Programowanie w Logice
|
|
- Laura Ciesielska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Programowanie w Logice Przeszukiwanie rozwiązań Przemysław Kobylański
2 Generowanie wszystkich rozwiązań Prolog nie tylko potrafi sprawdzić czy dana spełnia warunek ale również potrafi wygenerować wszystkie dane spełniające warunek. Jest to możliwe dzięki temu, że Prolog wyraża relacje a nie tylko funkcje (dopuszcza dowolne przepływy danych).
3 Generowanie wszystkich rozwiązań % perm ( L1, L2 ) zachodzi, gdy % l i s t a L2 j e s t permutacja l i s t y L1. perm ( [ ], [ ] ). perm ( L1, [X L3 ] ) : s e l e c t (X, L1, L2 ), perm ( L2, L3 ).
4 Generowanie wszystkich rozwiązań Generowanie listy [X L3] będącej permutacją danej listy L1: X = L1 = L2 select(x, L1, L2) perm(l2, L3) X = L3 Wybór elementu X na tyle sposobów jaka jest długość listy L1.
5 Generowanie wszystkich rozwiązań?- perm([1, 2, 3], [3, 1, 2]). true.?- perm([1, 2, 3], [3, 2, 2]). false.?- perm([1, 2, 3], X). X = [1, 2, 3] ; X = [1, 3, 2] ; X = [2, 1, 3] ; X = [2, 3, 1] ; X = [3, 1, 2] ; X = [3, 2, 1] ; false.
6 Generowanie i testowanie Niech rozwiązanie(x) będzie warunkiem generującym wszystkie rozwiązania. Niech dobre(x) będzie warunkiem sprawdzającym czy rozwiązanie jest dobre. Wówczas warunek rozwiązanie(x), dobre(x) generuje wszystkie dobre rozwiązania. Generowanie odbywa się zgodnie ze schematem następującej pętli: wygeneruj kolejne X NIE czy X jest dobre? TAK
7 Generowanie i testowanie Zaprezentujemy program znajdujący ustawienie N hetmanów na szachownicy o N wierszach i N kolumnach. Ustawienie będziemy kodować w postaci permutacji listy liczb od 1 do N. Na i-tej pozycji takiej permutacji zapisany będzie numer wiersza, w którym stoi hetman z i-tej kolumny. Gdy ustawimy hetmany zgodnie z permutacją, to żadne dwa nie będą się biły w kolumnie i w wierszu. Pozostaje do sprawdzenia, czy żadne dwa nie biją się po ukosie.
8 Generowanie i testowanie dobra (X) : \+ z l a (X ). % z l a (X) zachodzi, gdy wsrod hetmanow u s t a w i o n y % z g o d n i e z permutacja X sa dwa k t o r e s i e b i j a z l a (X) : append (_, [ Wi L1 ], X), append ( L2, [ Wj _], L1 ), length ( L2, K), abs (Wi Wj) =:= K + 1. % abs (Wi Wj) = o d l e g l o s c w p i o n i e % K + 1 = o d l e g l o s c w p o z i o m i e
9 Generowanie i testowanie % hetmany (N, P) zachodzi, gdy permutacja P % koduje poprawne u s t a w i e n i e N hetmanow hetmany (N, P) : n u m l i s t ( 1, N, L ), perm (L, P), dobra (P ).
10 Generowanie i testowanie?- hetmany(4, X). X = [2, 4, 1, 3] ; X = [3, 1, 4, 2] ; false.?- findall(x, hetmany(8, X), L), length(l, N). L = [[1, 5, 8, 6, 3, 7, 2, 4], [......]...], N = 92. Predykat findall(x, p(x), L) tworzy listę L wszystkich wartości X spełniających warunek p(x).
11 Odcięcie Jeśli warunek dostarcza wiele wartości, to stawiając po nim wykrzyknik (odcięcie), zostanie znaleziona tylko pierwsza z nich (odcinamy poszukiwanie kolejnych). Predykat! jest zawsze spełniony ale wpływa na poszukiwanie rozwiązać i nie dopuszcza do wykonania nawrotu celem szukania kolejnego rozwiązania.?- member(x, [1, 2, 3]), X > 1.5. X = 2 ; X = 3.?- member(x, [1, 2, 3]),!, X > 1.5. false.
