hspace=0.4, wspace=0.5) plt.show()
5 Transformacja Hougha Transformacja Hougha (ang. Hough transform) jest szczególnym przypadkiem transformaty Radona i wykorzystywana jest do wykrywania regularnych kształtów w obrazach. Oryginalna metoda Hougha służy do wykrywania prostych. Metodę tę później uogólniono na wykrywanie kształtów dających się opisać analitycznie np. okręgów oraz na wykrywanie dowolnych kształtów. Funkcje modułu scikit-image realizujące transformatę Hougha. hough_circle hough_ellipse hough_line hough_line_peaks Przykład Przykład pokazujący wykorzystanie transformaty Hougha import numpy as np import matplotlib.pyplot as plt from skimage.transform import hough img = np.zeros((100, 150), dtype=bool) img[30, :] = 1 img[:, 65] = 1 img[35:45, 35:50] = 1 for i in range(90): img[i, i] = 1 img += np.random.random(img.shape) > 0.95 out, angles, d = hough(img) plt.subplot(1, 2, 1) plt.imshow(img, cmap=plt.cm.gray) plt.title('input image') plt.subplot(1, 2, 2) plt.imshow(out, cmap=plt.cm.bone, extent=(d[0], d[-1],
6 np.rad2deg(angles[0]), np.rad2deg(angles[-1]))) plt.title('hough transform') plt.xlabel('angle (degree)') plt.ylabel('distance (pixel)') plt.subplots_adjust(wspace=0.4) plt.show() Literatura Lyons R. G.: Wprowadzenie do cyfrowego przetwarzania sygnałów, WKŁ, Warszawa Oppenheim A. V., Schafer R. W.: Cyfrowe przetwarzanie sygnałów, WKŁ, Warszawa Tadeusiewicz R., Korohoda P.: Komputerowa analiza i przetwarzanie obrazów, Społeczeństwo Globalnej Informacji, Kraków Zadania 1. Uruchomić i zmodyfikować przykład transformaty znajdujące się w instrukcji. 2. Dla przykładu transformaty Radona znajdującego się w instrukcji dokonać transformaty i rekonstrukcji dla różnych wartości kątów projekcji. 3. Wykonać transformację Rodona dla własnych obrazów. 4. Dla własnych obrazów testowych wykorzystać transformację Hougha do wyznaczenia linii o okręgów w obrazie.
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III
1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania
Odczytywanie i zapisywanie obrazów rastrowych do plików, operacje punktowe na tablicach obrazów
Laboratorium 1 Odczytywanie i zapisywanie obrazów rastrowych do plików, operacje punktowe na tablicach obrazów Konfiguracja systemu WinPython 3.6/ 3.7 Otworzyć konsolę Python a WinPython Command Prompt
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania
Komunikacja Człowiek-Komputer
Komunikacja Człowiek-Komputer Przetwarzanie i rozpoznawanie obrazów przegląd Wojciech Jaśkowski Instytut Informatyki Politechnika Poznańska Wersja: 21 listopada 2014 Transformata Hough Detekcja odcinków
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Obraz jako funkcja Przekształcenia geometryczne
Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ANALIZA I PRZETWARZANIE OBRAZÓW CYFROWYCH Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Programowanie aplikacji internetowych Rodzaj zajęć: wykład, laboratorium
Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
Analiza obrazu komputerowego wykład 1 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Plan wykładu Wprowadzenie pojęcie obrazu cyfrowego i analogowego Geometryczne przekształcenia obrazu Przekształcenia
Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU CYFROWE PRZETWARZANIE SYGNAŁÓW
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała
Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium TECHNIKI OBRAZOWANIA MEDYCZNEGO Medical Imaging Techniques Forma
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 4 Filtracja sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest realizowane w
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
AiR_CPS_1/3 Cyfrowe przetwarzanie sygnałów Digital Signal Processing
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 4, 10 kwietnia 2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Obrazowanie w medycynie
KARTA PRZEDMIOTU. Kod przedmiotu Nazwa przedmiotu w języku. M INF _05.15 Analiza obrazów medycznych Analysis of medical images. polskim angielskim
Kod przedmiotu Nazwa przedmiotu w języku polskim angielskim KARTA PRZEDMIOTU M INF _05.15 Analiza obrazów medycznych Analysis of medical images 1. USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW 1.1. Kierunek
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do zajęć laboratoryjnych z przedmiotu:
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Architektura i Programowanie Procesorów Sygnałowych Numer
Ćwiczenia z przetwarzania tablic 2D
Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
Ćwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 6 Interpolacja i histogram obrazów Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii Biomedycznej
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Podstawy biblioteki Matplotlib
Podstawy biblioteki Matplotlib Krzysztof Gdawiec Instytut Informatyki Uniwersytet Śląski Matplotlib jest biblioteką Pythona służącą do tworzenia różnego rodzaju wykresów. Biblioteka ta od samego początku
Wprowadzenie do Python
Wprowadzenie do Python Marcin Orchel 1 Środowisko Python Zalecane korzystanie z dystrybucji Anaconda. W systemie linux może być już dostępny Python. Sprawdzenie wersji Pythona, python -V. Uruchomienie
E-I2G-2008-s1. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu E-I2G-2008-s1 Nazwa modułu Zaawansowane przetwarzanie obrazów Nazwa modułu w języku angielskim
Analiza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych
Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w
CYFROWE PRZETWARZANIE SYGNAŁÓW
Cyfrowe przetwarzanie sygnałów -1-2003 CYFROWE PRZETWARZANIE SYGNAŁÓW tematy wykładowe: ( 28 godz. +2godz. kolokwium, test?) 1. Sygnały i systemy dyskretne (LTI, SLS) 1.1. Systemy LTI ( SLS ) (definicje
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja
Próbkowanie (ang. sampling) - kwantyzacja Rastrowa reprezentacja obrazu 2D Próbkowanie - proces zamiany ciągłego sygnału f(x) na skończoną liczbę wartości opisujących ten sygnał. Kwantyzacja - proces zamiany
Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Dane obrazowe R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Przetwarzanie danych obrazowych! Przetwarzanie danych obrazowych przyjmuje trzy formy:! Grafikę
Przetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Rok akademicki: 2017/2018 Kod: RIA s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Przetwarzanie obrazów Rok akademicki: 2017/2018 Kod: RIA-1-705-s Punkty ECTS: 2 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Inżynieria Akustyczna Specjalność: Poziom studiów: Studia
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
BIBLIOTEKA NUMPY, CZĘŚĆ 1
BIBLIOTEKA NUMPY, CZĘŚĆ 1 1. INSTALACJA BIBLIOTEKI NUMPY Aby móc skorzystać z biblioteki Numpy (i każdej innej zewnętrznej biblioteki) w swoim projekcie należy ją najpierw zainstalować w środowisku wirtualnym
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej. Laboratorium cyfrowej techniki pomiarowej. Ćwiczenie 3
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium cyfrowej techniki pomiarowej Ćwiczenie 3 Przetwarzanie danych pomiarowych w programie LabVIEW 1. Generator harmonicznych Jako
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 3 Interpolacja i przekształcenia geometryczne obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
Obrazowanie rentgenowskie. tomografia, mikroskopia, kontrast fazowy
Obrazowanie rentgenowskie tomografia, mikroskopia, kontrast fazowy Radiografia Timm Weitkamp XTOP2006 Detektor Prześwietlany obiekt Roentgen 1895 Wiązka rentgenowska Podstawowy mechanizm obrazowania kontrast
Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi
Układy i Systemy Elektromedyczne
UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 5 Elektroniczny stetoskop - moduł TMDXMDKDS3254. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii
Analizy Ilościowe EEG QEEG
Analizy Ilościowe EEG QEEG Piotr Walerjan PWSIM MEDISOFT 2006 Piotr Walerjan MEDISOFT Jakościowe vs. Ilościowe EEG Analizy EEG na papierze Szacunkowa ocena wartości częstotliwości i napięcia Komputerowy
System Labview The Labview System. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04
PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW
INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 temat: AUTOMATY MOORE A I MEALY 1.
Transformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu
Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia
Filtracja nieliniowa obrazu
Informatyka, S1 sem. letni, 2014/2015, wykład#4 Filtracja nieliniowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów Obraz
Jacek Lesiak 1, Leszek Królicki 2
NOWOTWORY Journal of Oncology 2007 volume 57 Number 1 32 36 Zależność jakości obrazu od rodzaju filtra i wartości odcięcia (cut off) przy rekonstrukcji SPECT metodą filtrowanej projekcji wstecznej (FBP)
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Rekonstrukcja obrazu (Image restoration)
Rekonstrukcja obrazu (Image restoration) Celem rekonstrukcji obrazu cyfrowego jest odtworzenie obrazu oryginalnego na podstawie obrazu zdegradowanego. Obejmuje ona identyfikację procesu degradacji i próbę
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika
Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów
31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Informatyki i Nauki o Materiałach. Informatyczne systemy dla medycyny. Tomografia komputerowa, rekonstrukcja, przetwarzanie obrazów
Imię i nazwisko autora pracy Krystian Przybyła Imię i nazwisko promotora pracy dr Marcin Binkowski Wydział Informatyki i Nauki o Materiałach Kierunek studiów Informatyka Specjalność Informatyczne systemy
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
PL B BUP 16/04. Kleczkowski Piotr,Kraków,PL WUP 04/09
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 201536 (13) B1 (21) Numer zgłoszenia: 358531 (51) Int.Cl. G10L 21/02 (2006.01) H03G 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych
Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 11 Filtracja sygnałów wizyjnych Operacje kontekstowe (filtry) Operacje polegające na modyfikacji poszczególnych elementów obrazu w zależności od stanu
ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3
1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego
EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu
Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych Kod przedmiotu 06.5-WE-EP-PSzZPS
Przekształcenie Fouriera i splot
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera