REDEFINICJA IDEI INTELIGENTNYCH SYSTEMÓW WSPOMAGANIA DECYZJI
|
|
- Henryka Kasprzak
- 8 lat temu
- Przeglądów:
Transkrypt
1 REDEFINICJA IDEI INTELIGENTNYCH SYSTEMÓW WSPOMAGANIA DECYZJI Wiesław Wolny, Piotr Zadora 1. Wprowadzenie Systemy wspomagania decyzji (SWD) to bardzo pojemny definicyjnie termin. Został on spopularyzowany przez Keena i Scott Mortona (Keen & Scott Morton, 1978). ChociaŜ pierwsze prace o tej tematyce powstały przeszło dziesięć lat wcześniej. Zwykle definiuje się je bardzo ogólnie. Przykładowo: System wspomagania decyzji to system informatyczny, który dostarcza informacje w danej dziedzinie przy wykorzystaniu analitycznych modeli decyzyjnych z dostępem do baz danych w celu wspomagania decydentów w skutecznym działaniu w kompleksowym i źle ustrukturalizowanym środowisku (Klein & Methlie, 1992). Z kolei (Spraque & Carlson, 1982) zdefiniowali systemy wspomagania decyzji jako interaktywne oparte na komputerach systemy pomagające decydentom wykorzystać dane i modele dla rozwiązania źle ustrukturalizowanych problemów. Obecnie najpopularniejszą formą systemów wspomagania decyzji wydają się być systemy określane mianem Business Intelligence (BI). DuŜe szanse realizacji celów stawianych przed systemami wspomagania decyzji, a nawet poszerzenia ich zakresu leŝą w badaniach naukowych w dziedzinie sztucznej inteligencji. Technologia sztucznej inteligencji w dziedzinie zarządzania słuŝyć powinna między innymi usprawnieniu pra-
2 cy poprzez dostarczanie informacji ułatwiających proces podejmowania decyzji. Wykorzystanie wiedzy w postaci baz wiedzy pozwoliło rozszerzyć moŝliwości systemów wspomagania decyzji. Tym samym wydzielono nową klasę SWD, nazwaną inteligentnymi systemami wspomagania decyzji (ISWD). Systemy wspomagania decyzji umoŝliwiają tworzenie modeli, budowanie scenariuszy, wykorzystanie algorytmów numerycznych. Poprzez połączenie ich z typowymi dla systemów sztucznej inteligencji rodzajami decyzji, klasyczny model SWD moŝna rozszerzyć w następujących kierunkach: porada ekspercka w specyficznym obszarze problemu; wyjaśnianie wyników wnioskowania; inteligentne wspomaganie decyzji; pomoc przy formułowaniu zapytań; inteligentne wspomaganie w procesie budowy modelu. Celem inteligentnych systemów wspomagania decyzji jest zrealizowanie synergii pomiędzy systemami wspomagania decyzji i metodami sztucznej inteligencji. System taki powinien łączyć moŝliwości modelowania SWD i przetwarzania symbolicznego, właściwego dla sztucznej inteligencji. Systemy wspomagania decyzji posiadały bezpośredni dostęp do baz danych w firmie oraz, na własny uŝytek, bardzo często zakładały własne zbiory danych waŝne z ich punktu widzenia. Współczesne inteligentne systemy wspomagania decyzji to nie tylko dostęp do danych i modeli. Nastąpił znaczny rozwój w dziedzinie przetwarzania analitycznego danych (Online Analitycal Processing - OLAP), hurtowni danych oraz
3 wspomaganego metodami sztucznej inteligencji odkrywania wiedzy w bazach danych (Data Mining). 2. Klasyczne pojęcie ISWD Oprócz klasycznego widzenia procesu decyzyjnego istnieje takŝe rozumienie tego procesu jako opartego na wiedzy. To podejście zakłada, Ŝe decyzja składa się z fragmentów wiedzy opisujących istotę działania, które jest konieczne do podjęcia. Decyzja moŝe być reprezentowana za pomocą fragmentu wiedzy opisowej. W tym ujęciu, podejmowanie decyzji identyfikuje się jako proces tworzenia nowego, wcześniej nieistniejącego fragmentu wiedzy. Powstaje nowa wiedza poprzez przekształcenie i łączenie ze sobą fragmentów istniejącej wiedzy. W tym znaczeniu system wspomagania decyzji ułatwia przeprowadzanie takich przekształceń podobnie jak maszyna ułatwia produkowanie dóbr materialnych. Takie ujęcie bliskie jest sztucznej inteligencji, a w szczególności dziedzinie systemów ekspertowych. W latach osiemdziesiątych liczne grono autorów podejmowało problem łączenia systemów ekspertowych z systemami wspomagania decyzji. Między innymi były to prace Sroki (Sroka, 1994), Stanka (Stanek, 1994), Klein i Methlie (Klein & Methlie, 1992). Integracja ta opisywana była z uŝyciem róŝnych nazw między innymi: SE-SWD, czy Inteligentny SWD. Jej celem było rozszerzenie skuteczności systemów wspomagania decyzji oraz wykorzystanie SWD do rozwiązywania złoŝonych problemów. Integracja ta miała umoŝliwić połączenie systemów ekspertowych z bazą modeli lub z całym SWD.
4 Inteligentny system wspomagania decyzji definiowano w tym ujęciu jako narzędzie informatyczne wspomagające proces podejmowania decyzji złoŝonych i słabo ustrukturalizowanych w ramach określonej klasy, umoŝliwiające: wspomaganie analizy procesu decyzyjnego; projektowanie doskonalszych narzędzi uczenia się podejmowania decyzji; rozwój łatwego dialogu; wspomaganie doboru elementów systemu do kreowania rozwiązań; gromadzenie i rozszerzanie wiedzy dostarczanej z modeli i metod symbolicznych w bazie wiedzy, bazie danych, hurtowni danych i Web (Kisielnicki & Sroka, 2001). Wiedzę dotyczącą danej dziedziny i wiedzę o charakterze metodologii podejmowania decyzji z tej dziedziny moŝna gromadzić za pomocą takich form, jak modele oraz bazy wiedzy lub łącząc obie te formy Inteligentny system wspomagania decyzji moŝe doradzać, w jaki sposób strukturyzować sytuację decyzyjną, rozwiązać problem i jak zastosować rozwiązanie. W ISWD moŝliwości SWD zostały rozszerzone, dzięki nowym elementom, takimi jak baza wiedzy, system zarządzania bazą wiedzy, mechanizm wnioskowania, mechanizm wyjaśniania i dodatkowe narzędzia systemowe. Prace nad taką koncepcją inteligentnych systemów wspomagania decyzji, zaowocowały min. podejściem opartym na paradygmacie wyraźnego oddzielenia metod rozwiązywania problemu od wiedzy o problemie paradygmatu szeroko stosowanego w konstrukcji systemów ekspertowych. Kluczowa zasada procesu rozwiązywania problemów opiera się bowiem na mentalnej reprezentacji zewnętrznego problemu decyzyjnego. Model sytuacji decyzyjnej konstru-
5 owany jest w umyśle decydenta, następnie, poprzez przetwarzanie symboli, operując na tak skonstruowanym modelu, otrzymywane jest rozwiązanie problemu. Stosunkowo szybko okazało się jednak, iŝ proponowane, w ramach tej koncepcji, rozwiązania nie spełniają pokładanych w nich oczekiwań i są zbyt trudne do implementacji. Komputery nie były wstanie rozwiązać problemów, nawet tych, które dla człowieka wydają się być problemami trywialnymi. 3. Nowe koncepcje ISWD Pierwsza generacja systemów ekspertowych oparta była na jednolitej strukturze wiedzy heurystycznej wiedzy ekspertów. Proces pozyskiwania wiedzy oparty był na stosunkowo prostych zasadach współpracy pomiędzy ekspertem, a tzw. inŝynierem wiedzy (Mulawka, 1996). Zadaniem inŝyniera wiedzy było zakodowanie (najczęściej w postaci reguł działania) informacji o sposobie rozwiązywania problemów przez eksperta (Gołuchowski, 1997). Druga generacja systemów ekspertowych koncentruje się na identyfikacji wielu, róŝnych typów wiedzy i wykorzystaniu jej, do budowy efektywnego procesu rozwiązywania problemów (Klein & Methlie, 1992). Na uwagę zasługuje tu oddzielenie np. wiedzy sterującej procesem (control knowledge) od wiedzy o istocie dziedziny (domain knowledge) oraz organizacja wiedzy w wielopoziomowe struktury. Współcześnie inteligentne systemy wspomagania decyzji definiuje się w czterech aspektach: języka; moŝliwości prezentacyjnych; przetwarzania wiedzy; rozwiązywania problemów (Holsapple, 2004).
6 W aspekcie językowym rozpatruje się komunikaty jakie ISWD moŝe przyjąć i przetworzyć. Aspekt prezentacyjny opisuje te komunikaty, które system moŝe wygenerować na zewnątrz. W aspekcie przetwarzania wiedzy opisuje się zasoby wiedzy systemu. Cechą wspólną wymienionych trzech pierwszych aspektów jest odnoszenie się do reprezentacji gromadzonej informacji. Dopiero rozpatrywanie systemów wspomagania decyzji jako narzędzia rozwiązywania problemów doprowadza do traktowania ich w sposób całościowy. Przekładając to na system pojęć stosowanych podczas projektowania systemów informatycznych, czwarty aspekt sprowadza się do tworzenia modułu nadzorującego pracę pozostałych. Taki moduł bywa często nazywany silnikiem ISWD. Jednym z kierunków rozwoju wzmacniającym rolę ISWD we współczesnej organizacji jest łączenie ze sobą róŝnych metod przetwarzania, wnioskowania i poszukiwania wiedzy rozwijanych rozłącznie w ramach Sztucznej Inteligencji w jeden spójny hybrydowy system doradczy. Znane są dwa ogólne podejścia do tworzenia takich systemów hybrydowych: CI - Computational Intelligence oraz SC - Soft Computing (Rudas, 2004). System jest zgodny z podejściem CI lub obliczeniowo inteligentny, gdy przetwarza wyłącznie niskopoziomowe dane numeryczne, zawiera elementy rozpoznawania wzorców, nie posługuje się wiedzą w sensie określonym w ramach Sztucznej Inteligencji i dodatkowo wykazuje się na zewnątrz zdolnością do dostosowywania się, odpornością na błędy obliczeniowe, szybkością w zbliŝonym do ludzkiego sposobie reagowania i ilości popełnianych pomyłek na zbliŝonym do ludzkiego poziomie. Te kryteria wypełniane są przez systemy inkorporujące następujące metody:
7 sieci neuronowe, algorytmy genetyczne, logikę rozmytą, programowanie ewolucyjne i symulacje Ŝycia. Drugie podejście (SC) jest kolejnym krokiem rozwojowym w teorii budowy systemów hybrydowych wykorzystujących metody sztucznej inteligencji. Zakłada ono, Ŝe tworzone systemy doradcze przetwarzają dodatkową informację ustrukturalizowaną, a więc o określonej budowie, hierarchii i semantyce. NaleŜy przy tym podkreślić róŝnicę pomiędzy podejściem SC rozumianym jako miękkie, a całym spektrum klasycznych metod technik obliczeniowych (programowania matematycznego, analizy numerycznej, analizy funkcyjnej, logiki binarnej) i zaliczanych do Hard Computing twardego przetwarzania. Podejście SC koncentruje się na tworzeniu systemów przetwarzających wiedzę i poza klasycznymi metodami występującymi juŝ w podejściu CI wykorzystuje elementy teorii uczenia maszynowego, teorii chaosu i wnioskowania probabilistycznego. Jako definicję inteligentnych systemów wspomagania decyzji moŝna przyjąć, iŝ są to systemy, w których do rozwiązania problemu stosowane są róŝne techniki sztucznej inteligencji. Oczywiście naturalnym kierunkiem rozwoju inteligentnych systemów wspomagania decyzji jest równieŝ integracja z konwencjonalnymi technikami przetwarzania danych (języki programowania obiektowego) oraz systemami baz i hurtowni danych. Najczęściej wymieniane podstawowe techniki sztucznej inteligencji, stanowiące komponenty w aplikacjach inteligentnych, obejmują: systemy ekspertowe, sieci neuronowe, systemy odkrywania wiedzy, logikę rozmytą, algorytmy genetyczne oraz systemy wnioskujące na podstawie przypadków (CBR). Z kolei w dziedzinie technologii baz danych, najistot-
8 niejsze znaczenie mają hurtownie danych, analityczne przetwarzanie danych (OLAP) oraz wspomagane metodami sztucznej inteligencji, odkrywanie wiedzy w bazach danych (Data Mining). 4. Podsumowanie Tradycyjne rozumienie inteligentnych systemów wspomagania decyzji wydaje się obecnie zbyt wąskie. Współcześnie ISWD moŝna i naleŝy rozumieć w znacznie szerszym kontekście. Nie tylko jako integrację systemów wspomagania decyzji i systemów ekspertowych, ale jako integrację wielu technik sztucznej inteligencji, baz i hurtowni danych oraz analitycznego przetwarzania danych w celu dostarczenia informacji decyzyjnej. Integracja ta odbywa się nie tylko na poziomie zastosowanej technologii, ale coraz częściej dotyczy kontekstu prowadzonej działalności biznesowej. Twórcy inteligentnych systemów wspomagania decyzji zmuszeni są brać pod uwagę nie tyle bieŝące procesy biznesowe, lecz nowozdefiniowane rodzaje aktywności gospodarczej mające cechę powtarzalności i uwzględniające moŝliwości maksymalnie szybkiego przesyłania danych o wzrastającym w czasie stopniu komplikacji i zawartości treściowej (od prostych komunikatów alfanumerycznych, do strumieni audio/wideo wysokiej jakości). W takich warunkach szczególne trudne staje się dostarczanie warstwie zarządczej informacji przydatnych do szybkiego podejmowania trafnych decyzji. W konsekwencji duŝe znaczenie powinno być nadawane funkcjonalności udostępnianej przez ISWD zbudowane w modelu hybrydowym i łączące wielorakie technologie symulacyjne, przetwarzania wiedzy i komunikacyjne.
9 Literatura 1. Gołuchowski J. (1997). Inteligentne systemy diagnoz ekonomicznych. Katowice: Wydawnictwo Uczelniane AE katowice. 2. Holsapple C. W. (2004). Decision Support Systems. W: Encyclopedia of Information Systems. Elsevier Inc. 3. Keen P. G., & Scott Morton M. S. (1978). Decision Support Systems: An Organizational Perspective. Reading, MA: Addison- Wesley. 4. Kisielnicki J., & Sroka H. (2001). Systemy informatyczne biznesu. Warszawa: Agencja Wydawnicza "Placet". 5. Klein M., & Methlie L. B. (1992). Expert Systems. A Decision Support Approach with Applications in Management and Finance. Addison-Wesley Publishing Company. 6. Mulawka J. J. (1996). Systemy ekspertowe. Warszawa: WNT 7. Rudas I. J. (2004). Hybrid Systems, w: Encyclopedia of Information Systems. Elsevier Inc.. 8. Spraque R. H., & Carlson E. D. (1982). Building Effective Decision Support Systems. Englewood Cliffs NJ: Prentice Hall. 9. Sroka H. (1994). Systemy Ekspertowe - komputerowe wspomaganie decyzji w zarządzaniu i finansach. Katowice: AE Katowice. 10. Stanek S. (1994). Systemy bazujące na wiedzy w formułowaniu strategii organizacji. Katowice: Wydawnictwo Uczelniane AE Katowice.
10 Informacje o autorach dr Wiesław Wolny dr Piotr Zadora Katedra Informatyki Akademia Ekonomiczna ul. Bogucicka Katowice Polska Numer telefonu (fax) +48/32/ wolny@ae.katowice.pl zadora@ae.katowice.pl
Wiesław Wolny, Piotr Zadora Systemy hybrydowe jako nowa generacja systemów wspomagania decyzji. Ekonomiczne Problemy Usług nr 57,
Wiesław Wolny, Piotr Zadora Systemy hybrydowe jako nowa generacja systemów wspomagania decyzji Ekonomiczne Problemy Usług nr 57, 725-731 2010 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 597 EKONOMICZNE
HYBRYDOWE SYSTEMY WSPOMAGANIA DECYZJI JAKO NOWA FORMA INTELIGENTNYCH SYSTEMÓW WSPOMAGANIA DECYZJI. Piotr Zadora, Wiesław Wolny
HYBRYDOWE SYSTEMY WSPOMAGANIA DECYZJI JAKO NOWA FORMA INTELIGENTNYCH SYSTEMÓW WSPOMAGANIA DECYZJI Piotr Zadora, Wiesław Wolny Wprowadzenie Rozwój technik inteligentnych daje podstawy do poszerzenia koncepcji
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Systemy Decision suport systems Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia II stopnia
technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych.
Informatyka Coraz częściej informatykę utoŝsamia się z pojęciem technologii informacyjnych. Za naukową podstawę informatyki uwaŝa się teorię informacji i jej związki z naukami technicznymi, np. elektroniką,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Typy systemów informacyjnych
Typy systemów informacyjnych Information Systems Systemy Informacyjne Operations Support Systems Systemy Wsparcia Operacyjnego Management Support Systems Systemy Wspomagania Zarzadzania Transaction Processing
Narzędzia Informatyki w biznesie
Narzędzia Informatyki w biznesie Przedstawiony program specjalności obejmuje obszary wiedzy informatycznej (wraz z stosowanymi w nich technikami i narzędziami), które wydają się być najistotniejsze w kontekście
STUDIA I MONOGRAFIE NR
STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:
KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA
KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA Wykład 8 Narzędzia zarządzania informacją cz. 2 Dr inż. Mariusz Makuchowski Baza wiedzy Baza wiedzy (ang. Knowledgebase) stanowi swoisty rejestr problemów zgłaszanych
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK STUDIÓW INFORMATYCZNE TECHNIKI ZARZĄDZANIA
KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK STUDIÓW INFORMATYCZNE TECHNIKI ZARZĄDZANIA Nazwa kierunku studiów: Informatyczne Techniki Zarządzania Ścieżka kształcenia: IT Project Manager, Administrator Bezpieczeństwa
WIEDZA T1P_W06. K_W01 ma podstawową wiedzę o zarządzaniu jako nauce, jej miejscu w systemie nauk i relacjach do innych nauk;
SYMBOL Efekty kształcenia dla kierunku studiów: inżynieria zarządzania; Po ukończeniu studiów pierwszego stopnia na kierunku inżynieria zarządzania, absolwent: Odniesienie do obszarowych efektów kształcenia
Inteligentne Multimedialne Systemy Uczące
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19
SPIS TREŚCI WSTĘP 15 ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19 1.1. Pojęcie i rozwój systemów ekspertowych 19 1.1.1. Definiowanie systemu ekspertowego w literaturze przedmiotu 20
Edukacja informatyczna w gimnazjum i w liceum w Nowej Podstawie Programowej
Edukacja informatyczna w gimnazjum i w liceum w Nowej Podstawie Programowej Maciej M. Sysło WMiI, UMK Plan Podstawa Edukacja informatyczna w Podstawie Informatyka a TIK Rozwój kształcenia informatycznego:
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Zakład Sterowania Systemów
Zakład Sterowania Systemów Zespół ZłoŜonych Systemów Kierownik zespołu: prof. dr hab. Krzysztof Malinowski Tematyka badań i prac dyplomowych: Projektowanie algorytmów do podejmowania decyzji i sterowania
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
UCHWAŁA NR 46/2013. Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku
UCHWAŁA NR 46/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku w sprawie: korekty efektów kształcenia dla kierunku informatyka Na podstawie ustawy z dnia
Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA
Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do
Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy (cz. I)
Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Pytania z przedmiotów kierunkowych
Pytania na egzamin dyplomowy z przedmiotów realizowanych przez pracowników IIwZ studia stacjonarne I stopnia Zarządzanie i Inżynieria Produkcji Pytania z przedmiotów kierunkowych 1. Co to jest algorytm?
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2014 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
bo od managera wymaga się perfekcji
bo od managera wymaga się perfekcji MODELOWANIE PROCESÓW Charakterystyka modułu Modelowanie Procesów Biznesowych (BPM) Modelowanie procesów biznesowych stanowi fundament wdroŝenia systemu zarządzania jakością
a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów
1. PROGRAM KSZTAŁCENIA 1) OPIS EFEKTÓW KSZTAŁCENIA a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych i technicznych Objaśnienie oznaczeń: I efekty
Symbol efektu kształcenia
Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie
Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Matryca pokrycia efektów kształcenia
Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego wyboru) Efekty
Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński
Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych
INŻYNIERIA OPROGRAMOWANIA
INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH Modeling and analysis of computer systems Kierunek: Informatyka Forma studiów: Stacjonarne Rodzaj przedmiotu: Poziom kwalifikacji: obowiązkowy
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Efekty uczenia się na kierunku. Logistyka (studia pierwszego stopnia o profilu praktycznym)
Efekty uczenia się na kierunku Załącznik nr 2 do uchwały nr 412 Senatu Uniwersytetu Zielonogórskiego z dnia 29 maja 2019 r. Logistyka (studia pierwszego stopnia o profilu praktycznym) Tabela 1. Kierunkowe
Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach
Uniwersytet Śląski w Katowicach str. 1 Efekty dla: nazwa kierunku poziom profil Informatyka inżynierska pierwszy ogólnoakademicki Kod efektu (kierunek) K_1_A_I_W01 K_1_A_I_W02 K_1_A_I_W03 K_1_A_I_W04 K_1_A_I_W05
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Zarządzanie Rodzaj przedmiotu: specjalnościowy Opiekun: prof. nadzw. dr hab. Zenon Biniek Poziom studiów (I lub II stopnia): II stopnia Tryb studiów:
UCHWAŁA NR 60/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 21 listopada 2013 roku
UCHWAŁA NR 60/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 21 listopada 2013 roku w sprawie: korekty efektów kształcenia dla kierunku informatyka Na podstawie ustawy z dnia
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
METODY WSPOMAGANIA DECYZJI MENEDŻERSKICH
PREZENTACJA SEPCJALNOŚCI: METODY WSPOMAGANIA DECYZJI MENEDŻERSKICH WYDZIAŁ INFORMATYKI I KOMUNIKACJI KIERUNEK INFORMATYKA I EKONOMETRIA SEKRETARIAT KATEDRY BADAŃ OPERACYJNYCH Budynek D, pok. 621 e-mail
Efekt kształcenia. Wiedza
Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister inżynier 1. Umiejscowienie
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
Praca dyplomowa magisterska
KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH Praca dyplomowa magisterska Temat: Komputerowy system wspomagania wiedzy:
Technologie Internetowe i Algorytmy
Technologie Internetowe i Algorytmy Katedra Algorytmów i Modelowania Systemów Cel Chcemy zapewnić absolwentom: dobre przygotowanie teoretyczne znajomość nowoczesnych technologii Profil absolwenta Przedmioty
Usługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej
Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE Efekty uczenia się Kierunek Informatyka Studia pierwszego stopnia Profil praktyczny Umiejscowienie kierunku informatyka w obszarze kształcenia: Obszar wiedzy: nauki
INFORMATYKA Pytania ogólne na egzamin dyplomowy
INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja
Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r.
PLAN STUDIÓW DLA KIERUNKU INFORMATYKA STUDIA: INŻYNIERSKIE TRYB STUDIÓW: STACJONARNE Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 201 r. Egzamin po semestrze Obowiązuje od naboru na rok akademicki
Opis zakładanych efektów kształcenia dla kierunków studiów
Opis zakładanych efektów kształcenia dla kierunków studiów Kierunek studiów: LOGISTYKA Obszar kształcenia: obszar nauk technicznych i społecznych Dziedzina kształcenia: nauk technicznych i ekonomicznych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROJEKTOWANIE SYSTEMÓW INFORMATYCZNYCH I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z inżynierii oprogramowania w zakresie C.
