ALGORYTM PRZETWARZANIA OBRAZU DETEKCJA I ANALIZA OBSZARÓW IMAGE PROCESSING ALGORITHM BLOB DETECTION AND ANALYSIS
|
|
- Laura Grabowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 ELEKTRYKA 203 Zeszyt 2-3 ( ) Rok LIX Marek SZYMCZAK Politechnika Śląska w Gliwicach ALGORYTM PRZETWARZANIA OBRAZU DETEKCJA I ANALIZA OBSZARÓW Streszczenie. W artykule przedstawiono algorytm przetwarzania obrazu realizującego funkcję detekcji i analizy obszarów wraz ze szczegółowym omówieniem zasady działania. Algorytm ten został zaimplementowany i przetestowany na procesorze sygnałowym TMS320C6437. Słowa kluczowe: przetwarzanie obrazu, detekcja i analiza obszarów, procesor DSP IMAGE PROCESSING ALGORITHM BLOB DETECTION AND ANALYSIS Summary. This paper presents and describes in details an image processing algorithm for detecting and analyzing blobs. The algorithm has been implemented and tested on TMS320C6437 digital signal processor. Keywords: image processing, blob detection and analysis, DSP processor. WSTĘP Detekcja i analiza obszarów (ang. blob detection and analysis) jest jedną z bardziej złożonych technik obróbki obrazu, pozwalającą na segmentacje wyróżnionych w nim obiektów i określenie, które punkty można przypisać do którego obiektu. Dane te mogą być bazą do dalszej analizy bardziej złożonych parametrów, takich jak rozmiar obiektu, jego objętość, środek etc. Do segmentacji często stosuje się połączone ze sobą przekształcenia kontekstowe, bezkontekstowe oraz morfologiczne, tak aby na wyjściu uzyskać obraz binarny z wyróżnionymi na nim obszarami. Przygotowanie obrazu, który ma być poddany analizie za pomocą algorytmu indeksacji, rozpoczyna się od binaryzacji obrazu wejściowego, który najczęściej jest obrazem czarnobiałym, mającym pewną liczbę poziomów szarości. Binaryzacja polega na zmniejszeniu liczby tych poziomów do niezbędnego minimum, czyli dwóch: 0 albo (jeżeli punkt ma
2 52 M. Szymczak wartość 0, to jest czarny, jeżeli, to jest biały). Proces binaryzacji może być realizowany na wiele sposobów. Najprostszym jest ustalenie sztywnego progu, który rozdziela poziomy szarości na czarne (leżące poniżej ustalonego progu) oraz białe (leżące powyżej ustalonego progu). () (2) gdzie: L(m,n) punkty obrazu źródłowego L(m,n) [0, 2 B -]; L (m,n) punkty obrazu wynikowego L (m,n) [0, ]; a próg binaryzacji.` Próg binaryzacji może być dolny () lub górny (2), przy czym ten drugi powoduje odwrócenie kolorów przetwarzanego obrazu. Przykład obrazu poddanego binaryzacji został przedstawiony na rysunku. Rys.. Obraz Lenna (po lewej) poddany binaryzacji z dwoma różnymi wartościami progów: a=27 (pośrodku) oraz a=80 (po prawej) Fig.. Lenna image (on the left) converted to a binary image with two different threshold values: a=27 (in the middle) and a=80 (on the right) Dodatkowo przed poddaniem obrazu binaryzacji można zastosować przekształcenia kontekstowe polegające na ekstrakcji samych krawędzi badanego obrazu. Detekcja krawędzi w dużej mierze wiąże się z filtrami górnoprzepustowymi, a różnica polega na sumie współczynników maski, która w tym przypadku wynosi 0. Jako najprostsze narzędzie do detekcji krawędzi może służyć gradient Laplace a, lecz częściej stosuje się gradienty kierunkowe, które dają lepsze efekty, np gradienty Sobela. Detekcję krawędzi stosuje się w przypadku wykrywania dużych obiektów, podając na algorytm indeksacji wyłącznie ich obrys. Związane jest to z wydajnością działania systemu, ponieważ szybkość detekcji obiektów zależy bezpośrednio od ilości aktywnych pikseli koniecznych do przeanalizowania przez algorytm.
3 Algorytm przetwarzania obrazu 53 Na rysunku 2 pośrodku widzimy Euklidesowe złożenie działania ośmiu masek kierunkowych Sobela oraz po prawej obraz z wykrytymi krawędziami, poddany operacji binaryzacji. Rys. 2. Obraz Lenna (po lewej) poddany operacji detekcji krawędzi (pośrodku) oraz obraz z krawędziami poddany operacji progowania (po prawej) Fig. 2. Lenna image (on the left) after edge detection operation (in the middle) and its further thresholding, resulting in a binary image (on the right) 2. ALGORYTM INDEKSACJI Działanie algorytmu indeksacji polega na przypisaniu indeksów (etykiet) do wszystkich aktywnych pikseli, jednoznacznie wskazując, do którego z obiektów one należą. Jego działanie rozpoczyna się od utworzenia tablicy o takich samych rozmiarach jak obraz wejściowy, w której będą przechowywane oznaczone obszary (indeksy). Indeksację najczęściej realizuje się przez przeglądanie całego obrazu punkt po punkcie (rysunek 3a) aż do natrafienia na pierwszy zapalony piksel (o wartości ). Do przeglądania używany jest element strukturalny w kształcie jak na rysunku 3b. Składa się on z punktu centralnego X oraz kawałka jego otoczenia A, B, C i D. Otoczenie to stanowią punkty, które były już wcześniej analizowane. a) b) Rys. 3. Algorytm indeksacji: a) proces szukania aktywnych punktów; b) element strukturalny przeszukujący obraz Fig. 3. Indexation algorithm: a) the process of searching active points; b) structurizing element used for scanning the image
4 54 M. Szymczak Jeżeli przesuwając element strukturalny po obrazie algorytm napotka na pierwszy aktywny piksel w punkcie centralnym (X=, rysunek 4b), to zostanie przypisany mu pierwszy indeks (L=). Poruszając się dalej, jeżeli algorytm napotka na następny aktywny punkt, to najpierw sprawdza jego otoczenie i jeśli jest ono puste (A=B=C=D=0), oznacza to, że punkt może należeć do kolejnego obiektu i przypisuje się mu kolejny indeks (L=L+). Jeśli natomiast otoczenie nie jest puste, to punkt środkowy przyjmuje niezerową wartość swojego otoczenia (na rysunku 4c X=C=). b) a) c) Obraz wejściowy Rys. 4. Proces przeszukiwania: a) obraz wejściowy; b) pierwszy napotkany aktywny punkt; c) kolejny napotkany aktywny punkt Fig. 4. The searching process: a) the input image; b) the first found active point; c) The next found active point Problem powstaje w sytuacji, gdy otoczenie składa się z kilku różnych wartości (rysunek 5b). Przyjmuje się wtedy, za wartość indeksu punktu środkowego najmniejszą wartość jego otoczenia. Niestety, prowadzi to do wyodrębnienia kilku różnych obszarów w obrębie jednego obiektu (rysunek 5c). a) b) c) 2 2 2? Obraz wejściowy Tabela indeksów Tabela indeksów Rys. 5. Proces indeksacji: a) obraz wejściowy; b) problem różnych wartości otoczenia punktu X (C=3 i D=); c) wydzielenie dwóch obszarów w obrębie jednego obiektu Fig. 5. The indexation process: a) the input image; b) the problem of a difference of values of X point's neighborhood (C=3 i D=); c) separation of two areas within the same object Problem podziału jednego obiektu na kilka obszarów rozwiązuje się przez tak zwaną tablicę sklejeń. Po napotkaniu dwóch różnych indeksów umieszcza się w niej informację o tym, że obszary są ze sobą połączone i powinny mieć ten sam indeks. Przedstawiono przykładowe tabele sklejeń dla rysunku 5.
5 Algorytm przetwarzania obrazu 55 Tabela Tabela sklejeń przed korektą: Tabela 2 Tabela sklejeń po korekcie Widać, że obszar o indeksie 3 został połączony z obszarem o indeksie. Tabeli tej można użyć do przeindeksowania całej tabeli indeksów na końcu algorytmu lub posługiwać się nią do określania poprawnych wartości indeksów. 2.. Pomiary Mając bazę z oznaczonymi obszarami, możemy dokonać pomiarów pewnych wartości wyszczególnionych obiektów. Pierwszym parametrem jest ilość wykrytych obiektów N, którą możemy uzyskać wprost ze sprawdzenia największej wartości indeksu w tabeli indeksów. Następny parametr to ilość punktów, z których się składa obiekt (jego pole powierzchni). Jest to parametr bardzo prosty do wyznaczenia i sprowadza się do zliczenia punktów należących do danego obiektu, ale duży wpływ na jego dokładność ma etap przygotowania obrazu binarnego. Bardziej złożoną operacją jest wyznaczenie punktu centralnego i do tego celu można wykorzystać inne parametry, których określenie jest nieco łatwiejsze. Tymi parametrami są maksymalne rozmiary obiektu w poziomie i pionie. Są to punkty należące do obiektu, które leżą na jego skraju w płaszczyźnie poziomej i pionowej. Licząc średnią z tych punktów, uzyskamy w przybliżeniu środek badanego obiektu. Na rysunku 6 zostały zaznaczone wybrane parametry badanego obiektu. środek obrys obiektu Rys. 6. Wybrane parametry badanego obiektu Fig. 6. Selected parameters of the analyzed object
6 56 M. Szymczak Wyznaczanie współrzędnych środka obiektu: (3) Zindeksowane obszary pozwalają na dokonanie większej ilości pomiarów innych paramentów badanych obiektów, których wybór zależy od docelowego przeznaczenia systemu przetwarzającego obraz, oraz decyzji, jakie musi on podejmować. 3. PODSUMOWANIE Na początku artykułu zostały omówione podstawowe przekształcenia kontekstowe i bezkontekstowe, służące odpowiedniemu przygotowaniu obrazu, będącego zapisem w odcieniach szarości, do formy binarnej akceptowanej przez algorytm indeksacji. W dalszej części został opisany w szczegółach sam algorytm indeksujący wraz z przykładami i możliwymi do napotkania problemami. Opisany w artykule algorytm został zaimplementowany na procesorze sygnałowym TMS320C6437. Na koniec podane zostały dane, jakie możemy uzyskać z przetworzonego obrazu i do czego mogą nam one posłużyć. BIBLIOGRAFIA. Tadeusiewicz R., Skorochoda P.: Komputerowa analiza i przetwarzanie obrazów. FPT, Obraz Lenna Qureshi S.: Embedded image processing on the TMS320C6000 DSP. Springer Science+Business Media, Inc., Spectrum Digital: TMS320DM6437 Evaluation Module. Technical Reference. 5. Zieliński T.P.: Cyfrowe przetwarzanie sygnałów. WKŁ, Warszawa Mgr inż. Marek SZYMCZAK Politechnika Śląska, Wydział Elektryczny Instytut Elektrotechniki i Informatyki ul. Akademicka Gliwice Marek.Szymczak@polsl.pl
Analiza obrazów. Segmentacja i indeksacja obiektów
Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu
Implementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze
Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
Przetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.
Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy
Algorytm SAT. Marek Zając 2012. Zabrania się rozpowszechniania całości lub fragmentów niniejszego tekstu bez podania nazwiska jego autora.
Marek Zając 2012 Zabrania się rozpowszechniania całości lub fragmentów niniejszego tekstu bez podania nazwiska jego autora. Spis treści 1. Wprowadzenie... 3 1.1 Czym jest SAT?... 3 1.2 Figury wypukłe...
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów.
Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 5 Filtracja kontekstowa obrazów. Cel ćwiczenia Celem ćwiczenia jest zdobucie umiejętności tworzenia funkcji realizujących
Przetwarzanie obrazów wykład 2
Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna
Przetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
Przetwarzanie obrazów wykład 3
Przetwarzanie obrazów wykład 3 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Operacje kontekstowe (filtry) Operacje polegają
CECHY BIOMETRYCZNE: ODCISK PALCA
CECHY BIOMETRYCZNE: ODCISK PALCA Odcisk palca można jednoznacznie przyporządkować do osoby. Techniki pobierania odcisków palców: Czujniki pojemnościowe - matryca płytek przewodnika i wykorzystują zjawisko
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX6 Operacje morfologiczne Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami podstawowych
Przetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność
Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI
AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI IMIĘ i NAZWISKO: Zbigniew Winiarski Nr albumu: 237828 KIERUNEK: Informatyka
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 8 Temat: Operacje sąsiedztwa detekcja krawędzi Wykonali: 1. Mikołaj Janeczek
9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie
9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy
Diagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie siódme Usuwanie tła i segmentacja Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z metodami usuwania tła z obrazu oraz algorytmami
Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Segmentacja przez detekcje brzegów
Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Operacje przetwarzania obrazów monochromatycznych
Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych
ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM)
ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) LABORATORIUM 5 - LOKALIZACJA OBIEKTÓW METODĄ HISTOGRAMU KOLORU 1. WYBÓR LOKALIZOWANEGO OBIEKTU Pierwszy etap laboratorium polega na wybraniu lokalizowanego obiektu.
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego
Operacje morfologiczne w przetwarzaniu obrazu
Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy
Analiza i przetwarzanie obrazów
Analiza i przetwarzanie obrazów Temat projektu: Aplikacja na system Android wyodrębniająca litery(znaki) z tekstu Marcin Nycz 1. Wstęp Tematem projektu była aplikacja na system Android do wyodrębniania
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie siódme Usuwanie tła i segmentacja 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z metodami usuwania tła z obrazu oraz algorytmami
Detekcja punktów zainteresowania
Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów
Elementy analizy obrazu. W04
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Elementy analizy obrazu. W04 Obszar zainteresowania ROI Obszar zainteresowania Region of Interest (ROI) ROI jest traktowane jako podobraz
METODY ANALIZY OBRAZÓW W ZASTOSOWANIACH DIAGNOSTYCZNYCH
Szybkobieżne Pojazdy Gąsienicowe (21) nr 1, 2005 Krzysztof MARKIEWICZ METODY ANALIZY OBRAZÓW W ZASTOSOWANIACH DIAGNOSTYCZNYCH Streszczenie: Celem tego artykułu jest przedstawienie szeregu prostych metod
Instrukcja użytkowania modułu Rzeźba terenu
Instrukcja użytkowania modułu Rzeźba terenu Kolejnym modułem, który chcemy Państwu przybliżyć jest moduł Rzeźba terenu. W module tym zostały przedstawione dane prezentujące ukształtowania powierzchni województwa
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
WYKŁAD 13 ANALIZA I ROZPOZNANIE OBRAZU. Konstrukcja wektora cech z użyciem współczynników kształtu
WYKŁAD 13 ANALIZA I ROZPOZNANIE OBRAZU Współczynniki kształtu W1,...,W9 stanowią skalarną miarę kształtu analizowanego obiektu. Konstrukcja wektora cech z użyciem współczynników kształtu Wektor cech: x
Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych
ZACNIEWSKI Artur 1 Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych WSTĘP Kod kreskowy (ang. barcode) to graficzna reprezentacja informacji, w postaci
Diagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie czwarte Przekształcenia morfologiczne obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych
i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk
System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje
Segmentacja obrazu. Segmentacja obrazu
Cel segmentacji Podział obrazu na obszary odpowiadające poszczególnym, widocznym na obrazie obiektom. Towarzyszy temu zwykle indeksacja (etykietowanie) obiektów, czyli przypisanie każdemu obiektowi innej
Dodatek A. Palety. QuarkXPress 4.1. Projekty praktyczne. Podstawowe palety
Dodatek A. Palety Podstawowe palety Paleta Tools, czyli paleta narzędziowa. Jest to typowa paleta pływająca, w której zostały umieszczone podstawowe narzędzia. Rysunek A 1. Paleta Tools Item narzędzie
Samochodowy system detekcji i rozpoznawania znaków drogowych. Sensory w budowie maszyn i pojazdów Maciej Śmigielski
Samochodowy system detekcji i rozpoznawania znaków drogowych Sensory w budowie maszyn i pojazdów Maciej Śmigielski Rozpoznawanie obrazów Rozpoznawaniem obrazów możemy nazwać proces przetwarzania i analizowania
Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu
Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia
Analiza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Detekcja twarzy w obrazie
Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów
Obraz jako funkcja Przekształcenia geometryczne
Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych
Analiza i przetwarzanie obrazo w
Analiza i przetwarzanie obrazo w Temat projektu: Aplikacja na system ios rozpoznająca tekst Michał Opach 1. Cel projektu Celem projektu było stworzenie aplikacji mobilnej na system operacyjny ios, która
Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek
Filtracja splotowa obrazu
Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)
Umieszczanie grafiki w dokumencie
Umieszczanie grafiki w dokumencie Najczęstszym sposobem wstawiania grafiki do dokumentu jest wybranie z górnego menu polecenia Wstaw-->Obraz--Z pliku W tym oknie podajemy lokalizacje pliku, który zostanie
Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Przetwarzanie obrazów wykład 7. Adam Wojciechowski
Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest
WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
Szacowanie wartości monet na obrazach.
Marcin Nieściur projekt AiPO Szacowanie wartości monet na obrazach. 1. Wstęp. Celem projektu było stworzenie pluginu do programu ImageJ pozwalającego na szacowanie wartości monet znajdujących się na obrazach
Komputerowe przetwarzanie obrazu Laboratorium 5
Komputerowe przetwarzanie obrazu Laboratorium 5 Przykład 1 Histogram obrazu a dobór progu binaryzacji. Na podstawie charakterystyki histogramu wybrano dwa różne progi binaryzacji (120 oraz 180). Proszę
Analiza obrazów - sprawozdanie nr 3
Analiza obrazów - sprawozdanie nr 3 Przekształcenia morfologiczne Przekształcenia morfologiczne wywodzą się z morfologii matematycznej, czyli dziedziny, która opiera się na teorii zbiorów, topologii i
Julia 4D - raytracing
i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja
E-I2G-2008-s1. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu E-I2G-2008-s1 Nazwa modułu Zaawansowane przetwarzanie obrazów Nazwa modułu w języku angielskim
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN. Instrukcja do ćwiczeń laboratoryjnych z elementów analizy obrazów
POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z elementów analizy obrazów Przetwarzanie obrazu: skalowanie miary i korekcja perspektywy. Opracował:
Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 7
7. NORMALIZACJA I BINARYZACJA ADAPTATYWNA 7.1. Normalizacja lokalna Zwykłe konwolucje działają w jednakowy sposób na całym obrazie. Plugin Local Normalization przeprowadza filtrowanie Gaussa w zależności
Proste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie czwarte Przekształcenia morfologiczne obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych
Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie. Projekt. z przedmiotu Analiza i Przetwarzanie Obrazów
30 czerwca 2015 Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie Projekt z przedmiotu Analiza i Przetwarzanie Obrazów Wykrywanie tablic rejestracyjnych Jagieła Michał IS (GKiPO) Michał Jagieła
ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt. Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel.
Grupa IZ07IO1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel. Wykonali:
Diagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie piąte Filtrowanie obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów
MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ
ELEKTRYKA 014 Zeszyt 1 (9) Rok LX Krzysztof SZTYMELSKI, Marian PASKO Politechnika Śląska w Gliwicach MATEMATYCZNY MODEL PĘTLI ISTEREZY MAGNETYCZNEJ Streszczenie. W artykule został zaprezentowany matematyczny
Grenlandia się topi badanie rozkładu kątów pomiędzy strumykami na lądolodzie na podstawie analizy obrazu
Grenlandia się topi badanie rozkładu kątów pomiędzy strumykami na lądolodzie na podstawie analizy obrazu Małgorzata Bąk, Marcin Byra, Filip Chudzyński, Marcin Osiekowicz Opiekun: dr hab. Piotr Szymczak
Diagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie trzecie Operacje na dwóch obrazach Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,
PRZETWARZANIE SYGNAŁÓW
PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)
zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych
Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III
1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania
ANALIZA OBRAZU Analiza obrazu poprawy jako ci obrazu, restauracji obrazów kodowania obrazów
ANALIZA OBRAZU Analiza obrazu (ang. image analysis, scene analysis, image description, image understanding, pattern recognition, machine/computer vision) dotyczy metod wydobywania danych (informacji) z
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie trzecie Operacje na dwóch obrazach 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,
Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015
Ćwiczenia z grafiki komputerowej 5 FILTRY Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 12 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadanie ilustruje
3. OPERACJE BEZKONTEKSTOWE
3. OPERACJE BEZKONTEKSTOWE 3.1. Tablice korekcji (LUT) Przekształcenia bezkontekstowe (punktowe) to takie przekształcenia obrazu, w których zmiana poziomu szarości danego piksela zależy wyłącznie od jego
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Wykrywanie twarzy na zdjęciach przy pomocy kaskad
Wykrywanie twarzy na zdjęciach przy pomocy kaskad Analiza i przetwarzanie obrazów Sebastian Lipnicki Informatyka Stosowana,WFIIS Spis treści 1. Wstęp... 3 2. Struktura i funkcjonalnośd... 4 3. Wyniki...
Dwufazowy system monitorowania obiektów. Karina Murawko, Michał Wiśniewski
Dwufazowy system monitorowania obiektów Karina Murawko, Michał Wiśniewski Instytut Grafiki Komputerowej i Systemów Multimedialnych Wydziału Informatyki Politechniki Szczecińskiej Streszczenie W artykule
Przekształcenia punktowe
Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze
PL B1. Układ do przetwarzania interwału czasu na słowo cyfrowe metodą kompensacji wagowej
PL 227455 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 227455 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 413964 (22) Data zgłoszenia: 14.09.2015 (51) Int.Cl.
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
Podstawy programowanie systemów wizyjnych InSight firmy Cognex. Środowisku InSight Explorer / Spreadshee
Podstawy programowanie systemów wizyjnych InSight firmy Cognex Środowisku InSight Explorer / Spreadshee Opis zadania: Wykrycie umownych różnic pomiędzy wzorcową płytką testową i płytkami zawierającymi
rozpoznawania odcisków palców
w algorytmie rozpoznawania odcisków palców Politechnika Łódzka Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej 24 października 2008 Plan prezentacji 1 Wstęp 2 3 Metoda badań Wyniki badań
POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement)
POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement) Przetwarzanie obrazów cyfrowych w celu wydobycia / uwydatnienia specyficznych cech obrazu dla określonych zastosowań. Brak
Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):
WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych
DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM
Dr inż. Witold HABRAT, e-mail: witekhab@prz.edu.pl Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa Dr hab. inż. Piotr NIESŁONY, prof. PO, e-mail: p.nieslony@po.opole.pl Politechnika Opolska,
2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych
4. Arytmetyka procesorów 16-bitowych stałoprzecinkowych Liczby stałoprzecinkowe Podstawowym zastosowaniem procesora sygnałowego jest przetwarzanie, w czasie rzeczywistym, ciągu próbek wejściowych w ciąg
Zadanie 3: Liczenie winogron
Informatyka, studia dzienne, II st. semestr II Rozpoznawanie obrazów 2012/2013 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30 Data oddania: Ocena: Andrzej Stasiak 178736 Grzegorz Graczyk 178717
Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż.
Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia Mgr inż. Dorota Smorawa Plan prezentacji 1. Wprowadzenie do zagadnienia 2. Opis urządzeń badawczych
Reprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność