Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium Nr 4
|
|
- Szymon Makowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Nr 4 Algorytmy sortowania zewnętrznego 1 Wstęp Bardzo często przy rozwiązywaniu praktycznych problemów spotykana jest konieczność posortowania danych. W przypadku niewielkiej ich ilości, która całkowicie mieści się w pamięci operacyjnej zalecane jest użycie znanych algorytmów sortowania wewnętrznego, takich jak np. quicksort. Jednak w przypadku ogromnej ilości danych lub niewielkiej dostępnej pamięci, algorytmy sortowania wewnętrznego nie dają się łatwo zastosować lub stają się powolne. Problem ten doprowadził do powstania oddzielnej klasy algorytmów sortujących algorytmów sortowania zewnętrznego. W algorytmach tych zakłada się dostępność niewielkiego, pomocniczego obszaru pamięci. Dodatkowo dostępna jest duża ilość miejsca na zewnętrznym, bardzo powolnym, nośniku pamięci najczęściej dysku twardym lub taśmie magnetycznej. 2 Zewnętrzne sortowanie przez scalanie Algorytm ten stanowi modyfikację sortowania przez scalanie. Przed przystąpieniem do jego omówienia, konieczne jest przyjęcie następujących założeń: Plik składa się z N danych do posortowania (np. liczb całkowitych) Jednorazowo w pamięci RAM mieści się M danych. Rozpatruje się przypadki, gdy N M. Jeśli N M, zalecane jest użycie algorytmu sortowania wewnętrznego (np. quicksort). Algorytm ten, dla sortowania rosnąco, można przedstawić następująco: 1. Przyjmij, że plik wejściowy składa się z N M fragmentów (z których każdy mieści się w dostępnej pamięci). 2. (Iteracyjnie) każdy fragment wczytaj do pamięci i posortuj go dowolną metodą sortowania wewnętrznego. 3. x=2 4. Tak długo, aż nie zostanie tylko jeden fragment wykonuj: (a) Scalaj ze sobą po dwa fragmenty. Spowoduje to powstanie N xm fragmentów. Każdy taki fragment jest już uporządkowany rosnąco. (b) x=x*2 2.1 Przykład Niech dane do posortowania mają postać: Oznacza to, że N = 16 liczb do posortowania. Ponadto, niech w pamięci na raz mieszczą się co najwyżej M = 4 liczby. Na plik wejściowy, na podstawie (1) kroku algorytmu można spojrzeć, jak na zbiór 16 4 = 4 fragmentów. Fragmenty o numerach nieparzystych przepisuje się do 1. pliku, parzystych do drugiego
2 Zgodnie z (2) dla każdego bloku oddzielnie dokonuje się wczytania do pamięci i posortowania, otrzymując: Ponieważ jest więcej, niż jeden blok (krok 4), więc należy scalać po dwa bloki: = oraz = Wynik scalenia umieszcza się w pliku źródłowym otrzymując: Ponieważ jest więcej, niż jeden blok (krok 4), więc należy podzielić plik na bloki, przepisując każdy nieparzysty blok do 1. pliku a każdy nieparzysty a następnie scalić te pliki. Spowoduje to powstanie następującego pliku: Ponieważ pozostał tylko jeden blok (krok 4), więc sortowanie kończy się 2.2 Warianty zewnętrznego sortowania przez scalanie Wadą opisanego sortowania jest konieczność wykonywania dużej liczby przebiegów przez plik. Z tego powodu często proponuje się scalanie ze sobą co k części (w opisanym w poprzednim punkcie algorytmie oczywiście k = 2). Powoduje to spadek liczby przejść przez plik z log 2 N M do log k N M 2.3 Liczba plików używanych w algorytmie Opisywany algorytm wymaga co najmniej trzech plików. Powoduje to konieczność wielokrotnego przemieszczania