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH. Modeling and analysis of computer systems Forma studiów: Stacjonarne
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Modeling and analysis of computer systems Forma studiów: Stacjonarne Rodzaj przedmiotu: obowiązkowy w ramach specjalności:
Efekty kształcenia dla: nazwa kierunku
Uniwersytet Śląski w Katowicach str. 1 Efekty dla: nazwa kierunku Informatyka poziom pierwszy (licencjat) profil ogólnoakademicki Załącznik nr 46 do uchwały nr. Senatu Uniwersytetu Śląskiego w Katowicach
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe
STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe Technologie informacyjne Prof. dr hab. Zdzisław Szyjewski 1. Rola i zadania systemu operacyjnego 2. Zarządzanie pamięcią komputera 3. Zarządzanie danymi
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
W A R S Z T A T Y. na bazie efektów kształcenia PROF. DR HAB. ANDRZEJ RADECKI. PWSZ Skierniewice 17 maja 2011
PWSZ Skierniewice 17 maja 2011 KRAJOWE RAMY KWALIFIKACJI - budowa programów na bazie efektów kształcenia W A R S Z T A T Y DLA NAUK PRZYRODNICZYCH PROF. DR HAB. ANDRZEJ RADECKI PLAN WARSZTATÓW przygotowano
Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)
EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE "PRZEMYSŁ 4.0"
ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE "PRZEMYSŁ 4.0" Dr inż. Andrzej KAMIŃSKI Instytut Informatyki i Gospodarki Cyfrowej Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie
Informatyka. II stopień. Ogólnoakademicki. Stacjonarne/Niestacjonarne. Kierunkowy efekt kształcenia - opis WIEDZA
Załącznik nr 6 do uchwały nr 509 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Potencjał społeczności lokalnej-podstawowe informacje
Projekt Podlaska Sieć Partnerstw na rzecz Ekonomii Społecznej nr POKL.07.02.02-20-016/09 Potencjał społeczności lokalnej-podstawowe informacje Praca powstała na bazie informacji pochodzących z publikacji
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Krzysztof T. Psurek Politechnika Śląska Wydział Organizacji i Zarządzania
Streszczenie ARCHITEKTURA SYSTEMU EKSPERTOWEGO W PRZEDSIĘBIORSTWIE ROZPROSZONYM Krzysztof T. Psurek Politechnika Śląska Wydział Organizacji i Zarządzania ktp@ps.edu.pl W pracy przedstawiono podstawową
PRZEWODNIK PO PRZEDMIOCIE. stacjonarne. I stopnia III. Leszek Ziora, Tomasz Turek. ogólnoakademicki. kierunkowy
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Systemy wspomagania zarządzania ERP Zarządzanie Jakością i Produkcją
STUDIA PODYPLOMOWE. Analiza i Eksploracja Danych Rynkowych i Marketingowych. Podstawa prawna
STUDIA PODYPLOMOWE Analiza i Eksploracja Danych Rynkowych i Marketingowych Rodzaj studiów: doskonalące Liczba godzin: 250 Liczba semestrów: dwa semestry Kierownik studiów: dr Paweł Kaczmarczyk Koszt studiów
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08
Spis treści Wstęp.............................................................. 7 Część I Podstawy analizy i modelowania systemów 1. Charakterystyka systemów informacyjnych....................... 13 1.1.
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Systemy Informatyki Przemysłowej
Systemy Informatyki Przemysłowej Profil absolwenta Profil absolwenta Realizowany cel dydaktyczny związany jest z: tworzeniem, wdrażaniem oraz integracją systemów informatycznych algorytmami rozpoznawania
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:
Uchwała Nr 59/2016/IX Senatu Politechniki Lubelskiej z dnia 15 grudnia 2016 r.
Uchwała Nr 59/2016/IX Senatu Politechniki Lubelskiej z dnia 15 grudnia 2016 r. w sprawie określenia efektów kształcenia dla studiów podyplomowych Grafika komputerowa w technice i reklamie prowadzonych
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA
T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01
Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe
STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe Technologie informacyjne prof. dr hab. Zdzisław Szyjewski 1. Rola i zadania systemu operacyjnego 2. Zarządzanie pamięcią komputera 3. Zarządzanie danymi
Business Intelligence
Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania
zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym
Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku