PODSTAWY I NORMY ZWIĄZANE Z OKABLOWANIEM STRUKTURALNYM
|
|
- Patryk Górski
- 9 lat temu
- Przeglądów:
Transkrypt
1 W TECHNOLOGIA ŚWIATŁOWODOWA W NORMIE EN W normie EN okablowania świa tłowodowe zostały podzielone na klasy (OF-300, OF-500 i OF2000), a kable światłowodowe na kategorie (OM1, OM2, OM3 i OS1). W KATEGORIE KABLI ŚWIATŁOWODOWYCH Dla włókien wielomodowych rozróżniane są 3 kategorie, dla jednomodowych tylko jedna kategoria: KATEGORIA WŁÓKNO OM1 50/125 µm 62,5/125 µm - OM2 50/125 µm - - OM3 50/125 µm - - OS /125 µm W KLASY OKABLOWANIA ŚWIATŁOWODOWEGO Norma EN określa 3 klasy okablowania: OF-300, OF-500, OF Matematyczna formuła określa dokładnie sposób obliczenia maksymalnej długości połączenia (patrz EN :2002 rozdział 6.3, tabela 24). Formuła ta uwzględnia ilość połączeń spawanych bądź klejonych i połączeń wtyk / adapter. TYP ŚWIATŁOWODU / KATEGORIA KABLA KLASA MAKSYMALNA DŁUGOŚĆ (M) WIELOMODOWY (MULTIMODE) OF OM1/OM2/OM3 OF OF JEDNOMODOWY (SINGLEMODE) OF OS1 OF OF W DŁUGOŚCI TRANSMISJI ŚWIATŁOWODOWYCH Tabela poniżej pokazuje długości transmisji dla Ethernetu kablem wielomodowym (tabela można znaleźć w Aneksie E do normy EN :2002). Norma nie wyklucza, że włókna 62,5µm mogą spełniać także kategorię OM2. Jednak w dotychczasowej praktyce (zgodnie ze stanem naszej wiedzy) żaden wytwórca nie wyprodukował włókna 62,5/125 µm kategorii OM2. (Nota wydawcy: może się okazać to niemożliwe ze względu na fizyczne właściwości włókien). Z drugiej strony norma EN jasno wskazuje, że kable OM3 mogą być wytwarzane jedynie z włókien 50/125 µm. Ponadto, norma określa największe dopuszczalne tłumienie i najmniejsze modularne szerokości pasma dla kabli różnych kategorii (patrz dane szczegółowe w EN :2002). By zdecydować, które włókno jest potrzebne, musimy wiedzieć, jaki protokół i o jakiej szybkości ma być transmitowany. Jest możliwe na przykład transmitowanie zarówno 1Gbit, jak i 10 Gbit siecią lokalną za pomocą włókien OM2. Jednakże maksymalna długość ma istotne znaczenie. Kable Schrack HSEAIBHxx5 posiadają specjalne włókna OM2e (enhanced), co gwarantuje długość transmisji na odległość 750 m dla 1 Gbit w pierwszym oknie i na odległość 110 m dla 10 Gbit w pierwszym oknie. Najdłuższe odległości przy zastosowaniu kabli wielomodowych dla transmisji 10 Gbit w sieciach lokalnych osiągane są przy użyciu włókna OM3. Innym kryterium długości jest klasa okablowania. PROTOKÓŁ DŁUGOŚĆ FALI MAKSYMALNA ODLEGŁOŚĆ TRANSMISJI (m) ETHERNET (NM) 62,5/125 µm 50/125 µm 50/125 µm 9/125 µm OM1 OM2 OM3 OS1 10 Mbit ISO/IEC : FOIRL ISO/IEC : 10BaseFL Mbit ISO/IEC : 100BaseFX Gbit SX ISO/IEC : 1000BaseSX Gbit LX ISO/IEC : 1000BaseLX Gbit IEEE 802.3ae: 10GBaseSR/SW
2 W ZŁĄCZA ŚWIATŁOWODOWE W Z JAKICH CZĘŚCI SKŁADA SIĘ WTYK? 15 Koszulka (boot) powoduje, że kabel pozostaje we wtyku pod określonym, bezpiecznym kątem, w ten sposób chroni go przed nadmiernym załamywaniem, które mogłoby nadwyrężyć lub uszkodzić włókno. Obudowa wykonana jest z metalu lub plastiku. Składa się z ferruli i osłony wtyku. Obudowa służy jedynie do uchwycenia i wetknięcia w złącze. Obudowa Ferrula Koszulka Ferrula to tulejka, która może być ceramiczna, plastikowa lub metalowa. Ferrula wypośrodkowuje włókno we wtyku. Włókno jest prowadzone w centrycznym otworze przez całą długość do czoła ferruli. Większość złączy (wtyków) ma ferrulę o średnicy 2.5 mm, jednak we wtykach typu SFF (Small Form Factor) ma ona średnicę 1.25 mm. Czoło ferruli jest interfejsem dla sygnału świetlnego. W CO OZNACZA PC I APC? Czoła włókien światłowodowych mogą być polerowane na dwa sposoby: PC oraz APC. W przypadku łączenia włókien światłowodu metodą PC (Phisycal Contact) wypolerowane pod kątem prostym (90 stopni) powierzchnie są umieszczanie naprzeciwko siebie w jak najmniejszej odległości, aby zminimalizować tłumienność złącza. W złączkach kątowych oznaczonych symbolem APC czoło światłowodu jest polerowane pod kątem 8 stopni, co sprawia, że tłumienność odbiciowa takiego połączenia jest mniejsza niż dla złącz typu PC. Na rynku można spotkać również złączki typu Super PC oraz Ultra PC. Norma EN :2002 sugeruje następujący kod kolorów dla wtyków światłowodowych: Wielomodowe beżowy lub czarny Jednomodowe (PC) Jednomodowe (APC) niebieski zielony
3 16 W NAJCZĘŚCIEJ STOSOWANE WTYKI W WTYK ST Cechy: Zamknięcie bagnetowe (jak w złączach BNC) i dzięki temu odporne na skręcanie. Stosowany głównie dla kabli wielomodowych, rzadziej dla jednomodowych. W WTYK SC Cechy: Prostokątny, z ferrulą i montażem typu push-pull. Dostępny także jako APC. Stosowany zarów no dla kabli wielomodowych, jak i jednomodowych. Jedyny wtyk, wymieniony w normie EN :2002. Wtyk SC występuje także w wersji dupleksowej (2 połączone ze sobą wtyki). W WTYK FC/PC Cechy: wkręcany z małym nacięciem pełniącym rolę ochrony przed skręceniem. Dostępny także jako APC. Rzadziej stosowany z kablem wielomodowym, a częściej z jednomodowym. Preferowane złącze austriackich i niemieckich operatorów telekomunikacyjnych. W WTYK LC Cechy: małogabarytowy, zajmujący tylko połowę miejsca wtyku SC, z wyraźnie mniejszą ferrulą niż w w/w trzech złączach. Dostępny również w wersji dupleksowej (dwa równoległe wtyki). Coraz częściej używany zarówno do zastosowań wielomodowych jak i jednomodowych. W WTYK MTRJ Cechy: MTRJ przypomina wtyk RJ45. Jest jednym z niewielu wtyków mieszczącym dwa włókna i należy do kategorii złączy małogabarytowych, ponieważ zajmuje tyle samo miejsca co wtyk SC, lecz ma dwa włókna. Nie ma ferruli. Rzadko używany do zastosowań wielomodowych, prawie nigdy do jednomodowych. Inne złącza to E2000, Mini SC (lub MU), Escon, FSMA, FDDI i typu Volition (VF45). Jesteśmy w stanie dostarczyć wszystkie złącza w dowolnej kombinacji w formie kabla krosowego lub dowolnego kabla światłowodowego przygotowanego do montażu.
4 W CZYM JEST ŚWIATŁO Światło jest widoczną częścią promieniowania elektromagnetycznego. W próżni fale elektromagnetyczne rozprzestrzeniają się z prędkością światła. 17 C 0 = km/s Widoczne światło obejmuje jedynie wąski zakres całego widma pomiędzy 420 nm (fiolet) a 750 nm (czerwień). Jednakże technologia światłowodowa obejmuje szerokość pasma podczerwieni o długości fali w przybliżeniu od 800 do 1600 nm. W WIDMO ELEKTROMAGNETYCZNE Ultrafiolet Spektrum widzialne Podczerwień 420 nm 750 nm UWAGA! NIGDY nie patrz do środka czynnego kabla światłowodowego. Diody emitujące światło lub promieniowanie laserowe może trwale uszkodzić wzrok! W ODBICIE Jeżeli światło pada na granicę między dwoma ośrodkami o różnym współczynniku załamania światła n (np. rdzeń włókna szklanego i ochronę włókna szklanego), część światła ulega odbiciu. Ilość odbitego światła zależy od kąta padania światła. Odbite światło pojawia się pod tym samym kątem; kąt padania = kątowi odbicia W CAŁKOWITE ODBICIE Całkowite odbicie pojawia się jedynie przy przejściu z optycznie gęstego materiału (np. szkła) do mniej gęstego materiału (np. powietrza); całkowite odbicie nie jest możliwe w odwrotnym kierunku (z powietrza do szkła). Odbicie światła Granice dwóch ośrodków Promienie światła Promień załamany Promień całkowicie odbity Czym jest więc całkowite odbicie? Wszystkie wiązki promieni, które docierają pod kątem padania większym niż kąt krytyczny 0 stopni, nie mają odpowiednio załamanej wiązki w optycznie "cieńszym" materiale. Wiązki te odbijają się na granicy gęstszego ośrodka.
5 W TŁUMIENIE 18 Tłumienie jest stratą transmitowanego światła w linii światłowodowej. Tłumienie jest istotnym parametrem Wykres tłumienia w planowaniu sieci światłowodowych. W tym konte- db/km kście tłumienie zależy od absorpcji i dyfrakcji, jak również od mechanicznego załamania przewodnika. Rozproszenie Rayleigha Granica teoretyczna Tłumienie przez rozproszenie Tłumienie przez jony OH Tłumienie przez absorpcję w SiO2 Tłumienie 1 okno 850 nm Długość fali świetlnej 2 okno 1300 nm 3 okno 1550 nm W ABSORPCJA Jest to transformacja światła (na określonej długości fali) w inną formę energii. Szkłem używanym dziś prawie wyłącznie w technologii światłowodowej jest SiO2 (stopiona krzemionka lub szkło kwarcowe). Tłumienie wtrąceniowe jest tak małe, że może nie być brane pod uwagę. Jakość szkła jest ważnym czynnikiem w technologii światłowodowej (zanieczyszczenia przez zabrudzenie). Z dużą częścią tych zanieczyszczeń można dziś sobie poradzić stosując odpowiednie technologie podczas produkcji. Innym parametrem stanowiącym nadal problem, przy produkcji włókien światłowodowych, jest zawartość wody. By zapobiec wpływowi wilgotności powietrza na włókna, niezwłocznie po ich wytworzeniu nakłada się pierwotną powłokę. W STRATY ROZPROSZENIOWE W sensie fizycznym, szkło jest zestaloną cieczą, uważaną za środowisko niejednorodne. Stąd współczynnik załamania zmienia się pod wpływem miejscowych zmian gęstości. Zjawisko to odkrył Lord Rayleigh zdobywca nagrody Nobla, urodzony w 1842 r. W celu wyjaśnienia niebieskiego koloru nieba i czerwonego koloru wschodzącego i zachodzącego słońca, opisał zjawisko "rozproszenia Rayleigh a" wyjaśniając załamanie światła przez molekuły powietrza.
6 W STRATY PROPAGACJI Podczas instalowania kabli światłowodowych pojawia się wiele załamań i krzywizn, które sprawiają, że światło jest przesyłane z mniejszym zasięgiem promieniowania, niż jest to teoretycznie możliwe. Błędy przy instalacji światłowodów, (np. podczas łączenia) mogą spowodować dalsze straty propagacji. 19 Typowe wartości tłumienia dla kabli Schrack z linii HSEAIBHxxy: Długość fali Typ włókna Jednomodowy E9/125 Wielomodowy G50/125 Wielomodowy G62.5/ nm 2,5 3, nm 0,35 0,5 0, nm 0,21 W DYSPERSJA Zasadniczym zjawiskiem ograniczającym pasmo przenoszenia jest dyspersja. W uproszczeniu, dyspersja jest rozszczepieniem, czyli zniekształceniem impulsu świetlnego na linii nadajnik-odbiornik. Dyspersją nazywamy różne czasy przesyłania w kablach światłowodowych. Powodują one zawężenie pasma transmisji za pośrednictwem włókien. Rozróżniamy trzy podstawowe typy dyspersji: dyspersja materiałowa, falowodowa, modalna. Suma dyspersji materiałowej i falowodowej nazywana jest dyspersją chromatyczną. Zjawiska dyspersji wpływają na ograniczenie pasma przenoszenia włókien wielomodowych. Dla światłowodów jednomodowych, gdzie źródłem światła są lasery o bardzo wąskim widmie, dyspersja jest niewielka i wyrażana w ps/nm km (ps=pikosekundy), w związku z czym można osiągnąć pasmo częstotliwości rzędu GHz. Dyspersja modalna jest zjawiskiem występującym w szkle oddziałującym na mody światła (różnica długości drogi światła dla różnych modów), powodującym rozszerzanie się impulsów. Zjawisko to ogranicza pasmo przenoszenia, ponieważ istnieje punkt, w którym zbocza impulsów tak się nałożą, że odbiornik nie będzie mógł rozróżnić impulsów, co będzie generować błędy odczytu. Dyspersja chromatyczna zależy od długości fali i szerokości widma emitowanego światła. Czym szersze widmo, tym więcej promieni o różnej długości fali (a co za tym idzie szybkości) przemieszcza się w rdzeniu włókna, docierając do odbiornika w różnym czasie (różnica czasu propagacji), pomimo tego, że są częścią tego samego impulsu. Ten rodzaj dyspersji szczególnie ogranicza pasmo przenoszenia i zależy od jakości nadajnika (źródła) światła. W WSPÓŁCZYNNIK ZAŁAMANIA ŚWIATŁA Ten współczynnik określa stosunek pomiędzy prędkością światła w próżni a prędkością światła w dowolnej materii. Różne ośrodki / materiały posiadają różne współczynniki załamania (np. szkło rdzeniowe i płaszczowe). Współczynnik załamania światła Promienie światła Kąt akceptacji
7 20 W APERTURA NUMERYCZNA W przewodniku światłowodowym światło ulega całkowitemu odbiciu, co oznacza, że środek włókna jest rdzeniem szklanym o współczynniku załamania nk, a wokół niego płaszcz ma inny współczynnik załamania n M. n k musi być wyższe od n M. Kąt akceptacji (αg) jest określonym kątem krytycznym padania światła, który nie może zostać przekroczony przez wprowadzone promienie, aby nie zostało zgubione całkowite wewnętrzne odbicie. Tylko całkowite odbicie gwarantuje nieprzenikanie światła z rdzenia do płaszcza. Zatem aperatura numeryczna określa zdolność włókna do absorpcji światła i jest określana dla danego wymiaru rdzenia włókna. Im większa średnica rdzenia, tym większa aperatura numeryczna i tym łatwiej podłączyć źródło do światłowodu. Sinus kąta akceptacji to apertura numeryczna. W PASMO PRZENOSZENIA Pojemność transmisji przewodnika światłowodowego jest tym większa, im więcej impulsów (binarnych) może być przeniesiona w jednostce czasu (sekundy). Pojemność transmisji może zostać przekształcona w odpowiednią szerokość pasma. Ważne jest jednak, by ta szerokość pasma była zapewniona wzdłuż całej długości linii światłowodowej. W formule matematycznej, stosunek maksymalnej częstotliwości transmisji do maksymalnej odległości transmisji może być wyrażony jako pasmo przenoszenia. Oprócz tłumienia włókna, pasmo przenoszenia jest najważniejszym parametrem już na etapie planowania sieci światłowodowej. Zwykle rdzeń i płaszcz są wykonane ze stopionej krzemionki otrzymywanej z dwutlenku krzemu (SiO2). Jedną z największych zalet krzemionki jest powszechność jej występowania na ziemi. Włókno światłowodowe składa się z cylindrycznego rdzenia, otoczonego płaszczem. Cylindryczne rdzeń i płaszcz, posiadaj ące cechy szkła, są bardzo podatne na naprężenie zginające i / lub na naprężenie skrętne. W celu lepszej absorpcji tych naprężeń, szkło jest otoczone powłoką pierwotną. Powłoka pierwotnie wykonana z akrylu pełni istotne funkcje: ochronę mechaniczną ochronę włókien przed przedostawaniem się wilgoci (woda mogłaby przenikać do światłowodu) kodowania kolorem wiązki przewodów Konstrukcja włókien światłowodowych 1 = Rdzeń szklany = Krzem (szkło) 2 = Płaszcz = Silikon (ekran szklany) 3 = Powłoka pierwotna = Akryl uretynowy
8 W WŁÓKNA JEDNOMODOWE Włókno jednomodowe (zazwyczaj 9/125µm) dzięki swej budowie przenosi osiowo w swym rdzeniu tylko jedną falę świetlną. Nie ma różnic w czasach przebiegu, dyspersja fali = 0. Włókna jednodomowe są używane najczęściej w drugim i trzecim oknie transmisyjnym. Światłowody jednomodowe w ciągu ostatnich kilku lat zyskały na popularności i są stosowane w sieciach teletransmisyjnych, gdzie wymagania odnośnie odległości transmisji i przepustowości przekraczają możliwości światłowodów wielomodowych. 21 Przekrój włókna Profil współczynnika załamania Impuls wejściowy Rozchodzenie się fali Impuls wyjściowy W WŁÓKNA WIELOMODOWE GRADIENTOWE W kablu wielomodowym, gradientowym, światło rozprzestrzenia się sinusoidalnie pomiędzy rdzeniem a płaszczem. Włókna takie produkowane są w kilku średnicach rdzenia. Typowe średnice to: 50/125µm i 62,5/125µm. Przekrój włókna Profil współczynnika załamania Impuls wejściowy Rozchodzenie się fali Impuls wyjściowy W ZASTOSOWANIE ŚWIATŁOWODÓW Obecnie nie można sobie wyobrazić świata nowoczesnych sieci bez światłowodów. Ich zalety, w porównaniu z konwencjonalnym okablowaniem (miedzianym), sprowadzają się m. in. do: braku interferencji pól elektromagnetycznych braku interspersji lub dyspersji sygnałów całkowitego odizolowania galwanicznego od sieci komputerowych dużej szerokości pasma transmisji braku przesłuchu (NEXT) mniejszych rozmiarów kabli Biorąc pod uwagę powyższe zalety i fakt, że ten typ sieci staje się coraz bardziej powszechny, można przyjąć, że światłowody są w istocie rozwiązaniem wszystkich problemów sieci. W światłowodach prawie nie dyskutuje się o średnicach i warunkach ochrony, tak jak w przypadku technologii miedzianej; ważnym elementem jest jedynie ochrona przed gryzoniami. Istotne jest jednak poznanie różnic pomiędzy włóknami wielomodowymi (MM - MultiMode) i jednomodowymi (SM - SingleMode). Jeszcze na etapie planowania powinno się poświęcać wiele uwagi wyborowi odpowiedniego włókna.
Podstawy i normy sieci komputerowych
10 w PODSTAY TECHNOLOGII ŚIATŁOODOEJ normie EN 50173-1 okablowania światłowodowe zostały podzielone na klasy (OF-100, OF-300, OF-500, OF-2000, OF-5000 i OF-10000), a włókna światłowodowe na kategorie (OM1,
2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )
dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu
Złącza mocy Diamond sposobem na kraterowanie
Złącza mocy Diamond sposobem na kraterowanie mgr inż. Tomasz Rogowski Przy światłowodowych transmisjach o dużej przepływności istotna jest czystość interfejsów optycznych na całej trasie łącza optycznego.
ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH
ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi
Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.
1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;
Systemy operacyjne i sieci komputerowe Szymon Wilk Media transmisji 1
i sieci komputerowe Szymon Wilk Media transmisji 1 1. Przesyłanie danych komunikacja w sieciach komputerowych wymaga kodowania danych w postać energii i przesłania jej dalej za pomocą ośrodka transmisji.
Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów
Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody
Światłowód jednomodowy Przepływ strumienia świetlnego w światłowodzie jednomodowym
Światłowód przeźroczysta zamknięta struktura z włókna szklanego wykorzystywana do propagacji światła jako nośnika informacji. Światłowody są także używane w celach medycznych, np. w technice endoskopowej
Media sieciowe. Omówimy tutaj podstawowe media sieciowe i sposoby ich łączenia z różnymi urządzeniami sieciowymi. Kabel koncentryczny
Media sieciowe Wszystkie media sieciowe stanowią fizyczny szkielet sieci i służą do transmisji danych między urządzeniami sieciowymi. Wyróżnia się: media przewodowe: przewody miedziane (kabel koncentryczny,
KRZYSZTOF OJDANA SPECJALISTA DS. PRODUKTU MOLEX PREMISE NETWORKS. testowanie okablowania światłowodowego
KRZYSZTOF OJDANA SPECJALISTA DS. PRODUKTU MOLEX PREMISE NETWORKS testowanie okablowania światłowodowego testowanie okablowania światłowodowego wprowadzenie przygotowanie Okablowanie światłowodowe wzbudza
Optotelekomunikacja. dr inż. Piotr Stępczak 1
Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ
Pomiar tłumienności światłowodów włóknistych
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:
Systemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 3 Media transmisyjne część 1 Program wykładu transmisja światłowodowa transmisja za pomocą kabli telekomunikacyjnych (DSL) transmisja przez sieć energetyczną transmisja radiowa
Wykład 2: Wprowadzenie do techniki światłowodowej
Sieci optoelektroniczne Wykład 2: Wprowadzenie do techniki światłowodowej Światłowód - definicja Jest to medium transmisyjne stanowiące czyste szklane włókno kwarcowe, otoczone nieprzezroczystym płaszczem
Sieci komputerowe. Zajęcia 1 c.d. Warstwa fizyczna, Ethernet
Sieci komputerowe Zajęcia 1 c.d. Warstwa fizyczna, Ethernet Rola warstwy fizycznej Określa rodzaj medium transmisyjnego (np. światłowód lub skrętka) Określa sposób kodowania bitów (np. zakres napięć odpowiadających
ZŁĄCZA I ADAPTERY ŚWIATŁOWODOWE
ZŁĄCZA I ADAPTERY ŚWIATŁOWODOWE Nexttel Fiber posiada jedną z najnowocześniejszych w Polsce linii do produkcji pigtaili i patchcordow światłowodowych zapewniając tym samym produkt o najwyższych parametrach
SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH
Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...
2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1
TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.
Wykład 2 Transmisja danych i sieci komputerowe. Rodzaje nośników. Piotr Kolanek
Wykład 2 Transmisja danych i sieci komputerowe Rodzaje nośników Piotr Kolanek Najważniejsze technologie Specyfikacja IEEE 802.3 przedstawia m.in.: 10 Base-2 kabel koncentryczny cienki (10Mb/s) 100 Base
Światłowody, zasada działania, budowa i zastosowanie
Światłowody, zasada działania, budowa i zastosowanie Ratajczak Arkadiusz Recki Dawid Elbląg 2005 Spis treści: 1 Wstęp...3 2 Zasada działania światłowodu 4 3 Budowa światłowodu..8 4 Zastosowanie światłowodów...11
Technika falo- i światłowodowa
Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania
Rola warstwy fizycznej. Sieci komputerowe. Media transmisyjne. Propagacja sygnału w liniach miedzianych
Sieci komputerowe Rola warstwy fizycznej Wykład 2 Warstwa fizyczna, Ethernet Określa rodzaj medium transmisyjnego (np. światłowód lub skrętka) Określa sposób kodowania bitów (np. zakres napięć odpowiadających
Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.
Specyfikacja patchcordów światłowodowych
Specyfikacja patchcordów światłowodowych A. DEFINICJE W niniejszej specyfikacji zastosowano słownictwo w oparciu o normy zakładowe TP S.A., a w szczególności: ZN-96/TPSA-002. Linie optotelekomunikacyjne.
Technika światłowodowa
Technika światłowodowa http://www.dipol.com.pl/ http://www.energotel.pl/pomiary-optyczne,d87.html http://fibertech.com.pl/pigtaile,%20patchcordy_60.html http://www.teleoptics.com.pl/zs.html CZYM JEST ŚWIATŁOWÓD?
Transmisja bezprzewodowa
Sieci komputerowe Wykład 6: Media optyczne Transmisja bezprzewodowa Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę, 3 FD.
Media sieciowe Wiadomości wstępne
Media sieciowe Wiadomości wstępne Opracował: Arkadiusz Curulak WSIiE TWP w Olsztynie Data aktualizacji : 10-12-2002 Pierwsza edycja : 10-12-2002 Spis treści Media sieciowe... 2 Wprowadzenie... 2 Skrętka
Instrukcja obsługi światłowodowego konwertera SE-34 wersja 850 nm i 1300 nm
LANEX S.A. ul. Ceramiczna 8 0-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 5 70 Instrukcja obsługi światłowodowego konwertera wersja 850 nm i 100 nm e-mail: info@lanex.pl Dział Serwisu www.lanex.pl
Wielomodowe, grubordzeniowe
Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna
Instrukcja instalacji światłowodowego konwertera SE-36
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 Instrukcja instalacji światłowodowego konwertera e-mail: info@lanex.pl Dział Serwisu www.lanex.pl tel. (081) 443-96-39
PDF stworzony przez wersję demonstracyjną pdffactory
gdzie: vi prędkość fali w ośrodku i, n1- współczynnik załamania światła ośrodka 1, n2- współczynnik załamania światła ośrodka 2. Załamanie (połączone z częściowym odbiciem) promienia światła na płaskiej
Media transmisyjne w sieciach komputerowych
Media transmisyjne w sieciach komputerowych Andrzej Grzywak Media transmisyjne stosowane w sieciach komputerowych Rys. 1. kable i przewody miedziane światłowody sieć energetyczna (technologia PLC) sieci
Światłowodowe przewody krosowe ze złączami różnych typów w wersji jednomodowej i wielomodowej
Światłowodowe przewody krosowe ze złączami różnych typów w wersji jednomodowej i wielomodowej Optical Duplex patch cords with various types of connectors (ST, LC, SC) available in single-mode or multi-mode
Pomiary światłowodów telekomunikacyjnych Laboratorium Eksploatacja Systemów Telekomunikacyjnych
Pomiary światłowodów telekomunikacyjnych Laboratorium Eksploatacja Systemów Telekomunikacyjnych Dr inż. Mirosław Siergiejczyk Mgr inż. Zbigniew Kasprzyk Zalecana literatura Kathryn Booth, Steven Hill Optoelektronika
Obecnie są powszechnie stosowane w
ŚWIATŁOWODY Definicja Światłowód - falowód służący do przesyłania promieniowania świetlnego. Pierwotnie miał postać metalowych rurek o wypolerowanych ściankach, służących do przesyłania wyłącznie promieniowania
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Rodzaje łączy i ich właściwości (opracowano na podstawie wykładów z PP)
Rodzaje łączy i ich właściwości (opracowano na podstawie wykładów z PP) Okablowanie jest jednym z najistotniejszych elementów sieci komputerowej. Musi ono spełniać odpowiednie wymogi co do m.in. warunków
Sieci Komputerowe Fizyczna budowa sieci - kable, złącza.
Sieci Komputerowe Fizyczna budowa sieci - kable, złącza. dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Zagadnienia Kable w standardzie Ethernet.
KONWERTER RS-422 TR-43
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-422 TR-43 IO-43-2C Marzec 2004 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96 39
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Transmisja w systemach CCTV
Transmisja w systemach CCTV Systemy monitoringu wizyjnego CVBS TVI CVI AHD IP Systemy monitoringu wizyjnego CVBS Maks. rozdzielczość WD1 960 x 576 px Maks. dystans transmisji 300 m (RG-59) Maks. dystans
Światłowód jako medium transmisyjne
Światłowód jako medium transmisyjne Jacek Gzel nr indeksu 25107 Dąbrowa Górnicza, 2012 Spis treści Porównanie kabli światłowodowych i kabli miedzianych...3 Model promienia świetlnego...4 Odbicie...5 Załamanie...5
DZANIA I MARKETINGU BIAŁYSTOK,
17 - KABLE decydują o przepustowości sieci - kabel współosiowy - koncentryk - ETHERNET THIN (10BASE2) - cienki, czarny, max długość segmentu 185m, 255 urządzeń w segmencie sieci, bez koncentratorów - RG-58
Systemy Operacyjne. Wybór kabla sieciowego. Z kablami związane są róŝne specyfikacje oraz oczekiwania dotyczące wydajności.
Wybór kabla sieciowego. Z kablami związane są róŝne specyfikacje oraz oczekiwania dotyczące wydajności. Jakie szybkości transmisji moŝna uzyskać dla róŝnych typów kabli? Jakiego typu transmisja brana jest
Seminarium Transmisji Danych
Opole, dn. 21 maja 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Transmisji Danych Temat: Światłowody Autor: Dawid Najgiebauer Informatyka, sem. III, grupa
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH
Nowoczesne sieci komputerowe
WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 1 Dąbrowa Górnicza, 2010
TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH
TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie
Wykład 5: Pomiary instalacji sieciowych
Sieci komputerowe Wykład 5: Pomiary instalacji sieciowych Media optyczne Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę,
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Podstawy transmisji sygnałów
Podstawy transmisji sygnałów 1 Sygnał elektromagnetyczny Jest funkcją czasu Może być również wyrażony jako funkcja częstotliwości Sygnał składa się ze składowych o róznych częstotliwościach 2 Koncepcja
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Specyfikacja patchcordów światłowodowych
Specyfikacja patchcordów światłowodowych A. DEFINICJE W niniejszej specyfikacji zastosowano słownictwo w oparciu o normy zakładowe TP S.A., a w szczególności: ZN-96/TPSA-002. Linie optotelekomunikacyjne.
OKABLOWANIE ŚWIATŁOWODOWE
OKABLOANIE ŚIATŁOODOE UNIERSALNY KABEL ZENĘTRZNO-ENĘTRZNY Z NIEMETALICZNĄ OCHRONĄ PRZED GRYZONIAMI Kabel uniwersalny, zewnętrzno-wewnętrzny z niemetaliczną ochroną przed gryzoniami i czarnym płaszczem
VI. Elementy techniki, lasery
Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,
KONWERTER RS-232 TR-21.7
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-232 TR-21.7 IO21-7A Marzec 2004 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96
Instrukcja obsługi transceivera światłowodowego SE-26 wersja 850 nm i 1300 nm
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 Instrukcja obsługi transceivera światłowodowego wersja 850 nm i 1300 nm e-mail: info@lanex.pl Dział Serwisu www.lanex.pl
Instrukcja użytkownika
1. Instrukcja użytkownika MC200CM MC210CS MC220L Media konwerter Gb, Ethernet PRAWA AUTORSKIE I ZNAKI HANDLOWE Niniejsze specyfikacje mogą podlegać zmianom bez uprzedniego powiadomienia. jest zarejestrowanym
POMIAR APERTURY NUMERYCZNEJ
ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia
Pomiary w instalacjach światłowodowych.
Pomiary w instalacjach światłowodowych. Pomiary metodą transmisyjną Pomiary tłumienności metodą transmisyjną Cel pomiaru: Określenie całkowitego tłumienia linii światłowodowej Przyrządy pomiarowe: źródło
OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1
OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Falowa natura światła E H z z ( ) ± jmθ j( ωt βz ) r e e k = E o n 1 z LP 01 = H z ( ) ± jmθ j( ωt βz ) r e e LP 11 k o V = 2πa λ 2π ω = = o λ c λ 0 lim ω ω
Dominik Kaniszewski Sebastian Gajos. Wyznaczenie parametrów geometrycznych światłowodu. Określenie wpływu deformacji światłowodu na transmisję.
Ćwiczenie Numer 88 27 05 2004 r. 1 WYZNACZANIE PARAMETRÓW : GEOMETRYCZNYCH I OPTYCZNYCH ŚWIATŁOWODÓW Dominik Kaniszewski Sebastian Gajos II - Rok studiów dziennych Kierunek : Fizyka ; gr. I CEL ĆWICZENIA
PLAN KONSPEKT. Technika światłowodowa. Zapoznanie uczniów z podstawami konfiguracji urządzeń dostępowych. 1. Rozpoczęcie zajęć 5
PLAN KONSPEKT do przeprowadzenia zajęć z przedmiotu Technika światłowodowa TEMAT: Elementy światłowodowej sieci LAN CEL: Zapoznanie uczniów z podstawami konfiguracji urządzeń dostępowych ZAGADNIENIA: 1.
KONWERTER ŚWIATŁOWODOWY TM-146
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER ŚWIATŁOWODOWY TM-146 IO146-1a 1 Spis treści 1. Charakterystyka ogólna... 4 1.1. Widok urządzenia... 4 1.2.
Podstawy systemu okablowania strukturalnego
Podstawy systemu okablowania strukturalnego Sposób okablowania budynków wymaga podjęcia odpowiednich, rzetelnych decyzji w zakresie telekomunikacji w przedsiębiorstwach. System okablowania jest podstawą
Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers
Włókna z cieczowym rdzeniem oraz włókna plastykowe Liquid-Core and Polymer Optical Fibers Prowadzenie światła w falowodach cieczowych Zastosowanie falowodów cieczowych Włókna polimerowe Efekt propagacji
Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 2 Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. Cel ćwiczenia: Zapoznanie studentów ze zjawiskami tłumienności odbiciowej i własnej.
Szybkość transmisji [bit/s] 10Base5 500 Manchester magistrala koncentryk 50 10M. Kodowanie Topologia 4B/5B, MLT-3 4B/5B, NRZI. gwiazda.
2.10. Krótka charakterystyka wybranych wersji standardu Ethernet Wersja Ethernet Rozmiar segmentu [m] Kodowanie Topologia Medium Szybkość transmisji [bit/s] 10Base5 500 Manchester magistrala koncentryk
Instrukcja obsługi multiplekserów linii telefonicznych TM45-LT i TM45-LC
Instrukcja obsługi multiplekserów linii telefonicznych TM45-LT i TM45-LC Styczeń 1998 1. Bezpieczeństwo użytkowania Urządzenia TM45-LT i TM45-LC mogą być zasilane napięciem stałym i przemiennym o częstotliwości
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Glosariusz: Technika Światłowodowa od A jak Absorpcja do Z jak Złącze
A ABSORPCJA W ŚWIATŁOWODZIE Pochłanianie energii przez materiał światłowodu. ADAPTER/ŁĄCZNIK HYBRYDOWY Element centrujący, umożliwiający połączenie ze sobą dwóch złączy światłowodowych różnego standardu.
Systemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa
Sieci optoelektroniczne
Sieci optoelektroniczne Wykład 3: Konstrukcja kabli światłowodowych dr inż. Walery Susłow Hurtownia kabli Budowa włókna kablu światłowodowego Kabel światłowodowy składa się z następujących elementów: rdzeń
Media transmisyjne. mgr inż. Krzysztof Szałajko
Media transmisyjne mgr inż. Krzysztof Szałajko 2 / 60 Media miedziane 3 / 60 Pojęcia Napięcie stosunek pracy wykonanej podczas przenoszenia ładunku elektrycznego między punktami (V) Natężenie stosunek
Klasy tłumienność złączy SM PC/APC. Tłumienność odbiciowa połączeń losowych (PN-EN 61300-3-6), Wartość min, db Standard 0,25 (97% 0,50) 0,25 45/65
OPTYCZNE ELEMENTY POŁĄCZENIOWE Złącza i sznury światłowodowe Złącza są produkowane z komponentów o wysokiej i sprawdzonej jakości, przy wykorzystaniu następujących urządzeń: Aparaty polerskie APC8000;
Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu
Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ
A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ INFORMACJE PODSTAWOWE Celem kursu jest przekazanie uczestnikom podstawowej wiedzy w zakresie techniki światłowodowej. SZKOLENIE PRZEZNACZONE DLA: Techników
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
KONWERTER ŚWIATŁOWODOWY TM-146
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER ŚWIATŁOWODOWY TM-146 INSTRUKCJA OBSŁUGI IO146-1C.DOC grudzień 2010 LANEX S.A., Techniczne Wsparcie Klienta:
Elementy łączeniowe
Ethernet gruby o impedancji falowej 50 omów i grubości 1/2", praktycznie wyszedł z użycia, czasem stosowany jako rdzeń sieci (max. odległość między stacjami do 500m). ARCNET o impedancji falowej 93 omy
Wykład II. Administrowanie szkolną siecią komputerową. dr Artur Bartoszewski www.bartoszewski.pr.radom.pl
Administrowanie szkolną siecią komputerową dr Artur Bartoszewski www.bartoszewski.pr.radom.pl Wykład II 1 Tematyka wykładu: Media transmisyjne Jak zbudować siec Ethernet Urządzenia aktywne i pasywne w
Pasywne elementy traktu światłowodowego
Pasywne elementy traktu światłowodowego Światłowody, sprzęgacze, rozgałęziacze i inne pasywne elementy toru Sergiusz Patela 1999-2002 Elementy traktu światłowodowego 1 Lista elementów traktu światłowodowego
5. Procedura Projektowania Systemu 1
5. Procedura Projektowania Systemu 1 5.1. Analiza systemu Projektanci systemu muszą przejść następujące pięciu etapów, aby stworzyć światłowodowy optyczny system komunikacji: 1. Sprecyzować wymagania operacyjne
Wydział Elektryczny Mechaniczny Elektroniki Mikrosystemów i Fotoniki LABORATORIUM ZASTOSOWAŃ OPTOELEKTRONIKI
Ćwiczenie 5 Wydział Elektryczny Mechaniczny Elektroniki Mikrosystemów i Fotoniki LABORATORIUM ZASTOSOWAŃ OPTOELEKTRONIKI Badanie wpływu niedopasowania złączek w torach optycznych o różnych oknach transmisyjnych
Lekcja 16. Temat: Linie zasilające
Lekcja 16 Temat: Linie zasilające Fider w technice radiowej, w systemach nadawczych i odbiorczych jest to fizyczne okablowanie przenoszące sygnał radiowy z nadajnika do anteny lub z anteny do odbiornika,
Instrukcja instalacji światłowodowego konwertera 100BASE-TX/100BASE-FX SE-35
LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 Instrukcja instalacji światłowodowego konwertera 100BASE-TX/100BASE-FX e-mail: info@lanex.pl Dział Serwisu www.lanex.pl
Instrukcja obsługi i instalacji repeatera światłowodowego BMK-29.
Instrukcja obsługi i instalacji repeatera światłowodowego. 1.Wstęp Modułowy repeater światłowodowy umożliwia połączenie pięciu segmentów sieci Ethernet. Posiada cztery wymienne porty, które mogą zawierać
ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2012 TECHNOLOGIA ŚWIATŁOWODOWA
ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2012 Daniel Hyjek, Dawid Marek Zespół Szkół im. ks. S. Staszica w Tarnobrzegu TECHNOLOGIA ŚWIATŁOWODOWA Streszczenie Światłowód, jak
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
PROFIBUS DP w topologii pierścieniowej LWL
PROFIBUS DP w topologii pierścieniowej LWL 1. Zastosowanie... 1 2. Dane techniczne... 2 2.1. Płytka złącza światłowodowego LWL... 2 2.2. Typy przewodów złącza światłowodowego LWL... 2 3. Konfiguracja PROFIBUS...
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej
Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Dla dużych mocy świetlnych dochodzi do nieliniowego oddziaływania pomiędzy
Metody badania kosmosu
Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck
Ćwiczenie 5. LABORATORIUM Badanie wpływu niedopasowania złączek w torach optycznych o różnych oknach transmisyjnych. Opracował: Grzegorz Wiśniewski
Ćwiczenie 5 LABORATORIUM Badanie wpływu niedopasowania złączek w torach optycznych o różnych oknach transmisyjnych Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Opisz budowę złączy światłowodowych.
Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.
Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:
Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.
Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka
Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki
Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Lasery światłowodowe Źródło: www.jakubduba.pl Światłowód płaszcz n 2 n 1 > n 2 rdzeń n 1 zjawisko całkowitego wewnętrznego odbicia Źródło:
Podstawy sieci komputerowych
mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku 2018/2019 Topologia sieci Topologia liniowa Topologia magistrali Topologia pierścienia Topologia gwiazdy Mieszane topologie