wskaźnika pliku ( skakania po pliku). Powoduje to znaczący spadek wydajności algorytmu w przypadku praktycznym. Możliwe jest również zapisywanie każdego bloku w oddzielnym pliku. Daje to możliwość wyłącznie sekwencyjnego odczytu danych z pliku. Strategia ta również umożliwia zastosowanie wielu dysków twardych (na każdy blok po jednym) co znacząco przyspiesza działanie programu w rzeczywistym systemie. Metoda ta jednak znajduje zastosowanie bardzo rzadko z uwagi na konieczność użycia ogromnej liczby dysków. Problem ten doprowadził do wynalezienia modyfikacji opisanego algorytmu. 3 Zrównoważone scalanie trzykierunkowe Algorytm ten stanowi rozwinięcie zewnętrznego sortowania przez scalanie. W metodzie tej zakłada się, że: podzielony jest na N danych do posortowania (np. liczb całkowitych) Jednorazowo w pamięci RAM mieści się M danych. Rozpatruje się przypadki, gdy N M. Jeśli M N, zalecane jest użycie algorytmu sortowania wewnętrznego (np. quicksorta). Dostępnych jest 2p urządzeń zewnętrznych (np. dysków twardych), z których można korzystać podczas sortowania. W początkowym przejściu algorytmu dokonuje się podziału danych na bloki o długości m znaków. Każdy blok przed umieszczeniem w urządzeniu wyjściowym, podlega operacji sortowania (przy pomocy dowolnej metody wewnętrznej). Blok pierwszy umieszcza się na pierwszym urządzeniu, drugi na drugim i tak 2
3 dalej. W momencie, gdy liczba bloków przekroczy p, kolejne bloki dopisywane są cyklicznie począwszy od urządzenia 1 aż do urządzenia p. Innymi słowy, dopisywanie bloków do urządzeń zachodzi cyklicznie modulo p+1. Po operacji podziału następuje konieczność scalenia p bloków na raz. Wynik każdego takiego scalenia jest umieszczany cyklicznie na urządzeniach wyjściowych począwszy od p + 1, aż do 2p. Jeśli pozostały niescalone bloki, dokonuje się powtórnej operacji scalenia. Rolę urządzeń wyjściowych pełnią w nim dyski od 1 do p. Takie cykliczne operacje scalania przy pomocy dysków od 1 do p oraz od p + 1 do 2p wykonuje się aż do scalenia wszystkich bloków, czyli posortowania wszystkich danych. Sortowanie to nazywa się sortowaniem zrównoważonym z uwagi na równomierne wykorzystywanie wszystkich urządzeń zewnętrznych w procesie scalania. Metoda sortowania nie różni się od opisanej wcześniej; zmienia się jedynie sposób wykorzystywania dysków. 3.1 Przykład Niech 2p = 4. Oznacza to, że dostępne są 4 dyski twarde. Dane do posortowania mają postać: Oznacza to, że N = 16 liczb do posortowania. Ponadto, niech w pamięci na raz mieszczą się co najwyżej M = 4 liczby. Na plik wejściowy, na podstawie (1) kroku algorytmu można spojrzeć, jak na zbiór 16 4 = 4 fragmentów. Przed zapisaniem każdego bloku danych są one sortowane w pamięci (jest to możliwe, gdyż każdy blok z założenia daje się zapisać w dostępnej pamięci). Na pierwszym dysku umieszcza się pierwszy blok, na drugim dysku drugi. Czynność ta wykonywana jest cyklicznie, więc trzeci blok umieszczany jest na pierwszym dysku, zaś czwarty na drugim. p Dane pusta 4 pusta Następnym krokiem algorytmu jest scalenie kolejnych bloków pierwszego bloku z pierwszego urządzenia z pierwszym z drugiego do urządzenia p + 1 = 3. Drugi blok z pierwszego dysku jest następnie scalany z drugim blokiem drugiego dysku. Wynik scalania jest zapisywany na p + 2 = 4 urządzeniu. Czynności te powtarzane są cyklicznie, aż do scalenia wszystkich bloków z dysków 1 i 2: p Dane 1 pusta 2 pusta Następnie następuje scalenie bloków z urządzeń 3 i 4 do urządzenia 1. W ten sposób uzyskuje się dane posortowane. 