12 Odcięcie?- member(x, [1, 2, 3]),!, X > 1.5. X = 1 udane przejście z lewa na prawo zakaz przejścia z prawa na lewo nawrót niepowodzenie 1 > 1.5 odpowiedź false Odcięcie działa w celu jak błona półprzepuszczalna : pozwala przejść z lewa na prawo ale nie odwrotnie.
13 Odcięcie Zupełnie inaczej działa odcięcie jeśli użyto go w ciele reguły. Example (Algorytm Świętego Mikołaja <wersja 1>) Święty Mikołaj stosuje poniższe reguły do rozstrzygnięcia czy dziecko X dostanie nagrodę Y albo karę Y. d o s t a n i e (X, Y) : g r z e c z n e (X), nagroda (Y ). d o s t a n i e (X, Y) : \+ g r z e c z n e (X), kara (Y ). W powyższym przykładzie, jeśli dziecko X nie było grzeczne, to warunek grzeczne(x) jest sprawdzany dwukrotnie. W takim przypadku zawodzi warunek grzeczne(x) z pierwszej reguły predykatu dostanie(x, Y) i Prolog sięga do drugiej reguły. W drugiej regule sprawdzane jest ponownie czy dziecko było grzeczne i jeśli warunek ten zawodzi, to wybierana jest dla niego kara Y.
14 Odcięcie Example (Algorytm Świętego Mikołaja <wersja 2>) d o s t a n i e (X, Y) : g r z e c z n e (X), nagroda (Y ). d o s t a n i e (X, Y) : kara (Y ). Ta wersja nie jest poprawna. Jeśli będziemy próbowali wywnioskować wszystko co może dostać grzeczne dziecko, to po wyczerpaniu wszystkich nagród, predykat stwierdzi na podstawie drugiej reguły, że należy dawać mu kolejne kary.
15 Odcięcie Example (Algorytm Świętego Mikołaja <wersja 3>) d o s t a n i e (X, Y) : g r z e c z n e (X),!, nagroda (Y ). d o s t a n i e (X, Y) : kara (Y ). Ta wersja jest poprawna. Jeśli dziecko X jest grzeczne, to pierwsza reguła odpowie jakie nagrody może ono dostać. Jeśli wyczerpią się już wszystkie nagrody, to przy próbie wycofania się do sprawdzania czy dziecko jest grzeczne, odcięcie! spowoduje niepowodzenie i porzucenie dalszego sprawdzania warunku dostanie(x, Y), nawet jeśli są jeszcze jakieś inne reguły w jego definicji.
16 Przykłady zastosowań odcięcia Example (once/1) Predykat once(goal) znajduje pierwszą odpowiedź na cel Goal i nie będzie szukał kolejnych. once ( Goal ) : Goal,!.
17 Przykłady zastosowań odcięcia Example (Negacja) Predykat \+ Goal zawodzi gdy cel Goal jest spełniony. W przeciwnym przypadku jest spełniony. \+ Goal : Goal,!, f a i l. \+ _.
18 Przykłady zastosowań odcięcia Example (forall/2) Predykat forall(generator, Test) sprawdza czy wszystkie dane generowane warunkiem Generator spełniają również warunek Test. f o r a l l ( Generator, Test ) : \+ ( Generator, \+ Test ).
19 Przykłady zastosowań odcięcia Example (Własna wersja var/1) myvar (X) : \+ \+ X = a, \+ \+ X = b. Pierwszy warunek \+ \+ X = a jest spełniony tylko gdy X jest zmienną (unifikuje się z czymkolwiek) lub jest stałą a, przy czym jeśli X jest zmienną to nic nie zostanie pod nią podstawione. Drugi warunek \+ \+ X = a jest spełniony tylko gdy X jest zmienną (unifikuje się z czymkolwiek) lub jest stałą b, przy czym jeśli X jest zmienną to nic nie zostanie pod nią podstawione. Zatem oba warunki spełnione są tylko gdy X jest zmienną i nic nie zostanie pod nią podstawione.
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
Programowanie w Logice Przykłady programów. Przemysław Kobylański
Programowanie w Logice Przykłady programów Przemysław Kobylański Język Imperator 1 jest prostym językiem imperatywnym. Jego składnię opisuje poniższa gramatyka BNF: PROGRAM ::= PROGRAM ::= INSTRUKCJA ;
Programowanie w Logice Struktury danych (Lista 2)
Programowanie w Logice Struktury danych (Lista 2) Przemysław Kobylański Wstęp Struktury danych wyraża się w Prologu w postaci termów, tj. symbolicznych wyrażeń. Dotychczas poznaliśmy proste termy takie
PROLOG INNE PRZYKŁADY MACIEJ KELM
PROLOG INNE PRZYKŁADY MACIEJ KELM PREDYKAT RANDOM Funkcja random zwraca losową liczbę całkowitą w przedziale od 1 do X. Gdzie X jest parametrem funkcji random. Przed użyciem random należy zainicjować tak
Dana jest baza: kobieta(katarzyna). kobieta(anna). kobieta(maria). kobieta(marianna). kobieta(marta). Zdefiniujemy predykat kobiety/0 następująco:
STEROWANIE PROCESEM WNIOSKOWANIA. Predykat true/0 fail/0 cut/0 lub! not( W) lub \+W repeat/0 Objaśnienie zawsze spełniony, deterministyczny zawsze zawodzi, deterministyczny odcięcie; zawsze spełniony spełniony,
Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.2 Elementy języka Prolog: reguły i rekurencja. Przemysław Kobylański
Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.2 Elementy języka Prolog: reguły i rekurencja Przemysław Kobylański Część I Wprowadzenie 1 Reguły Przypomnijmy z poprzedniej listy zadań fakty
Programowanie w logice Prolog 2
Programowanie w logice Prolog 2 Listy Lista to uporządkowany ciąg elementów. Elementami listy mogą być dowolne terminy: stałe, zmienne i struktury W Prologu listę zapisujemy następująco: Przykłady [element1,element2,,elementn]
Programowanie w Logice
Programowanie w Logice Działanie Prologu Przemysław Kobylański na podstawie [CM2003] Składnia Programy Prologu składają się z termów. Term to stała, zmienna lub struktura (term złożony). Term zapisuje
Programowanie w Logice
Programowanie w Logice Wejście i wyjście Przemysław Kobylański na podstawie [CM2003] Term czyta się ze standardowego wejścia predykatem read/1. Każdy wczytywany term powinien być zakończony kropką. Predykat
Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.
Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.4 Elementy języka Prolog: metaprogramowanie i struktury danych. Przemysław Kobylański
Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.4 Elementy języka Prolog: metaprogramowanie i struktury danych Przemysław Kobylański Część I Wprowadzenie 1 Metapredykaty Argumentem wywołania
lekcja 8a Gry komputerowe MasterMind
lekcja 8a Gry komputerowe MasterMind Posiadamy już elementarną wiedzę w zakresie programowania. Pora więc zabrać się za rozwiązywanie problemów bardziej złożonych, które wymagają zastosowania typowych
PROLOG. Prolog. Programowanie, W.F. Clocksin, C.S. Mellish, HELION Prolog, język sztucznej inteligencji, Eugeniusz Gatnar, Katarzyna Stąpor, Wyd.
PROLOG 1. Informacje wstępne Podczas zajęć korzystamy z darmowej wersji interpretera Prologu SWI-Prolog dostępnego ze strony: www.swi-prolog.org 2. Literatura i materiały Prolog. Programowanie, W.F. Clocksin,
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ POZIOM ROZSZERZONY Część I
Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki, Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego, Ośrodek Doskonalenia Nauczycieli w Poznaniu, Centrum
Programowanie deklaratywne
Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne
B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
Wykład 5 Listy leniwe
Wykład 5 Listy leniwe Listy leniwe Funkcjonały dla list leniwych Przykład: generowanie liczb pierwszych metodą sita Eratostenesa Algorytmy przeszukiwania przestrzeni stanów Przykład: problem ośmiu hetmanów
Wstęp do programowania
Wieczorowe Studia Licencjackie Wrocław, 28.11.2006 Wstęp do programowania Wykład nr 9 (w oparciu o notatki K. Lorysia z modyfikacjami) Sortowanie szybkie (Quicksort) Sortowanie przez scalanie opierało
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Algorytmy i struktury danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy
SUM Edukacja Techniczno Informatyczna Języki i Systemy Programowania. Wykład 3. dr Artur Bartoszewski - WYKŁAD: Języki i Systemy Programowania,
SUM Edukacja Techniczno Informatyczna Języki i Systemy Programowania Wykład 3 1 SUM Edukacja Techniczno Informatyczna Języki i Systemy Programowania Przykład Bingo 2 Treść przykładu Jak wygląda karta do
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.
Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym
Logika intuicjonistyczna
Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Programowanie w logice Prolog 1
Programowanie w logice Prolog 1 Prolog - zastosowania Zastosowania: relacyjne bazy danych. przetwarzanie języka naturalnego. logistyka. analiza struktur biochemicznych. wspomaganie projektowania. sztuczna
Zależności funkcyjne
Zależności funkcyjne Plan wykładu Pojęcie zależności funkcyjnej Dopełnienie zbioru zależności funkcyjnych Postać minimalna zbioru zależności funkcyjnych Domknięcie atrybutu relacji względem zależności
7. Pętle for. Przykłady
. Pętle for Przykłady.1. Bez użycia pętli while ani rekurencji, napisz program, który wypisze na ekran kolejne liczby naturalne od 0 do pewnego danego n. 5 int n; 6 cin >> n; 8 for (int i = 0; i
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Definicje wyższego poziomu
Definicje wyższego poziomu Interpreter Scheme-a nie będzie narzekad w przypadku wystąpienia niezdefionowanej zmiennej w ciele wyrażenia lambda dopóki nie będzie zastosowana Przykład braku informacji o
Programowanie w logice
Programowanie w logice PROLOG cz.3 Predykat sprawdzający, czy podana lista stanowi początek innej listy: poczatek([],[_ _]). poczatek([h1 T1], [H2 T2]) :- H1 = H2, poczatek(t1,t2). ------------------------------------------------------------------------
Programowanie w Logice Środowisko programowania i dialog z systemem (Lista 0)
Programowanie w Logice Środowisko programowania i dialog z systemem (Lista 0) Przemysław Kobylański Wstęp Podczas laboratorium będziemy korzystać z systemu SWI-Prolog. Należy go ściągnąć i zainstalować
Algorytmy z powrotami. Algorytm minimax
Algorytmy z powrotami. Algorytm minimax Algorytmy i struktury danych. Wykład 7. Rok akademicki: 2010/2011 Algorytm z powrotami rozwiązanie problemu budowane jest w kolejnych krokach, po stwierdzeniu (w
CLP Programowanie logiczne z ograniczeniami.
CLP Programowanie logiczne z ograniczeniami. Wstęp Programowanie z ograniczeniami (Constraint Programming CP) stało się w ostatnich latach popularnym sposobem modelowania i rozwiązywania wielu problemów
Lekcja 3: Pierwsze kroki z Pythonem. Pętle
#SuperKoderzy www.superkoderzy.pl Mikrobitowcy Autorzy: Filip Kłębczyk Lekcja 3: Pierwsze kroki z Pythonem. Pętle Podczas lekcji uczniowie zapoznają się z dwoma rodzajami pętli - for i while - analizując
Macierze symetryczne i nasycone grupy permutacji
Maria Donten 03.02.2009 Macierze symetryczne i nasycone grupy permutacji projekt w ramach laboratorium programowania w logice 1 Wstęp Główny cel projektu to napisanie programu, pomagającego wyznaczyć nasycone
PODSTAWY SZTUCZNEJ INTELIGENCJI
Katedra Informatyki Stosowanej Politechnika Łódzka PODSTAWY SZTUCZNEJ INTELIGENCJI Laboratorium PROGRAMOWANIE SYSTEMÓW EKSPERTOWYCH Opracowanie: Dr hab. inŝ. Jacek Kucharski Dr inŝ. Piotr Urbanek Cel ćwiczenia
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Programowanie logiczne a negacja
Programowanie logiczne a negacja Adrian Woźniak 12 stycznia 2006r. SPIS TREŚCI Programowanie logiczne a negacja Spis treści 1 Wstęp 2 2 Wnioskowanie negatywnych informacji 2 2.1 Reguła CWA (Closed World
Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994]
Programowanie w Logice Gramatyki metamorficzne Przemysław Kobylański na podstawie [CM2003] i [SS1994] Gramatyki bezkontekstowe Gramatyką bezkontekstową jest uporządkowana czwórka G = Σ, N, S, P, gdzie
Deklarowania faktów dotyczących obiektów i związków między nimi. Definiowania reguł dotyczących obiektów i związków między nimi.
Prolog Prolog Programowanie w Prologu składa się z: Deklarowania faktów dotyczących obiektów i związków między nimi. Definiowania reguł dotyczących obiektów i związków między nimi. Zadawania zapytao o
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Podstawy i języki programowania
Podstawy i języki programowania Laboratorium 3 - operatory oraz instrukcje warunkowe i wyboru mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 19 października 2018 1 / 35 mgr inż. Krzysztof
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
... (środowisko) ... ... 60 minut
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) WYBRANE:... (środowisko)... (kompilator)...
ELEMENTY KOMBINATORYKI
ELEMENTY KOMBINATORYKI Kombinatoryka to dział matematyki, który zajmuje się zliczaniem, na ile sposobów może zajść jakieś zjawisko. Powstała dzięki grom hazardowym a dopiero później rozwinęła się w gałąź
W przeciwnym wypadku wykonaj instrukcję z bloku drugiego. Ćwiczenie 1 utworzyć program dzielący przez siebie dwie liczby
Część XI C++ W folderze nazwisko36 program za każdym razem sprawdza oba warunki co niepotrzebnie obciąża procesor. Ten problem można rozwiązać stosując instrukcje if...else Instrukcja if wykonuje polecenie
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Czas pracy: 60 minut
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) WYBRANE:... (środowisko)... (kompilator)... (program użytkowy)
Programowanie deklaratywne
Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Wymagania, specyfikacja i projektowanie
określenie wymagań specyfikowanie projektowanie kodowanie implementacja testowanie produkt konserwacja Faza strategiczna Analiza Dokumentacja Instalacja Właściwości dobrych wymagań zrozumiałe dla użytkowników
Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu
Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna
Język JAVA podstawy Wykład 3, część 3 1 Język JAVA podstawy Plan wykładu: 1. Konstrukcja kodu programów w Javie 2. Identyfikatory, zmienne 3. Typy danych 4. Operatory, instrukcje sterujące instrukcja warunkowe,
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Poprawność programów Jeżeli projektujemy algorytmy lub piszemy programy, to ważne jest pytanie, czy nasz algorytm lub program
Wstęp do programowania
wykład 7 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2016/2017 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
GRUPA ĆWICZENIOWA (ZAKREŚL ODPOWIEDNIĄ): MG8 MG13 MB13 MD13 BT13
Nazwisko i imię: Nr indeksu: 1 2 3 4 Σ MiNI/MatLic/AiPP/2014 2015/Kolokwium-IIA (30) GRUPA ĆWICZENIOWA (ZAKREŚL ODPOWIEDNIĄ): MG8 MG13 MB13 MD13 BT13 Uwaga: Za każde zadanie można uzyskać tę samą liczbę
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n
Metoda bisekcji (inaczej połowienia przedziału lub równych podziałów)
Metoda bisekcji (inaczej połowienia przedziału lub równych podziałów) Metoda służy do wyznaczenia miejsca zerowego danej funkcji i polega na cyklicznym połowieniu zadanego z góry przedziału (w którym znajduje
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ Arkusz I. Czas pracy: 60 minut Liczba punktów do uzyskania: 15
Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Algorytmy i struktury danych
Algorytmy i struktury danych 4. Łódź 2018 Suma szeregu harmonicznego - Wpisz kod programu w oknie edycyjnym - Zapisz kod w pliku harmonic.py - Uruchom skrypt (In[1]: run harmonic.py) - Ten program wykorzystuje
Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,
wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.
Blockly Kodowanie pomoc.
1 Blockly Kodowanie pomoc. Słowniczek: Zmienna posiada nazwę wywoływaną w programie oraz miejsce na przechowywanie wartości. Instrukcja warunkowa pozwala na wykonanie instrukcji w zależności od warunku
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
3. Instrukcje warunkowe
. Instrukcje warunkowe Przykłady.1. Napisz program, który pobierze od użytkownika liczbę i wypisze na ekran słowo ujemna lub nieujemna, w zależności od tego czy dana liczba jest ujemna czy nie. 1 #include
EGZAMIN MATURALNY Z INFORMATYKI 13 MAJA 2019 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Elementy języka Prolog
Elementy języka Prolog Cechy języka Podstawy Zamrażanie celów (korutyny) Programowanie ograniczeń Cechy języka Deklaratywne programowanie w logice Formuły rachunku predykatów Rezolucja liniowa Atrybuty
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
Projekt 4: Programowanie w logice
Języki Programowania Projekt 4: Programowanie w logice Środowisko ECL i PS e W projekcie wykorzystane będzie środowisko ECL i PS e. Dostępne jest ono pod adresem http://eclipseclp.org/. Po zainstalowaniu
Specyfikacja: Dane: Niepusty, skończony ciąg liczb dodatnich. Wynik:...
2 Egzamin maturalny z informatyki Zadanie 1. Rzut oszczepem (6 pkt) Trener oszczepników odnotowuje wyniki uzyskiwane przez swoich zawodników. oniżej znajdziesz ciągi liczb reprezentujące wyniki trzech
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
W powyższym kodzie utworzono wyliczenie dni tygodnia.
Typ wyliczeniowy (zwane również enumeration lub enum) jest to typ danych składający się z zestawu nazwanych wartości. Do zmiennej, która została zadeklarowana jako typ wyliczeniowy może być przypisane
Testowanie i walidacja oprogramowania
Testowanie i walidacja oprogramowania Inżynieria oprogramowania, sem.5 cz. 5 Rok akademicki 2010/2011 Dr inż. Wojciech Koziński Przykład Obliczmy sumę: 0+1+2+...+i, i є [0,100] read(i); if((i < 0)(i >
Projekty zaliczeniowe Podstawy Programowania 2012/2013
Projekty zaliczeniowe Podstawy Programowania 2012/2013 0. Zasady ogólne W skład projektu wchodzą następujące elementy: dokładny opis rozwiązywanego problemu opis słowny rozwiązania problemu wraz z pseudokodami
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:
LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI 2016 ROK
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI 2016 ROK KLUCZ ODPOWIEDZI Arkusz I ZADANIE 1. TEST (5 PUNKTÓW) ZADANIE 1.1 (0-1) Zdający przedstawia sposoby reprezentowania różnych form informacji w komputerze:
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Wstęp do programowania
wykład 6 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania. Przemysław Kobylański
Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania Przemysław Kobylański Część I Wprowadzenie 1 Stałe i zmienne Jedynym dostępnym w języku Prolog rodzajem
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
EGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0
EGZAMIN, ANALIZA A, 5.0.04 zadań po 5 punktów, progi: 30=3.0, 36=3.5, 4=4.0, 48=4.5, 54=5.0 Zadanie. W każdym z zadań.-.5 podaj w postaci uproszczonej) kresy zbioru oraz napisz, czy kresy należą do zbioru