Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA
|
|
- Michalina Małek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu: TS1C MULTIMETR CYFROWY Numer ćwiczenia M 14 Dr inż. Jarosław Makal Dr inż. Ryszard Piotrowski Białystok 2016
2 Celem ćwiczenia jest poznanie funkcji pomiarowych multimetru cyfrowego, utrwalenie wiedzy o zasadzie jego działania oraz nabycie umiejętności stosowania tego przyrządu w eksperymencie pomiarowym. 1. Wprowadzenie P odczas ćwiczenia studenci wykorzystują multimetr cyfrowy do pomiaru wartości podstawowych wielkości elektrycznych, np. napięcia, prądu, rezystancji. Multimetrem nazywany jest przyrząd cyfrowy skupiający w sobie kilka różnych funkcji pomiarowych, np. 1. Napięcie stałe (DC) i zmienne (AC) 2. Natężenie prądu stałego (DC) i zmiennego (DC) 3. Rezystancję (metodą dwupunktową) 4. Rezystancję (metodą czteropunktową) Multimetr zbudowany jest w oparciu o woltomierz cyfrowy napięcia stałego o całkowaniu podwójnym, który stanowi centralny obiekt tego przyrządu pomiarowego. Pozostałe wielkości, które mierzy multimetr są najpierw przetwarzane na napięcie stałe, które mierzy następnie wspomniany woltomierz. Woltomierz całkujący spotykany w multimetrach cyfrowych posiada szereg istotnych zalet: stosunkowo wysoką dokładność, niezależność wyniku pomiaru od zmian parametrów układu całkującego, zdolność tłumienia zakłóceń przemysłowych o częstotliwości sieciowej 50 Hz. Spotykane w praktyce woltomierze o całkowaniu potrójnym czy poczwórnym są zdecydowanie mniej rozpowszechnione. Stosowane w nich sposoby pomiaru mają na celu złagodzenie zasadniczej wady woltomierzy całkujących, to znaczy małej szybkości pomiaru. Cykl pomiarowy woltomierzy o całkowaniu podwójnym wynosi bowiem przeciętnie ok. 100 ms. Dla porównania taki sam cykl dla woltomierzy cyfrowych kompensacyjnych jest rzędu kilkuset nanosekund. Ważne: Metoda podwójnego całkowania jest omawiana m.in. na wykładzie z Metrologii, a jej opis znajduje się praktycznie w każdej literaturze z podstaw miernictwa. 2
3 Pomiar skutecznej wartości napięcia sinusoidalnego Większość multimetrów cyfrowych mierzy poprawnie wartość skuteczną tylko napięcia sinusoidalnego. Układ woltomierza stanowiącego rdzeń multimetru całkuje wyprostowane jednopołówkowo napięcie sinusoidalne (rys. 3), co jest podstawą do określenia jego wartości średniej, a następnie skutecznej. 3 U X (t) U Xm 0,32U Xm U Xœr 0,32U Xm 0 2 Rys. 1. Napięcie sinusoidalne wyprostowane jednopołówkowo Związek między wartością średnią U xśr napięcia wyprostowanego jednopołówkowo i skuteczną U Xsk napięcia sinusoidalnego u x = U Xm sin(t) dany jest zależnością: t 1 1 U X m U Xsr ux t d t U X m sin t dt U X sk Zwróćmy uwagę, że współczynnik 2 wiążący amplitudę z wartością skuteczną jest prawdziwy tylko dla kształtu sinusoidalnego napięcia. Współczynnik ten jest uwzględniany przy wzorcowaniu woltomierza. Próba pomiaru tym przyrządem wartości skutecznej napięcia o innym niż sinusoidalny kształcie będzie więc obarczona błędem, niekiedy o znacznej wartości. Prostowanie jednopołówkowe stosuje się w celu ograniczenia liczby elementów nieliniowych i ułatwienia linearyzacji charakterystyki prądowonapięciowej układu prostownikowego. Wymóg liniowości tej charakterystyki w przyrządach cyfrowych jest szczególnie ostry. Żąda się, aby była ona liniowa począwszy od kilku miliwoltów napięcia prostowanego. Stosowane w przyrządach cyfrowych układy prostownikowe oparte są na wzmacniaczach operacyjnych i nazywane prostownikami idealnymi albo diodami idealnymi. Dioda idealna omówiona jest na końcu tej instrukcji w DODATKU 1 i powinna zainteresować bardziej ambitnych studentów.
4 Pomiar natężenia prądu Pomiar natężenia prądu wymaga przetworzenia go na napięcie stałe lub jednokierunkowe. Przetwornik jest w tym przypadku szczególnie prosty, składa się bowiem tylko z kilku (trzech, czterech) rezystorów o dokładnie określonych rezystancjach. Te same rezystory używane są na ogół do pomiaru prądu stałego i zmiennego. Pomiar natężenia prądu polega na zmierzeniu spadku napięcia wywołanego przez ten prąd na wbudowanych do multimetru rezystorach wzorcowych. Pomiaru napięcia dokonuje oczywiście woltomierz cyfrowy napięcia stałego o całkowaniu podwójnym. W przypadku prądu zmiennego sygnał napięcia jest prostowany w układzie prostownika jednopołówkowego. Pomiar rezystancji Cyfrowy pomiar rezystancji polega na przetworzeniu jej na napięcie stałe. Potrzebny spadek napięcia wywoływany jest na mierzonej rezystancji przez prąd pochodzący z wbudowanego do multimetru źródła prądowego. Do pomiaru małych rezystancji stosowana jest metoda czteropunktowa pomiaru. Polega ona na zasileniu mierzonego rezystora z oddzielnego źródła prądowego (np. wbudowanego do multimetru) o znanym prądzie znamionowym, np. 10 ma i pomiarze wywołanego tym prądem napięcia. Zaciski wyjściowe tego źródła znajdują się na tylnej ściance przyrządu (multimetr V560) lub są oddzielnie oznaczone na panelu czołowym. Metoda, o której tu mowa, wymaga użycia czterech przewodów łączących. Dwa z nich doprowadzają do rezystora prąd ze źródła prądowego, dwa pozostałe doprowadzają zaś powstały spadek napięcia do zacisków woltomierza (rys.3). 2. Przebieg pomiarów Studenci wykonują wskazane niżej zadania, sporządzając na bieżąco stosowne notatki. W przypadku użycia multimetru innego niż V560, należy w sprawozdaniu dostosować odpowiednie opisy i wartości parametrów tego przyrządu. Do wykonania poniższych zadań mogą być również używane multimetry: BM202, UT71D, MTX3283, 23T, UT803 i UT804. Zadanie 1 Przyłącz do zacisków wejściowych multimetru zasilacz stabilizowany. Nastaw zerowe napięcie wyjściowe zasilacza. Nastaw zakres pomiarowy multimetru 10 V (tryb pracy DC). Włącz zasilacz i multimetr. Następnie zwiększaj powoli napięcie wyjściowe zasilacza do 12 V. Opisz zachowanie się multimetru po przekroczeniu wartości 12 V napięcia mierzonego. 4
5 W sprawozdaniu należy: Ćwicz. M 14 Multimetr cyfrowy Wyjaśnić, w jaki sposób multimetr sygnalizuje przekroczenie jego zakresu pomiarowego. Zadanie 2 Włącz tryb AC pracy multimetru i nastaw odpowiedni zakres pomiarowy. Zmierz trzykrotnie napięcia fazowe każdej fazy w sieci trójfazowej w układzie, którego schemat przedstawiono na rysunku 2. Wyniki, wraz z błędami granicznymi, zapisz w Tablicy 1. 5 L 1 L 2 L 3 N Multimetr Napięcie AC Rys. 2. Schemat układu do pomiaru napięć fazowych Tablica 1 Nr U L1 U L2 U L3 V V V Typ multimetru, błąd graniczny W sprawozdaniu należy: 1. Wyjaśnić ewentualne różnice między wynikami poszczególnych pomiarów w danej fazie. 2. Wyjaśnij ewentualne różnice między wartościami napięć poszczególnych faz. Zadanie 3 Narysuj samodzielnie schemat układu do pomiaru natężenia prądu żarówki I Ż o mocy 100 W i napięciu znamionowym 230 V przy użyciu multimetru cyfrowego. Przedstaw go do akceptacji prowadzącemu ćwiczenie. Połącz układ pomiarowy i wykonaj pomiar. Zanotuj ten wynik. Oblicz błąd graniczny pomiaru wykorzystując kartę katalogową przyrządu. Zapisz prawidłowo wynik pomiaru wraz z błędem granicznym.
6 6 Typ multimetru, błąd graniczny W sprawozdaniu należy: I Ż =... ma Zaproponować metodę pomiaru natężenia prądu o natężeniu większym od zakresu pomiarowego miliamperomierza cyfrowego. Zadanie 4 Zmierz omomierzem multimetru cyfrowego rezystancje obwodów napięciowych watomierza na zakresach: 100 V, 200 V, 400 V. Dobierz do każdego przypadku odpowiedni zakres pomiarowy omomierza. Wyniki zanotuj w Tablicy 2 wraz z wartościami błędów granicznych pomiaru. Typ multimetru, błąd graniczny (formuła). Tablica 2 Zakres napięciowy U N watomierza V Rezystancja R N obwodu napięciowego watomierza (wraz z błędem granicznym) k Zadanie 5 Zmierz metodą czteropunktową rezystancje obwodów prądowych watomierzy na dwóch zakresach: 1A i 2A. Schemat układu pomiarowego przedstawiono na rysunku 3. Jeśli użyty multimetr nie posiada oddzielnego źródła prądowego, to wykorzystaj zasilacz stabilizowany w trybie pracy z ograniczeniem prądu tak, aby nie przekroczyć dopuszczalnego prądu obwodu watomierza. Spadek napięcia U P mierzy się woltomierzem multimetru cyfrowego pracującym w trybie DC (na zakresie 20 mv lub 100 mv, dla prądu I p =10 ma), a następnie oblicza się rezystancję R P według wzoru:
7 7 U P RP I P gdzie I P jest prądem znamionowym źródła prądowego. Wyniki pomiarów zanotuj w Tablicy 3. Dla ustawionej wartości I P należy dobrać optymalny zakres pomiarowy napięcia. Przyjmując, że błąd graniczny wartości I P jest pomijalnie mały, oblicz niepewność wyznaczenia wartości rezystancji w tej metodzie. R P U P I P < I ogr ZACISKI WYJŚCIOWE ŹRÓDŁA PRĄDOWEGO (ZASILACZA) V560 ZACISKI WEJŚCIOWE WOLTOMIERZA Rys. 3. Schemat układu do pomiaru rezystancji metodą czteropunktową. Tablica 3 Obwód prądowy watomierza 1A 2A Napięcie U P Prąd źródła I P prądowego watomierza Rezystancja R P obwodu (wraz z niepewnością) mv ma m Zadanie 6 Zmierz rezystancje dwóch (podanych przez prowadzącego) dekad rezystora sześciodekadowego, stosując właściwe zakresy pomiarowe omomierza multimetru. Dla każdego wyniku pomiaru oblicz błąd graniczny bezwzględny i względny (odniesiony do wartości ustawionej na dekadzie). Dla rezystorów mniejszych od 10 zastosuj metodę czteropunktową uwzględniając dopuszczalny prąd dekady. Wyniki pomiarów i obliczeń zapisz w Tablicy 4.
8 W sprawozdaniu należy: Ćwicz. M 14 Multimetr cyfrowy Przedstawić na jednym wykresie wartości bezwzględnego i względnego błędu granicznego w zależności od mierzonej wartości rezystancji dekady (zależnej od liczby używanych rezystorów w dekadzie). Skomentować te wykresy i sformułować odpowiedni wniosek. Typ multimetru, błąd graniczny Liczba rezystorów w dekadzie Tablica 4 Wynik pomiaru Dekada. /k Wartość błędu granicznego Błąd (wartość) graniczny względny Wynik pomiaru Dekada /k Wartość błędu granicznego Błąd (wartość) graniczny względny /k /k % /k /k % Uwaga: Podczas pomiaru rezystancji w danej dekadzie należy nastawić zerowe wskaźniki na wszystkich pozostałych dekadach. 3. Pytania i zadania kontrolne 1. Przedstaw zasadę pomiaru multimetrem skutecznej wartości napięcia sinusoidalnego. 2. Przedstaw zasadę pomiaru multimetrem natężenia prądu stałego i skutecznej wartości prądu sinusoidalnego. 3. Narysuj schemat obwodu wejściowego woltomierza/amperomierza cyfrowego wielozakresowego. 4. Oblicz wartości rezystancji oporników w obwodzie wejściowym amperomierza cyfrowego dla zakresów 10 A i 200 ma jeśli wiadomo, że 8
9 9 zakres napięcia wejściowego przetwornika A/D tego przyrządu wynosi mv. Jaka powinna być moc dopuszczalna takiego opornika? 5. Przedstaw zasadę pomiaru rezystancji w multimetrze cyfrowym. 6. Wyjaśnij zasadę pomiaru rezystancji metodą czteropunktową. 3. Literatura 1. Badźmirowski K. i inni Cyfrowe systemy pomiarowe WNT, Warszawa 1979; 2. Bogdan T. Multimetry cyfrowe WKiŁ, Warszawa 1976; 3. Chwaleba A. i inni Metrologia elektryczna WNT, Warszawa 2007, 2012; 4. Piotrowski R. Ćwiczenia laboratoryjne z metrologii, Wyd. Politechniki Białostockiej, Białystok 2008; 5. Sowiński A. Cyfrowa technika pomiarowa WKiŁ, Warszawa 1976; 6. Tumański S. Technika pomiarowa, WNT, Warszawa 2007.
10 DODATEK 1 Dioda idealna Stosowane w technice analogowej przetworniki diodowe nie nadają się do celów miernictwa cyfrowego. Ze względu na silną nieliniowość charakterystyki prądowo napięciowej dla małych napięć. Dokładność pomiarów cyfrowych wymaga, aby charakterystyka ta była ściśle liniowa już od napięć rzędu kilku miliwoltów. Dlatego w multimetrach cyfrowych stosuje się tzw. prostowniki idealne (diody idealne) zbudowane w oparciu o wzmacniacze operacyjne, w których wyeliminowana jest nieliniowość zwykłych diod prostownikowych. Schemat ideowy układu prostownika idealnego przedstawiono na rysunku R 2 i 2 D 1 U R2 i 1 R 1 i R = 0 R f D 2 R 1 i 1 u R = 0 W U 1 u 2 U wy Rys. 1. Schemat ideowy prostownika idealnego Zasadę działania tego prostownika wyjaśnia się, zakładając idealne parametry wzmacniacza operacyjnego: 1. Nieskończenie duże wzmocnienie napięciowe k u k u R u, u 2 skąd wynika u R = 0, jeżeli założymy, że u Nieskończenie wielka rezystancję wejściową R we =, skąd wynika i R = 0. Podczas półfali dodatniej sinusoidalnego napięcia U 1 przewodzi dioda D 1 i w pętli sprzężenia zwrotnego występuje tylko rezystancja R f w kierunku przewodzenia tej diody, stąd:
11 u R, (1) f 2 u1 R1 zaś U wy = 0 z powodu zablokowania diody D 2 przez ujemne napięcie u 2. Uwaga: Związek (1) nie jest oczywisty dla początkującego słuchacza i wymaga uprzedniego zapoznania się z podstawową analizą pracy wzmacniacza operacyjnego. W półfali ujemnej napięcia U 1, dioda D 1 jest zablokowana i pętlę sprzężenia zwrotnego tworzą: rezystor R 2 i dioda D 2, która jest teraz spolaryzowana w kierunku przewodzenia przez dodatnie napięcie U 2. Z właściwości wzmacniacza idealnego mamy: U R = 0, (stąd V A = V B ) (2) i 1 = i 2 (bo i R = 0) (3) i 1 = U 1 /R 1 (bo V A = V B ) (3) Z powyższego wynika, że prąd i 1, a także prąd i 2 nie zależą od nieliniowej rezystancji diody D 2 (prąd i 1 jest określony tylko przez U 1 i R 1 ). Jednocześnie, ponieważ i 2 = i 1, możemy napisać: U wy U wy U R i R i (5) R U1 R1 R1 2 1 U R R (6) Zależność (6) wyraża liniowy związek między napięciami U wy i U 1 i nie zawiera nieliniowych rezystancji diod D 1 i D 2, a więc także nie zależy od temperaturowych zmian tych rezystancji. 11
12 Wymagania BHP Ćwicz. M 14 Multimetr cyfrowy Warunkiem przystąpienia do praktycznej realizacji ćwiczenia jest zapoznanie się z instrukcją BHP i instrukcją przeciw pożarową oraz przestrzeganie zasad w nich zawartych. Wybrane urządzenia dostępne na stanowisku laboratoryjnym mogą posiadać instrukcje stanowiskowe. Przed rozpoczęciem pracy należy zapoznać się z instrukcjami stanowiskowymi wskazanymi przez prowadzącego. W trakcie zajęć laboratoryjnych należy przestrzegać następujących zasad. Sprawdzić, czy urządzenia dostępne na stanowisku laboratoryjnym są w stanie kompletnym, nie wskazującym na fizyczne uszkodzenie. Sprawdzić prawidłowość połączeń urządzeń. Załączenie napięcia do układu pomiarowego może się odbywać po wyrażeniu zgody przez prowadzącego. Przyrządy pomiarowe należy ustawić w sposób zapewniający stałą obserwację, bez konieczności nachylania się nad innymi elementami układu znajdującymi się pod napięciem. Zabronione jest dokonywanie jakichkolwiek przełączeń oraz wymiana elementów składowych stanowiska pod napięciem. Zmiana konfiguracji stanowiska i połączeń w badanym układzie może się odbywać wyłącznie w porozumieniu z prowadzącym zajęcia. W przypadku zaniku napięcia zasilającego należy niezwłocznie wyłączyć wszystkie urządzenia. Stwierdzone wszelkie braki w wyposażeniu stanowiska oraz nieprawidłowości w funkcjonowaniu sprzętu należy przekazywać prowadzącemu zajęcia. Zabrania się samodzielnego włączania, manipulowania i korzystania z urządzeń nie należących do danego ćwiczenia. W przypadku wystąpienia porażenia prądem elektrycznym należy niezwłocznie wyłączyć zasilanie stanowisk laboratoryjnych za pomocą wyłącznika bezpieczeństwa, dostępnego na każdej tablicy rozdzielczej w laboratorium. Przed odłączeniem napięcia nie dotykać porażonego. 12
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA 2
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA 2 Kod przedmiotu: EZC 300 06 MULTIMETR CYFROWY
Bardziej szczegółowoMETROLOGIA EZ1C
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ
Bardziej szczegółowoWydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu: TS1C 200 008 ODDZIAŁYWANIE PRZYRZĄDU
Bardziej szczegółowoMETROLOGIA ES1D
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu: ES1D 200012 POMIAR REZYSTANCJI
Bardziej szczegółowoMIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod
Bardziej szczegółowoBADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Pomiary elektryczne wielkości nieelektrycznych 2 Kod przedmiotu:
Bardziej szczegółowoĆwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH
Bardziej szczegółowoLaboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną
Bardziej szczegółowoPOMIARY PARAMETRÓW PRZEPŁYWU POWIETRZA
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS 04456 Ćwiczenie nr
Bardziej szczegółowoStatyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Bardziej szczegółowoĆwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:
Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.
Bardziej szczegółowoUśrednianie napięć zakłóconych
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.
Bardziej szczegółowost. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem
Bardziej szczegółowoZakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
Bardziej szczegółowoLaboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
Bardziej szczegółowoPomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Bardziej szczegółowoĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia
ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza
Bardziej szczegółowoELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:
Bardziej szczegółowoWydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 POMIAR MOCY WATOMIERZEM
Bardziej szczegółowoĆWICZENIE 6 POMIARY REZYSTANCJI
ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej
Bardziej szczegółowoWZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
Bardziej szczegółowoPOMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia
Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich
Bardziej szczegółowoĆwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
Bardziej szczegółowoĆwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:
Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar wartości skutecznej, średniej wyprostowanej i maksymalnej sygnałów napięciowych o kształcie sinusoidalnym, prostokątnym
Bardziej szczegółowoLaboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych
Bardziej szczegółowoImię i nazwisko (e mail) Grupa:
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail) Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 12: Przetworniki analogowo cyfrowe i cyfrowo analogowe budowa i zastosowanie. Ocena: Podpis
Bardziej szczegółowo2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.
Ćwiczenie 2. 1. Czym się różni rzeczywiste źródło napięcia od źródła idealnego? Źródło rzeczywiste nie posiada rezystancji wewnętrznej ( wew = 0 Ω). Źródło idealne posiada pewną rezystancję własną ( wew
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
Bardziej szczegółowoENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10
Politechnika iałostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ENS1200 013 DNE OWOD TRÓJFOWEGO ODORNKEM POŁĄONYM W TRÓJKĄT Numer ćwiczenia
Bardziej szczegółowoImię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp
Bardziej szczegółowoĆw. 1: Wprowadzenie do obsługi przyrządów pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów
Bardziej szczegółowoWydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD
Wydział IMi Zadania z elektrotechniki i elektroniki 2014 A. W obwodzie jak na rysunku oblicz wskazanie woltomierza pracującego w trybie TU MS. Przyjmij diodę, jako element idealny. Dane: = 230 2sin( t),
Bardziej szczegółowoPOLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie
Bardziej szczegółowoZakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.
Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
Bardziej szczegółowoWOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int
WOLOMIEZ CYFOWY Metoda czasowa prosta int o t gdzie: stała całkowania integratora o we stąd: o we Ponieważ z f z więc N w f z f z a stąd: N f o z we Wpływ zakłóceń na pracę woltomierza cyfrowego realizującego
Bardziej szczegółowoBadanie obwodów z prostownikami sterowanymi
Ćwiczenie nr 9 Badanie obwodów z prostownikami sterowanymi 1. Cel ćwiczenia Poznanie układów połączeń prostowników sterowanych; prostowanie jedno- i dwupołówkowe; praca tyrystora przy obciążeniu rezystancyjnym,
Bardziej szczegółowoImię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego:
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach
Bardziej szczegółowoELEMENTY ELEKTRONICZNE TS1C
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO
Bardziej szczegółowoWydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 Ćwiczenie pt. POMIAR
Bardziej szczegółowoElektronika. Wzmacniacz operacyjny
LABORATORIUM Elektronika Wzmacniacz operacyjny Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych wzmacniaczy operacyjnych. 2. Układów pracy wzmacniacza
Bardziej szczegółowoLaboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO
Bardziej szczegółowoPodstawy użytkowania i pomiarów za pomocą MULTIMETRU
Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7
Bardziej szczegółowoPomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
Bardziej szczegółowoŹródła zasilania i parametry przebiegu zmiennego
POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz
Bardziej szczegółowoWZMACNIACZ ODWRACAJĄCY.
Ćwiczenie 19 Temat: Wzmacniacz odwracający i nieodwracający. Cel ćwiczenia Poznanie zasady działania wzmacniacza odwracającego. Pomiar przebiegów wejściowego wyjściowego oraz wzmocnienia napięciowego wzmacniacza
Bardziej szczegółowoĆwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia
Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych
Bardziej szczegółowoPAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII. Instrukcja do wykonania ćwiczenia laboratoryjnego:
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII Instrukcja do wykonania ćwiczenia laboratoryjnego: "Pomiary rezystancji metody techniczne i mostkowe" Tarnów
Bardziej szczegółowoE1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Bardziej szczegółowoLaboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
Bardziej szczegółowoZastosowania liniowe wzmacniaczy operacyjnych
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest
Bardziej szczegółowoLaboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych
Bardziej szczegółowoWZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:
Bardziej szczegółowoPOLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Bardziej szczegółowoKatedra Elektrotechniki Teoretycznej i Informatyki
Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa
Bardziej szczegółowoSystemy i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...
Bardziej szczegółowoSENSORY i SIECI SENSOROWE
SKRYPT DO LABORATORIUM SENSORY i SIECI SENSOROWE ĆWICZENIE 1: Pętla prądowa 4 20mA Osoba odpowiedzialna: dr hab. inż. Piotr Jasiński Gdańsk, 2018 1. Informacje wstępne Cele ćwiczenia: Celem ćwiczenia jest
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK
Bardziej szczegółowoMIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod
Bardziej szczegółowoĆwiczenie 4 Badanie uogólnionego przetwornika pomiarowego
Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk
Bardziej szczegółowoZASADY DOKUMENTACJI procesu pomiarowego
Laboratorium Podstaw Miernictwa Laboratorium Podstaw Elektrotechniki i Pomiarów ZASADY DOKUMENTACJI procesu pomiarowego Przykład PROTOKÓŁU POMIAROWEGO Opracowali : dr inż. Jacek Dusza mgr inż. Sławomir
Bardziej szczegółowoLaboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 6 Pomiary napięć przemiennych, przetworniki wartości średniej wyprostowanej Instrukcja Opracował: dr inż. Tomasz Osuch Instytut Systemów Elektronicznych Wydział
Bardziej szczegółowoPRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania
Bardziej szczegółowoPRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.
Bardziej szczegółowoWYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Fizyka Kod przedmiotu: ISO73, INO73 Ćwiczenie Nr 7 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Bardziej szczegółowoĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Bardziej szczegółowoĆw. 1: Wprowadzenie do obsługi przyrządów pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów
Bardziej szczegółowoPOMIARY TEMPERATURY I
Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi
Bardziej szczegółowoLaboratorium Elektroniczna aparatura Medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura Medyczna Ćwiczenie REOMETR IMPEDANCYJY Opracował: dr inŝ. Piotr Tulik Zakład InŜynierii Biomedycznej Instytut Metrologii i InŜynierii Biomedycznej
Bardziej szczegółowoĆwiczenie 9. Mostki prądu stałego. Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a
Bardziej szczegółowoTranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Bardziej szczegółowoSprawozdanie z ćwiczenia na temat. Badanie dokładności multimetru cyfrowego dla funkcji pomiaru napięcia zmiennego
Szablon sprawozdania na przykładzie ćwiczenia badanie dokładności multimetru..... ================================================================== Stronę tytułową można wydrukować jak podano niżej lub
Bardziej szczegółowoPaństwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada
Bardziej szczegółowoBadanie wzmacniacza niskiej częstotliwości
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje
Bardziej szczegółowoĆwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem
Bardziej szczegółowoElektronika. Wzmacniacz tranzystorowy
LABORATORIUM Elektronika Wzmacniacz tranzystorowy Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych i charakterystyk graficznych tranzystorów bipolarnych.
Bardziej szczegółowoĆwiczenie M03: Zasilacz stabilizowany
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Metrologia (TS1C 200 008) Tytuł ćwiczenia Ćwiczenie M03:
Bardziej szczegółowoĆwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.
Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do
Bardziej szczegółowoWzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
Bardziej szczegółowoBogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...
Bardziej szczegółowoPodstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
Bardziej szczegółowoWIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW
POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa
Bardziej szczegółowoWstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru
Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania
Bardziej szczegółowoSpis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka Kod przedmiotu: ESC00 009 (studia stacjonarne)
Bardziej szczegółowoLaboratorium miernictwa elektronicznego - Narzędzia pomiarowe 1 NARZĘDZIA POMIAROWE
Laboratorium miernictwa elektronicznego - Narzędzia pomiarowe 1 NARZĘDZIA POMIAROWE CEL ĆWICZENIA Poznanie źródeł informacji o parametrach i warunkach eksploatacji narzędzi pomiarowych, zapoznanie ze sposobami
Bardziej szczegółowoBadanie wzmacniacza operacyjnego
Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór
Bardziej szczegółowoPomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7
Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania
Bardziej szczegółowoĆw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2011/2012) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1&2: Wprowadzenie do obsługi przyrządów
Bardziej szczegółowoLABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń
Bardziej szczegółowoĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w
Bardziej szczegółowoBadanie diody półprzewodnikowej
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne
Bardziej szczegółowoLaboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
Bardziej szczegółowoELEMENTY ELEKTRONICZNE
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 2.0 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne
Bardziej szczegółowoPodstawowe zastosowania wzmacniaczy operacyjnych
ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych
Bardziej szczegółowoBADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
Bardziej szczegółowoZastosowania nieliniowe wzmacniaczy operacyjnych
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest
Bardziej szczegółowoĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h)
ĆWICZENIE LABORATORYJNE TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego
Bardziej szczegółowo