4 Wielofazowe scalanie niezrównoważone Algorytm scalania zrównoważonego charakteryzuje się koniecznością użycia dużej liczby dysków. W wielu praktycznych zastosowaniach, dąży się do zminimalizowania ich liczby przy jak najmniejszym zwiększeniu liczby przejść koniecznych do posortowania pliku. W algorytmie scalania wielofazowego korzysta się z podziału danych na części składające się z różnej liczby bloków. Po scalaniu pewnej liczby bloków, jeden z dysków pozostanie pusty. Może on zostać w następnym kroku użyty do przechowywania wyniku kolejnej operacji scalania. Eliminuje to konieczność posiadania 2p dysków. Celem algorytmu jest zakończenie scalania tak, aby na dysku źródłowym (o numerze 0) pozostał jeden, posortowany blok. Zakładając, że dostępne są 3 dodatkowe napędy, bezpośrednio przed operacją scalania urządzenie 0 powinno pozostać puste, zaś na urządzeniach 1, 2, 3 powinien znajdować się po jednym bloku. W przedostatniej operacji scalania łączone są bloki z każdego z urządzeń 0, 1, 2. Postępując dalej w ten sposób możliwe jest zbudowanie tablicy rozkładu bloków. Strategia jej tworzenia jest następująca: z każdego wiersza wybiera się największą liczbę bloków b max, zamienia ją na zero, a następnie dodaje do 3
4 wszystkich (poza wcześniej wybranym maksymalnym) elementów tego wiersza wartość b max. Otrzymane wartości tworzą uogólniony ciąg Fibonacciego. Jeśli początkowa liczba bloków nie jest uogólnioną liczbą Fibonacciego, wprowadza się puste bloki-atrapy. 4.1 Przykład wielofazowe scalanie niezrównoważone Niech p = 4. Oznacza to, że dostępne są 4 dyski twarde: jeden źródłowy i 3 pomocnicze. Załóżmy, że do posortowania jest N = 17 bloków danych, po M = 2 liczby każdy. Przed przystąpieniem do sortowania konieczne jest wyznaczenie początkowej liczby bloków. Do ich wyznaczenia można użyć tablicy rozdzielającej Przygotowanie tablicy rozdzielającej Załóżmy, że zostało wykonanych k operacji scalania. Z założenia, przy ostatniej (k-tej) operacji scalania, dysk 0 powinien zostać pusty (co oznaczono na rysunkach znakiem X ), zaś na pozostałych dyskach znajdować się będą pojedyncze bloki. Aby wyznaczyć liczbę bloków przypadających na każdy dysk w kroku k 1, konieczne jest wyznaczenie maksymalnej liczby bloków w wierszu k. Wszystkie wartości są równe jeden, więc można wybrać dowolną z nich. Najkorzystniej będzie wyzerować dysk numer 3. Następnie należy skopiować dane z wiersza k do wiersza k 1, dodając do każdego elementu wartość równą liczbie bloków wyzerowanego wiersza (w przykładzie należy dodać jeden). Na dysku 0 znajdzie się więc wartość (zero, gdyż w kroku k dysk był pusty), na dysku 1 znajdą się dwa bloki (1 + 1 = 2), na 2 znajdą się również dwa bloki (1 + 1 = 2). Rozważania te pozwalają na wypisanie następującej tablicy: Ponieważ w kroku k 1 najwięcej bloków znajdowało się na dyskach 1 i 2, można wyzerować dowolny z nich. Najlepiej będzie wyzerować dysk 2. W kroku k 1 na dysku 2 znajdowały się 2 bloki. Dlatego do wszystkich (poza oczywiście 2.) dysków będzie dodawana wartość 2. Ponieważ w kroku k 1 na dysku 0 znajdował się 1 blok, więc w kroku k 2 musiały tam być = 3 bloki. Na dysku 1 w kroku k 1 znajdowały się 2 bloki, więc w kroku k 2 musiały tam być = 4 bloki. 3 w kroku k 1 był pusty, więc w kroku k 2 musiały tam być = 2 bloki. Daje to następującą tabelę: k X 2 W kroku k 2 najwięcej bloków znajdowało się na dysku 1. Konieczne było więc jego wyzerowanie. Dlatego do wszystkich (poza oczywiście 1.) dysków będzie dodawana wartość 4 liczba bloków na dysku 1 w kroku k 2. Na dysku 0 w kroku k 2 znajdowały się 3 bloki, więc w kroku k 3 musiały tam być = 7 bloków. 2 w kroku k 2 był pusty, więc w kroku k 3 musiały tam być = 4 bloki. Na dysku 3 w kroku k 2 znajdowały się 2 bloki, więc w kroku k 3 musiały tam być = 6 bloków. Pozwala to na napisanie następującej tabeli: k 3 7 X 4 6 k X 2 4
5 W podobny sposób możliwe jest rozszerzenie tej tabeli: k X k 4 X k 3 7 X 4 6 k X 2 Tworzenie tabeli należy zakończyć w momencie, gdy suma najwyższego wiersza tabeli będzie większa lub równa ilości danych do posortowania. W przykładzie, w kroku k 5 suma elementów z wiersza najwyższego wynosi = 57. Należy zauważyć, że liczby z każdego wiersza tej tabeli to uogólnione liczby Fibonacciego Sortowanie Z założenia do posortowania jest N = 17 bloków danych, po M = 2 liczby każdy. Wygenerowana w poprzednim punkcie tabela rozdzielająca przyjmie więc postać: k 3 7 X 4 6 k X 2, gdyż Dane źródłowe powinny znajdować się na pustym dysku (w przykładzie: dysk 1). Każdy blok przy przenoszeniu z dysku źródłowego należy posortować dowolną metodą sortowania wewnętrznego. Blok 1. należy umieścić na dysku 0, 2. na 2, 3. na 3, 4. znowu na 0 itd. (oczywiście przy umieszczaniu bloków pomija się dysk źródłowy 1). należy umieszczać w ten sposób tak długo, aż łączna liczba bloków nie przekroczy wartości: 7 dla 0 dysku, 4 dla 2 dysku oraz 6 dla dysku 3. Ograniczenia te odczytuje się z pierwszego wiersza z tablicy rozdzielającej. Prowadzi to do następującego rozkładu bloków: 0 1, 4, 7, 10, 13, 15, , 5, 8, , 6, 9, 12, 14, 16 W przypadku, gdyby liczba bloków była mniejsza od wymaganej, korzysta się z pustych blokówatrap. Należy podkreślić, iż liczby w opisanych tabelach określają numery scalanych bloków (z których każdy zawiera M liczb), NIE zaś sortowane dane. Kolejność bloków nie jest istotna, gdyż operacja scalania wymusi właściwy porządek danych. Następnie następuje scalanie bloków. W pierwszym kroku scalane są bloki: 1, 2 i 3. Wynik scalania zapisywany jest na pustym dysku 1: 0 4, 7, 10, 13, 15, ,2,3 2 5, 8, , 9, 12, 14, 16 5
6 Następnie następuje scalenie bloków 4, 5 i 6. Wynik jest dopisywany na dysk 1, jako drugi blok: 0 7, 10, 13, 15, ,2,3, 4,5,6 2 8, , 12, 14, 16 W analogiczny sposób scala się pozostałe bloki, aż do zużycia wszystkich bloków z dysku mającego najmniejszą ich ilość: 0 13, 15, ,2,3, 4,5,6, 7,8,9, 10,11, , 16 Ponieważ jeden z dysków został pusty, krok 1 kończy się. Należy zwrócić uwagę na fakt, iż liczba bloków dokładnie odpowiada 2 wierszowi tabeli rozdzielającej: Na dysku 0 znajdują się 3 bloki, na dysku 1 znajdują się 4 bloki (liczy się tylko liczba bloków, ich rozmiar jest bez znaczenia), dysk 2 jest pusty, zaś dysk 3 zawiera 2 bloki. Krok 2: Następnie dyskiem docelowym staje się pusty dysk 2. Następuje scalenie analogiczne do kroku 1: Blok 13 z dysku 0, blok 1,2,3 z dysku 1, oraz blok 14 z dysku 3 są scalane na dysk 2: 0 15, ,5,6, 7,8,9, 10,11, , 1,2,3, Analogicznie bloki 15, 4,5,6 oraz blok 16 są scalane, zaś wynik jest dołączany na dysk 2: ,8,9, 10,11, , 1,2,3, 14, 15, 4,5,6, 16 3 Krok 3: Następuje scalanie danych na docelowy dysk 3: ,11, , 4,5,6, , 7,8,9, 13,1,2,3,14 Ponieważ jeden z dysków jest pusty, krok ten kończy się. Krok 4: Następuje scalanie danych na docelowy dysk 0: 0 10,11,12, 15,4,5,6,16, 17,7,8,9,13,1,2,3,
7 Ponieważ pozostał tylko jeden blok, scalanie kończy się. Scalanie odpowiednich bloków wykonuje się identycznie, jak w poprzednio omawianych algorytmach. Należy ponownie podkreślić, iż liczby w opisanych tabelach określają numery scalanych bloków (z których każdy zawiera M liczb), NIE zaś sortowane dane. Kolejność bloków nie jest istotna, gdyż operacja scalania wymusi właściwy porządek danych. 5 Zadania do wykonania 1. Opisać działanie wszystkich zaprezentowanych algorytmów dla ciągu liter PRZYKLADSORTOWANIA. Literatura [1] L.Banachowski i in. Algorytmy i struktury danych; WNT, [2] T.H.Cormen i in. Wprowadzenie do algorytmów, WNT, 2000 [3] A.Drozdek Struktury danych w jezyku C, WNT, 1996 [4] D.E.Knuth Sztuka programowania, WNT, 2002 [5] R.Sedgewick Algorytmy w C++, Wydawnictwo RM, 1999 [6] P.Wróblewski, Algorytmy, struktury danych i techniki programowania, HELION, 1996 [7] N. Wirth, Algorytmy + struktury danych = programy, WNT,
Sortowanie zewnętrzne
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Sortowanie zewnętrzne 1 Wstęp Bardzo często
Zestaw C-11: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp i.h)!!! Zad. 1: Zad. 2:
Zestaw C-11: funkcję usun rozpatrującą rozłączne trójki elementów sznura i usuwającą te z elementów trójki, które nie zawierają wartości najmniejszej w obrębie takiej trójki (w każdej trójce pozostaje
Podstawowe wiadomości o systemach plików.
Podstawowe wiadomości o systemach plików. Komputery mogą przechowywać informacje w kilku różnych postaciach fizycznych na różnych nośnikach i urządzeniach np. w postaci zapisów na dysku twardym, płytce
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Zestaw A-1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: 4,3,3 2,2,1 Zad. 2: 3,3,3 Zad.
Zestaw A-1: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Napisać pakiet rodzajowy udostępniający: typ Sznur będący dynamiczną listą łączoną, której elementy przechowują
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Ćwiczenie 3 stos Laboratorium Metod i Języków Programowania
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Ćwiczenie 3 stos Laboratorium Metod i Języków Programowania Celem ćwiczenia jest zapoznanie studentów z najprostszą dynamiczną strukturą
Algorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Algorytmy przeszukiwania wzorca
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Algorytmy przeszukiwania wzorca 1 Wstęp Algorytmy
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Jeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki
INFORMATYKA Z MERMIDONEM Programowanie Moduł 5 / Notatki Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Realizator projektu: Opracowano w ramach projektu
Zestaw 1-1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp)!!!
Zestaw 1-1 1. Napisz program pobierający od użytkownika liczbę całkowitą R (R>1) i liczbę rzeczywistą dodatnią S, a następnie informujący ile kolejnych liczb z ciągu 1, R-1, R 2-2, R 3-3, R 4-4, należy
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].
Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Algorytmy sortujące. sortowanie kubełkowe, sortowanie grzebieniowe
Algorytmy sortujące sortowanie kubełkowe, sortowanie grzebieniowe Sortowanie kubełkowe (bucket sort) Jest to jeden z najbardziej popularnych algorytmów sortowania. Został wynaleziony w 1956 r. przez E.J.
znalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
Pomorski Czarodziej 2016 Zadania. Kategoria C
Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz
Sortowanie Shella Shell Sort
Sortowanie Shella Shell Sort W latach 50-tych ubiegłego wieku informatyk Donald Shell zauważył, iż algorytm sortowania przez wstawianie pracuje bardzo efektywnie w przypadku gdy zbiór jest w dużym stopniu
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.
Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Tablice jednowymiarowe
Tablice jednowymiarowe Gdy mamy do czynienia z zestawem zmiennych, to można z nich zrobić tablicę. Tablica jest ciągiem elementów tego samego typu, który zajmuje ciągły obszar pamięci. Korzyść z zastosowania
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Programowanie Współbieżne. Algorytmy
Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica
znajdowały się różne instrukcje) to tak naprawdę definicja funkcji main.
Część XVI C++ Funkcje Jeśli nasz program rozrósł się już do kilkudziesięciu linijek, warto pomyśleć o jego podziale na mniejsze części. Poznajmy więc funkcje. Szybko się przekonamy, że funkcja to bardzo
Przykład 2 układ o rozwiązaniu z parametrami. Rozwiążemy następujący układ równań:
Przykład 2 układ o rozwiązaniu z parametrami Rozwiążemy następujący układ równań: Po zapisaniu układu w postaci macierzy rozszerzonej będziemy dążyć do uzyskania macierzy jednostkowej po lewej stronie
Arytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Podstawy informatyki I r.
1 of 12 01-12-19 14:34 Podstawy informatyki I r. Zadania z programowania w języku Pascal. Znajdujące się na poniższej liscie zadania przeznaczone są do samodzielnego rozwiązania w czasie poza regularnymi
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Temat 7. Najlżejsze i najcięższe algorytmy sortowania
Temat 7 Najlżejsze i najcięższe algorytmy sortowania Streszczenie Komputery są często używane porządkowania różnych danych, na przykład nazwisk (w porządku alfabetycznym), terminów spotkań lub e-maili
DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Zestaw 1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Zad. 2: 2,2,2 5,5,5,5,5,5 Zad.
Zestaw 1: procedurę Wstaw wstawiającą do sznura podanego jako parametr element zawierający liczbę podaną jako parametr tak, aby sznur był uporządkowany niemalejąco (zakładając, że sznur wejściowy jest
REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
wagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.
ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje
Architektura komputerów
Architektura komputerów Tydzień 10 Pamięć zewnętrzna Dysk magnetyczny Podstawowe urządzenie pamięci zewnętrznej. Dane zapisywane i odczytywane przy użyciu głowicy magnetycznej (cewki). Dane zapisywane
Laboratorium 10: Maszyna stanów
Wojciech Myszka Laboratorium 10: Maszyna stanów 2016-05-07 09:05:39 +0200 1. Wprowadzenie Laboratorium poświęcone jest operacjom na napisach (ciągach znaków). Przypominam, że: a to stała typu char o wartości
Metoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
Podstawy Programowania C++
Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:
Jednym z najprostszych sposobów porządkowania jest technika stosowana przy sortowaniu listów:
Jednym z najprostszych sposobów porządkowania jest technika stosowana przy sortowaniu listów: Listy rozkładane są do różnych przegródek. O tym, do której z nich trafi koperta, decydują różne fragmenty
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Laboratorium nr 1. i 2.
Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych
Podstawy programowania. Wykład: 9. Łańcuchy znaków. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
Podstawy programowania Wykład: 9 Łańcuchy znaków 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Rodzaje plików Dane przechowywane w pliku mogą mieć reprezentację binarną (taką samą, jak
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Sumy kwadratów kolejnych liczb naturalnych
Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =
Maciej Piotr Jankowski
Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji
Wstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Temat 1. Więcej o opracowywaniu tekstu
Temat 1. Więcej o opracowywaniu tekstu Cele edukacyjne Celem tematu 1. jest uporządkowanie i rozszerzenie wiedzy uczniów na temat opracowywania dokumentów tekstowych (m.in. stosowania tabulatorów, spacji
Zestaw zadań dotyczących liczb całkowitych
V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.
Aby przejść do edycji w tym module należy wybrać zakładkę "Dla Pracowników" -> "Sprawdziany".
Sprawdziany Sprawdziany Moduł "Sprawdziany" oferuje osobom prowadzącym zajęcia wygodny sposób informowania studentów o wynikach/ocenach jakie uzyskali (np. z kartkówek, różnego rodzaju zadań, ogólne jakie
Zadanie 1. Suma silni (11 pkt)
2 Egzamin maturalny z informatyki Zadanie 1. Suma silni (11 pkt) Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco: 1 dla n = 1 n! = ( n 1! ) n dla n> 1 Rozpatrzmy funkcję
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Rekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Programowanie w języku C++ Grażyna Koba
Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad
Nierówność Krafta-McMillana, Kodowanie Huffmana
Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy
Tematy lekcji zajęć komputerowych klasa 5b grupa 1 i grupa 2
Tematy lekcji zajęć komputerowych klasa 5b grupa 1 i grupa 2 1 Program nauczania. Przedmiotowy system oceniania. Regulamin pracowni komputerowej. - 7 punktów regulaminu potrafi powiedzieć, czego się będzie
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Haszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Wyszukiwanie binarne
Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie
1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji.
Temat: Technologia informacyjna a informatyka 1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji. Technologia informacyjna (ang.) Information Technology, IT jedna
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania
Plan wykładu Bazy danych Wykład 10: Fizyczna organizacja danych w bazie danych Model logiczny i model fizyczny Mechanizmy składowania plików Moduł zarządzania miejscem na dysku i moduł zarządzania buforami
Rozpoznawanie obrazu. Teraz opiszemy jak działa robot.
Rozpoznawanie obrazu Implementujesz oprogramowanie do rozpoznawania obrazu dla robota. Za każdym razem, gdy robot robi zdjęcie kamerą, jest ono zapisywane jako czarno-biały obraz w pamięci robota. Każdy
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania
Algorytmy sortujące. Sortowanie bąbelkowe
Algorytmy sortujące Sortowanie bąbelkowe Sortowanie bąbelkowe - wstęp Algorytm sortowania bąbelkowego jest jednym z najstarszych algorytmów sortujących. Zasada działania opiera się na cyklicznym porównywaniu
Laboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
Informatyka wprowadzenie do algorytmów (II) dr hab. inż. Mikołaj Morzy
Informatyka wprowadze do algorytmów (II) dr hab. inż. Mikołaj Morzy plan wykładu cechy algorytmów sposoby zapisu algorytmów klasyfikacja algorytmów przykłady algorytmów sumowa przeszukiwa ciągu liczb sortowa
Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2
Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 1 program Kontynuujemy program który wczytuje dystans i ilości paliwa zużytego na trasie, ale z kontrolą danych. A więc jeśli coś
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego.
Tabele przestawne Niekiedy istnieje potrzeba dokonania podsumowania zawartości bazy danych w formie dodatkowej tabeli. Tabelę taką, podsumowującą wybrane pola bazy danych, nazywamy tabelą przestawną. Zasady
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na