Definicja światłowodu
|
|
- Dorota Matusiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 ŚWIATŁOWODY
2 Definicja światłowodu Światłowód - falowód optyczny przenoszący światło dzięki zachodzącemu w nim zjawisku wielokrotnego, całkowitego wewnętrznego odbicia.
3 WIDMO FAL ELEKTROMAGNETYCZNYCH
4 WIDMO FAL ELEKTROMAGNETYCZNYCH
5 Budowa światłowodu Apertura kątowa jest to maksymalny kąt, pod jakim można wprowadzić promień światła do światłowodu. Mody światłowodowe - określają rozkład pola optycznego i fizyczny kształt wiązki świetlnej wewnątrz światłowodu. Posługując się znacznym uproszczeniem, pojedynczy mod światłowodowy można utożsamić z jednym promieniem światła podróżującym wzdłuż światłowodu. Przepływność - maksymalna ilość danych możliwa do przesłania przez medium (np. światłowód) w danej jednostce czasu (zazwyczaj w ciągu jednej sekundy). Rdzeń - znajduje się pośrodku kabla i jest medium propagacyjnym sygnału. Wykonany jest ze szkła kwarcowego (GOF) lub plastiku (POF). Obecne rdzenie mają średnice od 8 mikronów dla światłowodu jednomodowego i do 1000 mikronów dla wielomodowych światłowodów plastikowych. Płaszcz - wykonany jest z materiału o niższym współczynniku załamania światła niż rdzeń. Różnica ta powoduje, że zachowuje się niczym lustro otaczające rdzeń, kierując promień do wnętrza rdzenia, formując falę optyczną
6 Materiały stosowane do budowy światłowodów Ze względu na materiały światłowody możemy dzielić na następujące grupy: szklane, plastikowe i półprzewodnikowe. Światłowód szklany (GOF) - wykorzystywany jest do przesyłania danych na dużych odległościach i z wielkimi prędkościami. W przeźroczystym włóknie materiał rdzenia stanowi nieorganiczne tworzywo. Światłowód plastikowy (POF) - wykorzystywany jest jedynie do lokalnego przesyłania danych między urządzeniami na małe odległości i z małymi prędkościami (w porównaniu ze światłowodami szklanymi). W przeźroczystym włóknie materiał rdzenia stanowi tworzywo organiczne. Światłowody plastikowe charakteryzują się trzema podstawowymi wymiarami: średnicą rdzenia, średnicą płaszcza oraz średnicą pokrycia zewnętrznego. Typowe zastosowania światłowodów plastikowych to automatyka przemysłowa, motoryzacja, sprzęt domowy (np. Toslink) i rozwiązania typu Fiber To The Desktop (FTTD). Światłowody ze szklanym rdzeniem i plastikowym płaszczem (HCS/PCS, PCF) Światłowód półprzewodnikowy - charakteryzuje się półprzewodnikowym rdzeniem, najczęściej jest to Arsenek galu (GaAs).
7 Materiały stosowane do budowy światłowodów Grubość rdzenia i płaszcza. Najpopularniejsze rozmiary: 9/125 µm (jednomodowe GOF) 50/125 i 62,5/125 µm (wielomodowe GOF) 200/230 µm i 400/430 µm (HCS/PCS) 980/1000 µm (POF) Materiały stosowane do wzmocnienia to min. kevlar
8 Całkowite wewnętrzne odbicie Jeżeli światło pada na granicę dwóch ośrodków o różnej gęstości (z ośrodka o większej gęstości do ośrodka o mniejszej gęstości pod kątem większym od tzw. kata granicznego, to ulega ono tylko odbiciu zgodnie z prawem odbicia i żadna jego część nie wchodzi do drugiego ośrodka.
9 Całkowite wewnętrzne odbicie Dopiero powyżej kąta granicznego następuje całkowite wewnętrzne odbicie.
10 Całkowite wewnętrzne odbicie Jeżeli światło przechodzi z ośrodka I (o dużej gęstości), w którym rozchodzi się z szybkością v1, do ośrodka drugiego ( o małej gęstości), w którym jego szybkość v2 jest większa, kąt załamania jest większy od kąta padania. Można się więc domyślić, że dla pewnego kąta padania kąt złamania będzie równy 90 stopni. Dla kątów padania większych od kąta granicznego, na granicy ośrodków następuje tylko odbicie, czyli światło nie przedostaje się do drugiego ośrodka. Tylko promień czarny przechodzi do drugiego ośrodka ponieważ nadany jest pod kątem mniejszym od granicznego.
11 Całkowite wewnętrzne odbicie Przejście modu przez światłowód. Odbicie jego od granicy rdzeń-płaszcz
12 Całkowite wewnętrzne odbicie Obserwując powierzchnię wody pod tym kątem, widzimy obraz żółwia. Obraz ten powstał poprzez całkowite wewnętrzne odbicie.
13 Światłowód jednomodowy Światłowód jednomodowy - światłowód, w którym możliwa jest transmisja tylko jednej wiązki światła. Promień świetlny biegnie wzdłuż włókna równolegle do osi rdzenia. Dzięki temu wiązka świetlna niosąca informacje nie ulega szybkiemu rozmyciu (dyspersji), co zwiększa odległość, na jaką można przesłać dane bez potrzeby ich regeneracji (do kilkuset km). Mała średnica rdzenia w światłowodach jednomodowych (4-10 µm) ogranicza możliwość jednoczesnego wprowadzenia do wnętrza włókna tylko pojedynczej wiązki światła. Sygnał wyjściowy charakteryzuje się niemal identycznym natężeniem impulsu optycznego oraz zbliżonym do wejściowego rozkładem natężenia pola optycznego.
14 Światłowód wielomodowy Światłowód wielomodowy - jego konstrukcja umożliwia jednoczesne nadawanie kilku sygnałów świetlnych. W celu zwiększenia "czytelności" informacji do ich budowy stosuje się włóka o skokowej bądź gradientowej zmianie współczynnika załamania światła. Konstrukcja wielomodowa pozwala na jednoczesny przesył kilku pakietów danych (wiązek światła). W rdzeniu o średnicy µm ze względu na występowanie niekorzystnego zjawiska dyspersji, sygnał wejściowy ulega rozmyciu na wyjściu, a im dłuższy dystans ma światło do pokonania tym zaburzenie sygnału jest większe. Aby zminimalizować rozmycie impulsu wyjściowego, stosuje się czasem światłowody wielomodowe z gradientowym współczynnikiem załamania światła.
15 Światłowód wielomodowy o rozkładzie skokowym W światłowodzie tego typu współczynnik załamania zmienia się skokowo pomiędzy rdzeniem a płaszczem. Mody prowadzone są w rdzeniu pod różnymi kątami, przez co mają różną drogę do przebycia. Prędkość światła zależy od ośrodka, w którym światło się rozchodzi: w próżni ta prędkość wynosi km/s a w światłowodzie km/s, dlatego czasy przejścia promieni przez mody światłowodu są różne. Jest to przyczyną tzw. dyspersji międzymodowej, która powoduje poszerzenie impulsu docierającego na koniec światłowodu. Powoduje to ograniczenie pasma i odległości, na jaką mogą być przesyłane sygnał
16 Światłowód wielomodowy o rozkładzie gradientowym Rdzeń światłowodu gradientowego ma budowę warstwową. Każda jest inaczej domieszkowana, dzięki czemu współczynnik załamania światła zmienia się w sposób ciągły. Największą wartość ma na osi rdzenia, zaś najmniejszą na granicy z płaszczem. Światłowody gradientowe zapewniają dla różnych modów (poruszających się po łukach) tę samą prędkość rozchodzenia wzdłuż modu. Dzieje się tak, gdyż fale rozchodzące się w większej odległości od środka poruszają się w warstwach o mniejszym współczynniku załamania; oznacza to, że mają większą prędkość liczoną wzdłuż drogi poruszania się promienia. Zastosowanie światłowodów o profilu gradientowym, w których zróżnicowanie prędkości propagacji modów jest mniejsze, powoduje że dyspersja modowa jest mniejsza i szerokość impulsu na wyjściu jest dużo mniejsza.
17 Konstrukcja rozetowa Rozeta jest elementem ośrodka kabla stosowanym alternatywnie do luźnej tuby. Wykonywana najczęściej z polipropylenu, wypełniona żelem, chroni włókna przed wpływami zewnętrznymi pozostawiając im swobodę ruchu. Rozety najczęściej wykonuje się jako dziesięcio lub dwunasto rowkowe. Rowki ułożone są spiralnie wzdłuż elementu wytrzymałościowego kabla. W rowku może znajdować się jeden lub kilka światłowodów. Produkcja kabla z ośrodkiem rozetowym jest tańsza lecz kabel taki ma mniejszą wytrzymałość na uderzenia boczne od tubowego. a) element wytrzymałościowy centralny b) rozeta polipropylenowa c) rowek rozety d) włókno optyczne e) osłona rozety f) wzmocnienie ośrodka g) powłoka kabla
18 Konstrukcja tubowa luźna Luźna tuba - jest najczęściej wytwarzana w postaci dwuwarstwowej rurki. Wewnętrzna warstwa wykonana jest z tworzywa zapewniającego bardzo mały współczynnik tarcia, zewnętrzna zabezpiecza światłowód przed wpływem czynników zewnętrznych. Tuba może zawierać od jednego do kilkudziesięciu światłowodów, a jej zadaniem jest dostateczne zabezpieczenie światłowodów przed deformacjami oraz wpływem sił tarcia - zbyt durze powodują powstanie makro i mikro zgięć. Luźna tuba posiada wszystkie cechy podstawowego elementu konstrukcyjnego kabla i może być wykorzystana uniwersalnie w różnych jego konstrukcjach.
19 Konstrukcja tubowa ścisła Ścisła tuba - Bezpośrednie nałożenie pokrycia ze specjalnego tworzywa na światłowód w pokryciu pierwotnym, jest najprostszym sposobem jego zabezpieczenia przed działaniem czynników zewnętrznych. Światłowód w ścisłym pokryciu może być użyty we wszystkich konstrukcjach kabli przeznaczonych do krótkich połączeń. W konstrukcjach tych światłowód w ścisłym pokryciu pełni taką samą rolę, jak w luźnej tubie w kablach dalekosiężnych.
20 Umieszczenie światłowodu wewnątrz tuby Światłowód, bądź światłowody umieszczone są swobodnie we wnętrzu tuby. Długość światłowodu jest większa niż długość tuby. Wielkość nadmiarowej długości włókna w tubie zależy od ilości światłowodów, geometrii tuby, sposobu jej ułożenia w kablu i jest tak dobrana aby z jednej strony naprężenia rozciągające nie przenosiły się na włókno, z drugiej zaś aby naprężenia ściskające działające na powłokę (niskie temperatury) nie powodowały wzrostu tłumienności światłowodu wskutek strat na makro i mikrozgięciach. Żel hydrofobowy wypełniający tubę ma za zadanie: - blokowanie dostępu wody do jej wnętrza - zmniejszenie wrażliwości światłowodu na straty na mikrozgięciach dzięki właściwościom tiksotropowym (jest ciekły w sytuacjach dynamicznych - ruch i stały w statycznych)
21 Konstrukcja z linką nośną
22 Okno transmisyjne
23 Tłumienia dla poszczególnych okien
24 Rozpraszanie Rayleigha Rozpraszanie Rayleigha (od nazwiska Lorda Rayleigha) to rozpraszanie światła na cząsteczkach o rozmiarach mniejszych od długości fali rozpraszanego światła. Występuje przy rozchodzeniu się światła w przejrzystych ciałach stałych i cieczach, ale najbardziej efektownie objawia się w gazach. Rozpraszanie Rayleigha na cząsteczkach atmosfery jest przyczyną błękitnego koloru nieba. Intensywność rozpraszania zależy od rozmiaru cząsteczek, długości fali światła. Silna zależność intensywności rozpraszania od długości fali oznacza, że światło niebieskie jest rozpraszane silniej niż czerwone. Przy przejściu promienia przez atmosferę będzie to oznaczać, że fotony niebieskie są rozpraszane silniej niż fotony o większej długości fali. W rezultacie rozproszone światło niebieski dociera do nas ze wszystkich stron nieba, podczas gdy inne długości fali rozchodzą się prosto od słońca, rozpraszane w znacznie mniejszym stopniu. Im krótsza fala, tym bardziej jest rozpraszana.
25 Rozpraszanie Rayleigha
26 Ograniczenia światłowodów - tłumienie Tłumienie sygnału optycznego - spowodowane jest przez straty mocy optycznej wynikające z niedoskonałości falowodu. W rzeczywistym światłowodzie występuje absorpcja i pochłanianie współczynnika załamania szkła (tzw. rozpraszanie Rayleigha). W czasie instalacji i użytkowania światłowodów mogą pojawić się dodatkowe składniki tłumienia takie jak zgięcia lub mikropęknięcia. Rozpraszanie jest widoczne w zakresie długości fal ( )nm. Wzrost tłumienia dla 1,39μm związany jest z drugą harmoniczną drgań jonów OH. Woda i wodór są składnikami kwarcu z którego buduje się rdzeń światłowodu.
27 Ograniczenia światłowodów - dyspersja Dyspersja w optyce jest to zależność współczynnika załamania światła od długości fali. Światło białe jest zbiorem skupionych w jedną wiązkę monochromatycznych promieni o barwie od czerwonej do fioletowej. Wiązka światła białego padając na pryzmat ulega rozszczepieniu, w wyniku czego promień świetlny po przejściu przez pryzmat jest rozłożony na szereg wyodrębnionych promieni. Jest to związane z różnymi długościami fali dla różnych barw promieni świetlnych a tym samym z różnymi wartościami współczynnika załamania światła dla poszczególnych barw. W światłowodzie zjawisko dyspersji powoduje rozszerzenie i rozmycie przesyłanego sygnału a w rezultacie jest przyczyną ograniczenia odległości transmisji, zmniejszenia jej szybkości oraz możliwego błędnego odbioru informacji. Wyróżnia się dwa główne typy dyspersji: chromatyczną i modową. Ponadto dyspersja chromatyczna dzieli się na materiałową i falowodową.
28 Ograniczenia światłowodów dyspersja chromatyczna Jeżeli prędkość grupowa zależy od częstotliwości (czas propagacji zależy od długości fali), to mamy do czynienia z dyspersją chromatyczną. Dyspersja materiałowa - powodowana jest zmianą współczynnika załamania szkła kwarcowego w funkcji długości fali. Ponieważ nie istnieje źródło światła ściśle monochromatyczne, gdyż każdy impuls światła składa się z grupy rozproszonych częstotliwości optycznych rozchodzących się z różną prędkością, docierający po przebyciu fragmentu włókna mod charakteryzuje się rozmyciem w czasie. Dyspersja materiałowa dla światłowodu wykonanego z kwarcu wynosi 0 dla 1300 nm. Dyspersja falowodowa jest to zależność efektywnego współczynnika załamania od częstotliwości. Dyspersja falowodowa częściowo powodowana jest wędrowaniem wiązki przez płaszcz światłowodu. Szybkość rozchodzenia się zależy od właściwości materiałowych płaszcza. Dyspersja falowodowa ma przeciwny znak i częściowo kompensuje dyspersję materiałową. Dyspersja materiałowa jest zwykle większa, niż falowodowa. Dyspersja chromatyczna jest sumą dyspersji materiałowej i dyspersji falowodowej. W światłowodach jednomodowych dominuje dyspersja chromatyczna.
29 Ograniczenia światłowodów dyspersja modowa Efekt dyspersji modowej polega na tym, że mody lub sygnały o różnych częstotliwościach propagują się światłowodem z różnymi częstotliwościami. Gdy sygnał jest kompozycją modów/częstotliwości, to dyspersja powoduje powstanie zniekształceń. Efekt dyspersji pokazany został na rysunku c). W miarę transmisji poza oczekiwanymi efektami tłumienia impulsy poszerzają się i rozmywają. Impulsy stają się nierozróżnialne, ponieważ łączą się w miarę poszerzania. Ponadto w miejscu 0 pojawia się sygnał, który może być odczytany jako 1. W światłowodach wielomodowych mechanizm dyspersji modowej dominuje.
30 Rodzaje włókien światłowodowych - Włókna o nieprzesuniętej dyspersji (ITU G.652) najczęściej instalowany typ włókien optymalizowane dla transmisji fali o długości 1310 nm mogą być używane dla transmisji fali o długości 1550 nm kosztowne w użyciu dla transmisji o przepływności 10 Gbit/s i większej, - Włókna o przesuniętej dyspersji (ITU G.653) używane do transmisji na znaczne odległości optymalizowane dla transmisji o dużej przepływności przy długości fali 1550 nm mają ograniczenia jeśli chodzi o liczbę fal optycznych transmitowanych w oknie 1550 nm, Zostało zaprojektowane do dalekich transmisji w trzecim oknie optycznym nm, gdzie standardowe włókno G.652 generowało dużą dyspersję. Włókno G.653 charakteryzuje się zerową dyspersją na długości fali ok. 1550nm, umożliwia zastosowanie wzmacniaczy EDFA.
31 Rodzaje włókien światłowodowych - Włókna o niezerowej dyspersji (G.655) optymalizowane dla dużych przepływności z zastosowaniem transmisji DWDM w oknie 1550 nm. Przesunięto zerową dyspersję poza pasmo 1550nm, co poskutkowało małą i ograniczoną dyspersją chromatyczną w paśmie 1550nm. Są dwa rodzaje włókna z przesuniętą niezerową dyspersją, NZD+ i NZD- w zależności czy wartość zerowej dyspersji przypada przed czy po paśmie 1550nm. - Włókna o niezerowej dyspersji (G.655) jest to nowa generacja włókien G.655 zapewniająca większy transfer danych.
32 Dobór włókien światłowodoych Decydując się na wykorzystanie światłowodu jednomodowego i modulacji WDM, ważne jest również dobranie odpowiedniego rodzaju światłowodu optymalizowanego dla światła o długości fali zgodnej z używanym nadajnikiem. Biorąc dla przykładu światłowód zgodny z normą G.655 (optymalizowany dla długości fali światła 1550 nm) i używając go z transceiverem generującym promień 1310 nm obserwuje się nadmierny jitter przesyłanego sygnału. Jest to spowodowane dyspersją chromatyczną, która dla tego światłowodu jest minimalna przy długości fali 1550 nm, jednak ma dużo większą wartość dla 1310 nm. Transceiver - urządzenie elektroniczne posiadające zarówno nadajnik jak i odbiornik (np. radiostacja). Jitter jest to krótkookresowe odchylenie od ustalonych, okresowych charakterystyk sygnału. Odchylenie może dotyczyć częstotliwości, amplitudy lub fazy danego sygnału.
33 Oznaczenia kabli światłowodowych - jednomodowe z nieprzesuniętą dyspersją (J) SM - jednomodowe z przesuniętą dyspersja (Jp) SM - jednomodowe z niezerową dyspersją (Jn) SM - wielomodowe gradientowe 50/125 μm (G50) MM OM2 lub OM3 - wielomodowe gradientowe 62.5/125 μm (G62.5) MM OM1
34 BHP Pamiętajmy, że uruchamiając urządzenie aktywne mamy do czynienia ze światłem o sporej mocy, zwykle emitowanym przez laser. Typowe długości fali optycznej w transmisji danych: od 850nm do około 1650nm to bliska podczerwień, światła tego nie widać a może ono poważnie uszkodzić nasze oczy. Naprawdę więc nie warto patrzeć w nadajnik ani we włókno, bo nawet jeśli nie oślepniemy to i tak nic nie zobaczymy. Szkło generalnie jest kruche, czyste szkło kwarcowe ma dużo większą giętkość i plastyczność od szklanki z herbatą lub bez, lecz jednak włókno światłowodowe można złamać. Kable mają specyfikowany minimalny promień zgięcia i należy go przestrzegać, przy układaniu kabla wszelkie kolanka czy zagięcia dobrze gdyby były zaokrąglone. Zwykle nie mówi się o tym głośno, ale minimalny promień zgięcia oznacza takie zgięcie, przy którym pogarszają się właściwości transmisyjne (zakłócenie wewnętrznego odbicia, wyciek światła) nie zaś trwałe uszkodzenie włókna. Pamiętajmy także o higienie i czystości podczas instalacji, szczególnie spawania: ułamane fragmenty włókna mogą najzwyczajniej w świecie wbić się pod skórę, a że są bardzo cienkie (1/8mm) i kruche mogą dostać się do krwiobiegu i narobić więcej szkody niż klasyczna wbita drzazga.
35 Przykłady kabli światłowodowych
36 Połączenia światłowodów - spawanie Połączenia spawane wprowadzające najmniejsze tłumienie na poziomie ok. 0,02dB. Wykonywane są za pomocą specjalnych spawarek.
37 Połączenia światłowodów - spawanie Czynności wykonywane przy spawaniu włókien: a) Nałożenie rurki termokurczliwej do zabezpieczenia spawu po jego wykonaniu, b) Przygotowanie włókna obejmuje trzy czynności: - stripping zdjęcie izolacji za pomocą strippera - cleaning czyszczenie włókna np.. Przy użyciu etanolu - cleaving przycięcie włókna za pomocą obcinarki do światłowodów c) Umieszczenie włókna w rowkach spawarki d) Spawanie e) Zgrzewanie rurki termokurczliwej Stripper
38 Połączenia światłowodów - złączki Ferrula najważniejszy element złączki, zapewnia dokładne centrowanie osiowe włókna optycznego, ferrule wykonuje się z ceramiki, metali lub ich spieków.
39 Połączenia światłowodów - złączki
40 Połączenia światłowodów - złączki
41 Błędy przy łączeniach światłowodów
42 Połączenia światłowodów - klejenie Za pomocą żywicy epoksydowej polega na sklejeniu oczyszczonych i wypolerowanych powierzchni czołowych włókien za pomocą dwuskładnikowego kleju o specjalnie dobranych własnościach optycznych. Klejone końce włókna doprowadzane są do osłonki i całość umieszczana jest w piecu na ściśle określony okres czasu (do 20 minut). Płaszcz światłowodu stapia się z osłoną tworząc trwałe mechaniczne połączenie. Za pomocą systemu tzw. Kleju Hot-Melt. Osłona przyszłego połączenia jest wypełniana klejem i umieszczana w piecu, tak aby nastąpiło nadtopienie jej wewnętrznych powierzchni. Do osłony wprowadza się przygotowane odcinki włókna i pozostawia całość do ostygnięcia.
43 Zastosowanie światłowodów
44
2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )
dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu
Bardziej szczegółowoZjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.
1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;
Bardziej szczegółowoLaboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów
Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody
Bardziej szczegółowoŚwiatłowody, zasada działania, budowa i zastosowanie
Światłowody, zasada działania, budowa i zastosowanie Ratajczak Arkadiusz Recki Dawid Elbląg 2005 Spis treści: 1 Wstęp...3 2 Zasada działania światłowodu 4 3 Budowa światłowodu..8 4 Zastosowanie światłowodów...11
Bardziej szczegółowoZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH
ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi
Bardziej szczegółowoŚwiatłowód jednomodowy Przepływ strumienia świetlnego w światłowodzie jednomodowym
Światłowód przeźroczysta zamknięta struktura z włókna szklanego wykorzystywana do propagacji światła jako nośnika informacji. Światłowody są także używane w celach medycznych, np. w technice endoskopowej
Bardziej szczegółowo2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1
TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.
Bardziej szczegółowoOptotelekomunikacja. dr inż. Piotr Stępczak 1
Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ
Bardziej szczegółowoSystemy operacyjne i sieci komputerowe Szymon Wilk Media transmisji 1
i sieci komputerowe Szymon Wilk Media transmisji 1 1. Przesyłanie danych komunikacja w sieciach komputerowych wymaga kodowania danych w postać energii i przesłania jej dalej za pomocą ośrodka transmisji.
Bardziej szczegółowoObecnie są powszechnie stosowane w
ŚWIATŁOWODY Definicja Światłowód - falowód służący do przesyłania promieniowania świetlnego. Pierwotnie miał postać metalowych rurek o wypolerowanych ściankach, służących do przesyłania wyłącznie promieniowania
Bardziej szczegółowoSeminarium Transmisji Danych
Opole, dn. 21 maja 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Transmisji Danych Temat: Światłowody Autor: Dawid Najgiebauer Informatyka, sem. III, grupa
Bardziej szczegółowoInstytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH
Bardziej szczegółowoTŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH
TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie
Bardziej szczegółowoIV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Bardziej szczegółowoDominik Kaniszewski Sebastian Gajos. Wyznaczenie parametrów geometrycznych światłowodu. Określenie wpływu deformacji światłowodu na transmisję.
Ćwiczenie Numer 88 27 05 2004 r. 1 WYZNACZANIE PARAMETRÓW : GEOMETRYCZNYCH I OPTYCZNYCH ŚWIATŁOWODÓW Dominik Kaniszewski Sebastian Gajos II - Rok studiów dziennych Kierunek : Fizyka ; gr. I CEL ĆWICZENIA
Bardziej szczegółowoWłókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers
Włókna z cieczowym rdzeniem oraz włókna plastykowe Liquid-Core and Polymer Optical Fibers Prowadzenie światła w falowodach cieczowych Zastosowanie falowodów cieczowych Włókna polimerowe Efekt propagacji
Bardziej szczegółowoPDF stworzony przez wersję demonstracyjną pdffactory
gdzie: vi prędkość fali w ośrodku i, n1- współczynnik załamania światła ośrodka 1, n2- współczynnik załamania światła ośrodka 2. Załamanie (połączone z częściowym odbiciem) promienia światła na płaskiej
Bardziej szczegółowoElementy łączeniowe
Ethernet gruby o impedancji falowej 50 omów i grubości 1/2", praktycznie wyszedł z użycia, czasem stosowany jako rdzeń sieci (max. odległość między stacjami do 500m). ARCNET o impedancji falowej 93 omy
Bardziej szczegółowoPomiar tłumienności światłowodów włóknistych
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:
Bardziej szczegółowoPL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 18/15. HANNA STAWSKA, Wrocław, PL ELŻBIETA BEREŚ-PAWLIK, Wrocław, PL
PL 224674 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224674 (13) B1 (21) Numer zgłoszenia: 409674 (51) Int.Cl. G02B 6/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Bardziej szczegółowoWykład 2: Wprowadzenie do techniki światłowodowej
Sieci optoelektroniczne Wykład 2: Wprowadzenie do techniki światłowodowej Światłowód - definicja Jest to medium transmisyjne stanowiące czyste szklane włókno kwarcowe, otoczone nieprzezroczystym płaszczem
Bardziej szczegółowoTechnika falo- i światłowodowa
Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania
Bardziej szczegółowoA- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ
A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ INFORMACJE PODSTAWOWE Celem kursu jest przekazanie uczestnikom podstawowej wiedzy w zakresie techniki światłowodowej. SZKOLENIE PRZEZNACZONE DLA: Techników
Bardziej szczegółowoSPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH
Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...
Bardziej szczegółowoFala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Bardziej szczegółowoV n. Profile współczynnika załamania. Rozmycie impulsu spowodowane dyspersją. Impuls biegnący wzdłuż światłowodu. Wejście Wyjście
OPTOELEKTRONIKA dr hab. inż. S.M. Kaczmarek 1. DYSPERSJA 1.1. Dyspersja materiałowa i falowodowa. Dyspersja chromatyczna. 1.2. Dyspersja modowa w światłowodach a). o skokowej zmianie współczynnika załamania
Bardziej szczegółowoWielomodowe, grubordzeniowe
Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna
Bardziej szczegółowoWykład 5: Pomiary instalacji sieciowych
Sieci komputerowe Wykład 5: Pomiary instalacji sieciowych Media optyczne Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę,
Bardziej szczegółowoSystemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 3 Media transmisyjne część 1 Program wykładu transmisja światłowodowa transmisja za pomocą kabli telekomunikacyjnych (DSL) transmisja przez sieć energetyczną transmisja radiowa
Bardziej szczegółowoĆwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.
Bardziej szczegółowoŚwiatłowody telekomunikacyjne
Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie
Bardziej szczegółowoSieci optoelektroniczne
Sieci optoelektroniczne Wykład 3: Konstrukcja kabli światłowodowych dr inż. Walery Susłow Hurtownia kabli Budowa włókna kablu światłowodowego Kabel światłowodowy składa się z następujących elementów: rdzeń
Bardziej szczegółowoFalowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Bardziej szczegółowoMedia sieciowe. Omówimy tutaj podstawowe media sieciowe i sposoby ich łączenia z różnymi urządzeniami sieciowymi. Kabel koncentryczny
Media sieciowe Wszystkie media sieciowe stanowią fizyczny szkielet sieci i służą do transmisji danych między urządzeniami sieciowymi. Wyróżnia się: media przewodowe: przewody miedziane (kabel koncentryczny,
Bardziej szczegółowoŚwiatłowód jako medium transmisyjne
Światłowód jako medium transmisyjne Jacek Gzel nr indeksu 25107 Dąbrowa Górnicza, 2012 Spis treści Porównanie kabli światłowodowych i kabli miedzianych...3 Model promienia świetlnego...4 Odbicie...5 Załamanie...5
Bardziej szczegółowoSystemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa
Bardziej szczegółowoLaboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu
Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Bardziej szczegółowoGlosariusz: Technika Światłowodowa od A jak Absorpcja do Z jak Złącze
A ABSORPCJA W ŚWIATŁOWODZIE Pochłanianie energii przez materiał światłowodu. ADAPTER/ŁĄCZNIK HYBRYDOWY Element centrujący, umożliwiający połączenie ze sobą dwóch złączy światłowodowych różnego standardu.
Bardziej szczegółowoZwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Bardziej szczegółowoIII. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Bardziej szczegółowoUniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Bardziej szczegółowoWłasności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?
Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja
Bardziej szczegółowoPomiary w instalacjach światłowodowych.
Pomiary w instalacjach światłowodowych. Pomiary metodą transmisyjną Pomiary tłumienności metodą transmisyjną Cel pomiaru: Określenie całkowitego tłumienia linii światłowodowej Przyrządy pomiarowe: źródło
Bardziej szczegółowoŁączenie włókien światłowodowych spawanie światłowodów. Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db
Łączenie włókien światłowodowych spawanie światłowodów Złączki 0,2 1 db Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db Spawy mechaniczne 1. Elastomeric Lab Splice. Umożliwia setki połączeń 2. 3M Fibrlok.
Bardziej szczegółowoWydział Elektryczny Mechaniczny Elektroniki Mikrosystemów i Fotoniki LABORATORIUM ZASTOSOWAŃ OPTOELEKTRONIKI. Badanie tłumienności światłowodów
Ćwiczenie 2 Wydział Elektryczny Mechaniczny Elektroniki Mikrosystemów i Fotoniki LABORATORIUM ZASTOSOWAŃ OPTOELEKTRONIKI Badanie tłumienności światłowodów Opracował: Grzegorz Wiśniewski Zagadnienia do
Bardziej szczegółowoZłącza mocy Diamond sposobem na kraterowanie
Złącza mocy Diamond sposobem na kraterowanie mgr inż. Tomasz Rogowski Przy światłowodowych transmisjach o dużej przepływności istotna jest czystość interfejsów optycznych na całej trasie łącza optycznego.
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
Bardziej szczegółowoWprowadzenie do technologii HDR
Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii
Bardziej szczegółowopobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Bardziej szczegółowoPropagacja światła we włóknie obserwacja pól modowych.
Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących
Bardziej szczegółowoPOMIAR APERTURY NUMERYCZNEJ
ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia
Bardziej szczegółowoSolitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Bardziej szczegółowoWykład 2 Transmisja danych i sieci komputerowe. Rodzaje nośników. Piotr Kolanek
Wykład 2 Transmisja danych i sieci komputerowe Rodzaje nośników Piotr Kolanek Najważniejsze technologie Specyfikacja IEEE 802.3 przedstawia m.in.: 10 Base-2 kabel koncentryczny cienki (10Mb/s) 100 Base
Bardziej szczegółowoWykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
Bardziej szczegółowoOptyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Bardziej szczegółowoProblemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów
C8.12 Marek Ratuszek, Zbigniew Zakrzewski, Jacek Majewski, Józef Zalewski Instytut Telekomunikacji ATR w Bydgoszczy, Bydgoszcz Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych
Bardziej szczegółowoZaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.
Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka
Bardziej szczegółowoOPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1
OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Falowa natura światła E H z z ( ) ± jmθ j( ωt βz ) r e e k = E o n 1 z LP 01 = H z ( ) ± jmθ j( ωt βz ) r e e LP 11 k o V = 2πa λ 2π ω = = o λ c λ 0 lim ω ω
Bardziej szczegółowoLaboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Bardziej szczegółowo17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
Bardziej szczegółowoPomiary światłowodów telekomunikacyjnych Laboratorium Eksploatacja Systemów Telekomunikacyjnych
Pomiary światłowodów telekomunikacyjnych Laboratorium Eksploatacja Systemów Telekomunikacyjnych Dr inż. Mirosław Siergiejczyk Mgr inż. Zbigniew Kasprzyk Zalecana literatura Kathryn Booth, Steven Hill Optoelektronika
Bardziej szczegółowoZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2012 TECHNOLOGIA ŚWIATŁOWODOWA
ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2012 Daniel Hyjek, Dawid Marek Zespół Szkół im. ks. S. Staszica w Tarnobrzegu TECHNOLOGIA ŚWIATŁOWODOWA Streszczenie Światłowód, jak
Bardziej szczegółowoTransmisja bezprzewodowa
Sieci komputerowe Wykład 6: Media optyczne Transmisja bezprzewodowa Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę, 3 FD.
Bardziej szczegółowoTechnika światłowodowa
Technika światłowodowa http://www.dipol.com.pl/ http://www.energotel.pl/pomiary-optyczne,d87.html http://fibertech.com.pl/pigtaile,%20patchcordy_60.html http://www.teleoptics.com.pl/zs.html CZYM JEST ŚWIATŁOWÓD?
Bardziej szczegółowoNiezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Bardziej szczegółowohttp://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet
IV. Światłowody BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Literatura 2 3 Historia i uwarunkowania Podstawowe elementy: 1. Rozwój techniki laserowej (lasery półprzewodnikowe, modulacja,
Bardziej szczegółowoWłaściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
Bardziej szczegółowoKabel światłowodowy zewnętrzny typu Z-XOTKtsd, LTC A-DQ (ZN)2Y
Kabel światłowodowy zewnętrzny typu Z-XOTKtsd, LTC A-DQ (ZN)2Y Kabel światłowodowy jednomodowy zewnętrzny A-DQ(ZN)2Y (Z-XOTKtd) całkowicie dielektryczny kabel o lekkiej konstrukcji wielotubowej. Charakteryzuje
Bardziej szczegółowoPomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów
Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze
Bardziej szczegółowoKabel światłowodowy SM zewnętrzny typu Z-XOTKtsdD, LTC RP, A-DQ(ZN)B2Y
Kabel światłowodowy SM zewnętrzny typu Z-XOTKtsdD, LTC RP, A-DQ(ZN)B2Y Kabel światłowodowy jednomodowy wzmocniony,gryzoniodporny zewnętrzny A-DQ(ZN)B2Y (Z-XOTKtdD) całkowicie dielektryczny o lekkiej konstrukcji
Bardziej szczegółowoKOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH
KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH dr inż. Marek Ratuszek, mgr inż. Zbigniew Zakrzewski, mgr inż. Jacek Majewski,
Bardziej szczegółowoZjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej
Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Dla dużych mocy świetlnych dochodzi do nieliniowego oddziaływania pomiędzy
Bardziej szczegółowoPołączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM
A-8/10.01 Marek Ratuszek, Jacek Majewski, Zbigniew Zakrzewski, Józef Zalewski, Zdzisław Drzycimski Instytut Telekomunikacji ATR Bydgoszcz Połączenia spawane światłowodów przystosowanych do multipleksacji
Bardziej szczegółowo- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
Bardziej szczegółowoWspółczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach
Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach i ich pomiary Światłowody specjalne Podsumowanie 18/11/2010
Bardziej szczegółowoWłaściwości transmisyjne
Właściwości transmisyjne Straty (tłumienność) Tłumienność np. szkła technicznego: około 1000 db/km, szkło czyszczone 300 db/km Do 1967 r. tłumienność ok. 1000 db/km. Problem Na wyjściu światłowodu chcemy
Bardziej szczegółowoDyspersja światłowodów Kompensacja i pomiary
Dyspersja światłowodów Kompensacja i pomiary Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem
Bardziej szczegółowoWykład 12: prowadzenie światła
Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona
Bardziej szczegółowoFMZ10 S - Badanie światłowodów
FMZ10 S - Badanie światłowodów Materiały przeznaczone dla studentów Informatyki Stosowanej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie apertury numerycznej,
Bardziej szczegółowoPODSTAWY I NORMY ZWIĄZANE Z OKABLOWANIEM STRUKTURALNYM
W TECHNOLOGIA ŚWIATŁOWODOWA W NORMIE EN 50173 W normie EN 50173-1 okablowania świa tłowodowe zostały podzielone na klasy (OF-300, OF-500 i OF2000), a kable światłowodowe na kategorie (OM1, OM2, OM3 i OS1).
Bardziej szczegółowointerferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja
interferencja, dyspersja, dyfrakcja, okna transmisyjne PiOS Interferencja Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja
Bardziej szczegółowoWzmacniacze optyczne
Wzmacniacze optyczne Wzmocnienie sygnału optycznego bez konwersji na sygnał elektryczny. Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim.
Bardziej szczegółowoFal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
Bardziej szczegółowoTECHNOLOGIA ŚWIATŁOWODOWA
TECHNOLOGIA ŚWIATŁOWODOWA 1 Daniel Hyjek, Dawid Marek Zespół Szkół im. ks. S. Staszica w Tarnobrzegu TECHNOLOGIA ŚWIATŁOWODOWA Streszczenie Światłowód, jak sama nazwa wskazuje, służy do przesyłania promieniowania
Bardziej szczegółowoWzmacniacze optyczne ZARYS PODSTAW
Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny
Bardziej szczegółowoSystemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki
Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Lasery światłowodowe Źródło: www.jakubduba.pl Światłowód płaszcz n 2 n 1 > n 2 rdzeń n 1 zjawisko całkowitego wewnętrznego odbicia Źródło:
Bardziej szczegółowoŹródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM
Sieci i instalacje z tworzyw sztucznych 2005 Wojciech BŁAŻEJEWSKI*, Paweł GĄSIOR*, Anna SANKOWSKA** *Instytut Materiałoznawstwa i Mechaniki Technicznej, Politechnika Wrocławska **Wydział Elektroniki, Fotoniki
Bardziej szczegółowoSpis treści. Od Autorów... 7
Spis treści Od Autorów... 7 Drgania i fale Ruch zmienny... 10 Drgania... 17 Fale mechaniczne... 25 Dźwięk... 34 Przegląd fal elektromagnetycznych... 41 Podsumowanie... 49 Optyka Odbicie światła... 54 Zwierciadła
Bardziej szczegółowoWydział Elektryczny Mechaniczny Elektroniki Mikrosystemów i Fotoniki LABORATORIUM ZASTOSOWAŃ OPTOELEKTRONIKI. Badanie tłumienności światłowodów
Ćwiczenie 2 Wydział Elektryczny Mechaniczny Elektroniki Mikrosystemów i Fotoniki LABORATORIUM ZASTOSOWAŃ OPTOELEKTRONIKI Badanie tłumienności światłowodów Opracował: Grzegorz Wiśniewski Zagadnienia do
Bardziej szczegółowoŚWIATŁOWODOWY TOR PRZESYŁANIA INFORMACJI
Optomechatronika - Laboratorium Ćwiczenie 3 ŚWIATŁOWODOWY TOR PRZESYŁANIA INFORMACJI 3.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, zasadą działania i właściwościami światłowodowego toru
Bardziej szczegółowoWprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Bardziej szczegółowoOpis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Bardziej szczegółowoWykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Bardziej szczegółowoNowoczesne sieci komputerowe
WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 1 Dąbrowa Górnicza, 2010
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna
Bardziej szczegółowoTechnologia światłowodów włóknistych Kable światłowodowe
Technologia światłowodów włóknistych Kable światłowodowe Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Bardziej szczegółowoOptyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017
Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej
Bardziej szczegółowoKONWERTER RS-232 TR-21.7
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-232 TR-21.7 IO21-7A Marzec 2004 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96
Bardziej szczegółowoOptyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
Bardziej szczegółowoTransmisja w systemach CCTV
Transmisja w systemach CCTV Systemy monitoringu wizyjnego CVBS TVI CVI AHD IP Systemy monitoringu wizyjnego CVBS Maks. rozdzielczość WD1 960 x 576 px Maks. dystans transmisji 300 m (RG-59) Maks. dystans
Bardziej szczegółowo