PRZETWARZANIE OBRAZÓW WIT, sem.6, 2006/2007, prowadzący: Marek Doros WYKŁAD 1 Schemat procesu przetwarzania obrazu
|
|
- Wiktor Nawrocki
- 9 lat temu
- Przeglądów:
Transkrypt
1 PRZETWARZANIE OBRAZÓW WIT, sem.6, 2006/2007, prowadzący: Marek Doros WYKŁAD 1 Schemat procesu przetwarzania obrazu Przetwarzanie obrazów jest to proces składający się z następujących operacji: 1. Pozyskanie (akwizycja) obrazu i przetworzenie do postaci cyfrowej; 2. Wstępne przetworzenie obrazu, jego filtracja i wyostrzanie, a także jego binaryzacja; 3. Segmentacja obrazu i wydzielenie poszczególnych obiektów oraz ich fragmentów (np. krawędzi i innych linii); 4. Analiza obrazu i wyznaczenie cech obiektów oraz informacji o ich lokalizacji; 5. Rozpoznanie i rozumienie obrazu (identyfikacja klasy). Grafika komputerowa jest to tworzenie obrazów metodami cyfrowymi Opis obrazu Obraz cyfrowy 1 (1)
2 Podstawowe definicje Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych współrzędnych x,y określa intensywność (jasność) obrazu w tym punkcie, gdzie: 0 ( x y) < f, l - Poziom szarości - intensywność obrazu czarno-białego f punkcie (x,y) L l gdzie: [L min, L max ] - skala szarości, min L max M - liczba poziomów szarości; M = Lmax Lmin + 1 Przesunięcie skali do zakresu: [0, L] gdzie: l = 0 - czerń l = L - biel (w rozważanej skali szarości) w Dyskretyzacja obrazu dyskretyzacja funkcji f(x,y): przestrzenna (próbkowanie obrazu) amplitudowa (kwantyzacja poziomu szarości) 2 (1)
3 Obraz cyfrowy tablica NxN próbek wynikających z dyskretyzacji obrazu (przestrzennej); każdy element tablicy przechowuje skwantowany poziom szarości (jeden spośród M poziomów). (, ) f x y ( 00, ) ( 01, )... ( 0, 1) ( 10, ) ( 11, )... ( 1, 1) f f f N f f f N =... f N f N f N N ( 10, ) ( 11, )... ( 1, 1) Piksel (pel) - element obrazu (picture element) każdy z elementów tablicy Przykład: N=4, 0 l 15, tzn. M=16 Rozdzielczość przestrzenna - określa stopień rozróżnialności detali; tym lepsza, im większa wartość N. 3 (1)
4 Rozdzielczość poziomów szarości - tym lepsza, im większa wartość M. Siatka dyskretna (discrete net): wzorzec według którego dokonywana jest dyskretyzacja przestrzenna obrazu; linie, oczka, węzły Siatka prostokątna najczęściej stosowana : oczko siatki jest kwadratem Piksel podstawowy element obrazu; odniesienie do oczka lub węzła siatki Rodzaje sąsiedztwa: np. 8-spójne, 4-spójne Dualizm oczko - punkt (siatka prostokątna) zachowuje zasady sąsiedztwa np. ośmiospójnego. węzły (punkty) siatki prostokątnej, oczka siatki prostokątnej Piksel może być skojarzony z węzłem lub z oczkiem siatki 4 (1)
5 Paradoks spójności 1 - obiekt spójny Przeciwdziałanie: 2 -tło: spójne(?) przypisanie różnych rodzajów -niespójne(?) sąsiedztwa pikslom obiektu i tła Rzadziej stosowane siatki: Siatka sześciokątna (heksagonalna) Siatka trójkątna. Siatka heksagonalna Nie zachowuje zasady dualizmu oczko punkt siatki (sąsiedztwo 6- spójne przechodzi w 3-spójne) oczka(sąsiedztwo 6-spójne) węzły (sąsiedztwo 3- spójne) 5 (1)
6 Dopełnienie - wszystkie piksle obrazu nie należące do danego podzbioru obrazu Dziura - spójna składowa dopełnienia obszaru otoczona przez ten obszar Obszar - spójny podzbiór Przekrój - przecięcie linią prostą obszaru lub obrazu. 6 (1)
7 spójny - dotyczący podzbioru obrazu, którego dwa dowolne punkty można połączyć łukiem całkowicie zwartym w tym podzbiorze średnica podzbioru - maksymalna odległość między dwoma dowolnymi pikselami w podzbiorze obrazu tło - spójne składowe obrazu, które leżą wewnątrz dopełnienia obszaru i otaczają go 7 (1)
8 Obszar wklęsły - co najmniej jeden odcinek prostej między dwoma punktami obszaru nie leży całkowicie w tym obszarze. Obszar wypukły - odcinek prostej między dwoma dowolnymi punktami obszaru jest całkowicie zawarty w tym obszarze. 8 (1)
9 Binaryzacja obrazu - zamiana obrazu f(x,y), którego piksele przyjmują wartości z przedziału <L min,l max > na obraz b(x,y), którego piksele przyjmują wyłącznie wartości 0 lub 1 (1 bit) (pojęcia obiekt - tło ). Realizacja binaryzacji: progowanie, tzn. zadanie progu o wartosci Θ; piksele, których poziom szarości przekracza Θ kwalifikowane są do jednej grupy, reszta zaś do drugiej. Segmentacja obrazu (etykietowanie) - rozbicie obrazu (uprzednio przefiltrowanego i zbinaryzowanego) na fragmenty odpowiadające poszczególnym, widocznym na obrazie obiektom; wydzielenie obszarów obrazu spełniających pewne kryteria jednorodności, np. kolor obszaru, poziom jasności, faktura. Indeksacja wydzielonych obiektów obrazu, tzn. wypełnianie wydzielonych obszarów odpowiadających obiektom sztucznie wprowadzonymi "poziomami szarości". Cel segmentacji: Przygotowanie obrazu do etapu właściwego rozpoznawania obiektów, określenia relacji przestrzennych pomiędzy nimi. Segmentacja stanowi poziom pośredni pomiędzy poziomem wstępnego przetwarzania a poziomem analizy obrazu. 9 (1)
10 Analiza obrazu - wyznaczenie cech obiektów (wyodrębnionych uprzednio w procesie segmentacji) przydatnych w procesie właściwego rozpoznawania; cechy charakteryzujące kształty; współczynniki niezmiennicze względem typowych przekształceń obrazów (obroty, przesunięcia, zmiany, skali) współczynniki kształtu, momenty geometryczne. Rozpoznanie obrazu - automatyczna identyfikacja klasy, do której można zaliczyć nieznany obiekt (np. obraz). 10 (1)
11 Histogram rozkład częstości pojawiania się w obrazie pikseli o zadanych poziomach jasności Operacje na histogramie: a) rozciąganie b) wyrównywanie spłaszczenie; cel: normalizacja obrazu przy porównywaniu efekt rozciągania: wyostrzenie obrazu 11 (1)
12 Pytania 1 1. Co to jest obraz 2. Z jakich operacji składa się proces przetwarzania obrazu 3. Co to jest poziom szarości obrazu 4. Na czym polega próbkowanie obrazu 5. Na czym polega kwantyzacja poziomów szarości obrazu 6. Co to jest obraz cyfrowy 7. Co to jest piksel 8. Co to jest rozdzielczość przestrzenna 9. Co to jest rozdzielczość poziomów szarości 10. Siatka dyskretna, struktura siatki, podać rodzaje siatek 11. Podać rodzaje sąsiedztwa 12. Jak wygląda piksel w postaci węzła a jak w postaci oczka 13. Na czym polega zasada dualizmu węzeł oczko? 14. Podać przykład paradoksu spójności. 15. Podać różnicę pomiędzy dopełnieniem a tłem w obrazie 16. Co to jest histogram obrazu. Jak zmiana w wyglądzie obrazu wpływa na wygląd jego histogramu? 12 (1)
13 Problem 1 Zadanie 1 Dla dwóch utworzonych obrazów w gradacji stopni szarości szaroodcieniowych) o rozdzielczościach N=4 i M.=16: a) o niejednolitym rozkładzie poziomów szarości, b) o jednolitym rozkładzie poziomów szarości obliczyć medianę (m e ) oraz odchylenie standardowe (σ ). Zbadać 2 przypadki: 1. Element populacji piksel obrazu, cecha liczbowa poziom szarości. 2. Element populacji numer poziomu szarości obrazu, cecha liczbowa liczba pikseli o takim samym poziomie szarości. Informacje pomocnicze: Populacja generalna zbiór n elementów podlegający badaniu lub szacowaniu ze względu na jedną cechę liczbową. Liczność populacji generalnej - n Cechy liczbowe elementów populacji: x 1, x 2,..., x n, * * * a po uporządkowaniu ich w porządku niemalejącym: x 1, x 2,..., x n 1 n Wartość średnia: m = x k n k = 1 Mediana (m e ): 1) n nieparzyste: n = 2k 1, to me xk * * 2) n parzyste: n = 2 k, to xk me xk +1 = * przyjmujemy zazwyczaj: me = xk * + xk * Odchylenie standardowe: σ = 1 n ( xk m ) 2 ) ; n k = 1 13 (1)
14 Materiały do Wykładu 1 M. Doros, Przetwarzanie obrazów, skrypt WSISIZ Warszawa 2005: 1.2 Typowe systemy wizyjne (str.16-19), 2.1 Akwizycja (pozyskiwanie) obrazu (str.20-30), Wykład: MATERIAŁY PODSTAWOWE 1. Skrypt WSISiZ: Marek Doros, Przetwarzanie obrazów, Warszawa Tekst wykładu: UBI: Marek Doros udostępniane materiały dydaktyczne / POBZ/ Wykłady Ćwiczenia: 1. Skrypt WSISiZ: Przetwarzanie Obrazów, materiały pomocnicze do ćwiczeń Warszawa katalogi na serwerze Oceanic : 0:/opt/windows/staff/doros/dor06_07/Obrazy 0:/opt/windows/staff/doros/dor06_07/Programy 3.Instrukcje do ćwiczeń: UBI: Prowadzacy ćwiczenia z POB udostępniane materiały dydaktyczne / POBZ/Ćwiczenia 14 (1)
15 LITERATURA & ZASOBY SIECIOWE 1. M. Doros, Przetwarzanie obrazów, Skrypt WSISIZ, Warszawa T.Pavlidis, Grafika i Przetwarzanie Obrazów, WNT Warszawa R.Tadeusiewicz, Systemy Wizyjne Robotów Przemysłowych, WNT Warszawa, C.D.Watkins at al., Nowoczesne metody przetwarzania obrazu, WNT Warszawa R.Tadeusiewicz, M.Flasiński, Rozpoznawanie Obrazów, PWN Warszawa,1991 (Uwaga: książka znajduje się na stronie: 6. W.Skarbek, Metody Reprezentacji Obrazów Cyfrowych, Akademicka Oficyna Wydawnicza PLJ, Warszawa M.Jankowski, Elementy Grafiki Komputerowej, WNT Warszawa R.Choraś, Komputerowa wizja, metody interpretacji i identyfikacji obiektów, EXIT, Warszawa M.Ostrowski, Informacja Obrazowa, WNT Warszawa, A.K.Jain, Fundamentals of Digital Image Processing, Prentice Hall International, L.J.Galbiati, Machine Vision and Digital Image Processing Fundamentals, Prentice - Hall International, R.O.Duda, P.E.Hart, Pattern Classification and Scene Analysis, J.Wiley, New York J.D.Foley at al., Wprowadzenie do grafiki komputerowej, WNT Warszawa J.Zabrodzki (ed), Grafika komputerowa, metody i narzędzia, WNT, Warszawa, Russ J., 1995 Image Processing Handbook, CRC Press 1995, ISBN Grafika PC bez Tajemnic, Intersoftland Höhne K.H., Fuchs H., Pizer S.M.(Eds.): 3D imaging in medicine, Springer-Verlag Berlin Heidelberg, E.Piętka, Image processing in picture archiving and communication systems, habilitation thesis, Katowice (1)
16 19. J.Wojdyła, Kompresja danych w systemach informatycznych, PWE, Warszawa N.Abramson, Teoria informacji i kodowania, PWN Warszawa L.Wojnar, M.Majorek, Komputerowa analiza obrazu, Kraków J.Levine, Programowanie plików graficznych w C/C++, Translator s.c. Warszawa M.Kass, A.Witkin, D.Terzopoulos, Snakes: active contour models, International Journal of Computer Vision, 1, 1988, pp W.Mokrzycki, Encyklopedia Przetwarzania Obrazów, Akademicka Oficyna Wydawnicza RM, Warszawa R.Latham, Leksykon grafiki komputerowej i rzeczywistości wirtualnej, WNT, Warszawa R.Tadeusiewicz, P.Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków J.C.Russ, Image Processing Handbook, 2 nd Edition, CRC Press, Boca Raton, Ann Arbor, London, Tokyo E.Angel, Computer Graphics, p.369. Addison-Wesley, Reading, Massachusets (1990). (algorytm z buforem głębokości; Z buffer algorithm, depth buffer algorithm. 29. R. Sedgewick, Algorithms, Addison-Wesley, Reading, Massachusetts (1990). (algorytmy sortowania elementów). 30. Gonzalez, Image processing (transformacje obrazu) 31. A.Bovik (ed.), Handbook of Video & Image Processing, Academic Press, London Io.Pitas, Digital image processing, algorithms and applications, Feb 2000, John Wiley & Sons, Multimedia material can be obtained from: ftp://ftp.wiley.com/public/sci_tech_med/image_processing EIKONA software can be found in N.Nikolaidis, I. Pitas, 3-D image processing algorithms, Hardcover pages (October 2000) John Wiley & Sons; ISBN: , EIKONA3D software can be downloaded from J.Illingworth, J.Kittler, A survey of the Hough transform, Computer Vision, graphics, and Image procesing 44, pp W.Skarbek, Multimedia. Algorytmy i standardy kompresji. Akademicka Oficyna Wydawnicza PLJ, Problemy Współczesnej Nauki. Teoria i Zastosowania. Warszawa (1)
17 36. R.Tadeusiewicz. "Spolecznosc Internetu", streszczenie i spis tresci sa dostępne pod adresem sieciowym: B. Cyganek, Komputerowe przetwarzanie obrazów trójwymiarowych, (format B5, 6 stron w kolorze), streszczenie i spis tresci sa dostępne pod adresem sieciowym: - Spis Z. Wróbel, R.Koprowski, Przetwarzanie obrazu w programie Matlab, 242 s., 170x240 mm, Katowice, 2001, streszczenie i spis tresci sa dostępne pod adresem sieciowym: Istotnym ułatwieniem w posługiwaniu się książką jest utworzenie strony, na której zamieszczono wszystkie przykłady: M.Domański: Zaawansowane techniki kompresji obrazów i sekwencji wizyjnych, ISBN Dział Wydawnictw Politechniki Poznańskiej, Stron 149 Cena: 20 PLN 17 (1)
PRZETWARZANIE OBRAZÓW WIT, Studia Dzienne, sem.5, 2006/2007, prowadzący: Marek Doros WYKŁAD 1 Schemat procesu przetwarzania obrazu
PRZETWARZANIE OBRAZÓW WIT, Studia Dzienne, sem.5, 2006/2007, prowadzący: Marek Doros WYKŁAD 1 Schemat procesu przetwarzania obrazu Przetwarzanie obrazów jest to proces składający się z następujących operacji:
POB Odpowiedzi na pytania
POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej
WYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła.
WYKŁAD 7 Elementy segmentacji Obraz z wykrytymi krawędziami: Detektory wzrostu (DTW); badanie pewnego otoczenia piksla Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: DIAGNOSTYKA OBRAZOWA Nazwa w języku angielskim: DIAGNOSTIC IMAGING Kierunek studiów (jeśli dotyczy):
WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości
Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1
Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu
Wizja maszynowa w robotyce i automatyzacji - opis przedmiotu Informacje ogólne Nazwa przedmiotu Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu 11.9-WE-AiRD-WMwRiA Wydział Kierunek Wydział Informatyki,
WYKŁAD 13 ANALIZA I ROZPOZNANIE OBRAZU. Konstrukcja wektora cech z użyciem współczynników kształtu
WYKŁAD 13 ANALIZA I ROZPOZNANIE OBRAZU Współczynniki kształtu W1,...,W9 stanowią skalarną miarę kształtu analizowanego obiektu. Konstrukcja wektora cech z użyciem współczynników kształtu Wektor cech: x
KARTA PRZEDMIOTU. W5/1;W16/1 W5 Zna podstawowe metody przetwarzania wstępnego EP WM K_W9/3; obrazów barwnych.
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PRZETWARZANIE OBRAZÓW CYFROWYCH 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia 5. Forma
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
AKWIZYCJA I PRZETWARZANIE WSTĘPNE
WYKŁAD 2 AKWIZYCJA I PRZETWARZANIE WSTĘPNE Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x,y)) do postaci zbioru danych dyskretnych (obraz cyfrowy) nadających
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ANALIZA I PRZETWARZANIE OBRAZÓW CYFROWYCH Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Programowanie aplikacji internetowych Rodzaj zajęć: wykład, laboratorium
Rok akademicki: 2017/2018 Kod: RIA s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Przetwarzanie obrazów Rok akademicki: 2017/2018 Kod: RIA-1-705-s Punkty ECTS: 2 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Inżynieria Akustyczna Specjalność: Poziom studiów: Studia
30 godzin, 6 punktów ECTS
Reprezentacja obrazów cyfrowych Podstawowe pojęcia i operacje Komputerowa analiza obrazów 30 godzin, 6 punktów ECTS Treści programowe 1. Reprezentacja obrazów cyfrowych, informacja obrazowa. 2. Modele
Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
PROGRAM NAUCZANIA PRZEDMIOTU FAKULTATYWNEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY
PROGRAM NAUCZANIA PRZEDMIOTU FAKULTATYWNEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY 1. NAZWA PRZEDMIOTU : ANALIZA I PRZETWARZANIE OBRAZÓW MEDYCZNYCH 2. NAZWA JEDNOSTKI (jednostek
AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU
AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU WYKŁAD 2 Marek Doros Przetwarzanie obrazów Wykład 2 2 Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x, y)) do postaci
ANALIZA OBRAZU Analiza obrazu poprawy jako ci obrazu, restauracji obrazów kodowania obrazów
ANALIZA OBRAZU Analiza obrazu (ang. image analysis, scene analysis, image description, image understanding, pattern recognition, machine/computer vision) dotyczy metod wydobywania danych (informacji) z
zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych
Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w
Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
Obraz jako funkcja Przekształcenia geometryczne
Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy na specjalności Inżynieria Oprogramowania Rodzaj zajęć: wykład, laboratorium SYSTEMY MULTIMEDIALNE Multimedia Systems Forma studiów:
Diagnostyka procesów
Diagnostyka procesów Bartosz Jabłoński Omówienie semestr zimowy 2013/2014 10/5/2013 1 Kontakt dr inż. Bartosz Jabłoński bartosz.jablonski@pwr.wroc.pl s. 911, D-20 www.jablonski.wroclaw.pl 10/5/2013 Footer
Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizowany w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 Realizowany w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Przekształcenia punktowe
Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi
Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Gimp Grafika rastrowa (konwersatorium)
GIMP Grafika rastrowa Zjazd 1 Prowadzący: mgr Agnieszka Paradzińska 17 listopad 2013 Gimp Grafika rastrowa (konwersatorium) Przed przystąpieniem do omawiania cyfrowego przetwarzania obrazów niezbędne jest
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 2 Histogram i arytmetyka obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 1 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Problemy i zastosowania informatyki M.Szwoch, K.Dziubich
Problemy i zastosowania informatyki M.Szwoch, K.Dziubich dr inż. Mariusz Szwoch, Katedra ISI ETI PG, 2017 1 Problemy i Zastosowania Informatyki Sem. 2 Magisterskich Studiów Uzupełniających Wymiar wykład
Analiza obrazów. Segmentacja i indeksacja obiektów
Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu
Odciski palców ekstrakcja cech
Kolasa Natalia Odciski palców ekstrakcja cech Biometria sprawozdanie z laboratorium 4 1. Wstęp Biometria zajmuje się rozpoznawaniem człowieka na podstawie jego cech biometrycznych. Jest to możliwe ponieważ
PRZETWARZANIE OBRAZÓW
PRZETWARZANIE OBRAZÓW WYKŁAD 1 Marek Doros Przetwarzanie obrazów Wykład 1 2 Schemat procesu przetwarzania obrazu Obraz cyfrowy Opis obrazu Obraz Pozyskanie Wstępne przetworzenie obrazu Segmentacja obrazu
ZASTOSOWANIE METOD ANALIZY OBRAZU DO WSPOMAGANIA OSÓB NIEWIDOMYCH NA UCZELNI WYŻSZEJ
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 740 STUDIA INFORMATICA NR 31 2012 MAREK KANNCHEN Państwowa Wyższa Szkoła Zawodowa w Gorzowie Wielkopolskim ZASTOSOWANIE METOD ANALIZY OBRAZU DO WSPOMAGANIA
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Grafika komputerowa i wizualizacja 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium GRAFIKA KOMPUTEROWA I WIZUALIZACJA Computer
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU CYFROWE PRZETWARZANIE SYGNAŁÓW
Reprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność
Marcin Wilczewski Politechnika Gdańska, 2013/14
Algorytmy graficzne Marcin Wilczewski Politechnika Gdańska, 213/14 1 Zagadnienia, wykład, laboratorium Wykład: Światło i barwa. Modele barw. Charakterystyki obrazu. Reprezentacja i opis. Kwantyzacja skalarna
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa IZ06TC01, Zespół 3 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat: Modelowanie koloru, kompresja obrazów,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne. Nie dotyczy
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne Nazwa modułu: Moduł B - Technologie informacyjne Rodzaj modułu/przedmiotu Wydział PUM Kierunek studiów Specjalność Poziom studiów Forma studiów Rok, semestr
Podstawy grafiki komputerowej
Podstawy grafiki komputerowej Krzysztof Gracki K.Gracki@ii.pw.edu.pl tel. (22) 6605031 Instytut Informatyki Politechniki Warszawskiej 2 Sprawy organizacyjne Krzysztof Gracki k.gracki@ii.pw.edu.pl tel.
Proste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Podstawy programowanie systemów wizyjnych InSight firmy Cognex. Środowisku InSight Explorer / Spreadshee
Podstawy programowanie systemów wizyjnych InSight firmy Cognex Środowisku InSight Explorer / Spreadshee Opis zadania: Wykrycie umownych różnic pomiędzy wzorcową płytką testową i płytkami zawierającymi
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy
Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Wykorzystane materiały: Zadanie W dalszej części prezentacji będzie omawiane zagadnienie rozpoznawania twarzy Problem ten można jednak uogólnić
PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU
1 PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 2 Metalografia - nauka o wewnętrznej budowie materiałów metalicznych (metale i ich stopy), oparta głównie na badaniach mikroskopowych. 3
Podstawy Informatyki Wykład V
Nie wytaczaj armaty by zabić komara Podstawy Informatyki Wykład V Grafika rastrowa Paint Copyright by Arkadiusz Rzucidło 1 Wprowadzenie - grafika rastrowa Grafika komputerowa tworzenie i przetwarzanie
Tematyka seminariów z informatyki dla studentów I roku kierunku lekarsko-dentystycznego w roku akademickim 2017/2018.
Tematyka seminariów z informatyki dla studentów I roku kierunku lekarsko-dentystycznego w roku akademickim 2017/2018. 1. Sieci komputerowe rodzaje, budowa, model ISO/OSI. 2. Istota kompresji danych. Zastosowania.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Dane obrazowe R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Przetwarzanie danych obrazowych! Przetwarzanie danych obrazowych przyjmuje trzy formy:! Grafikę
WYKŁAD 15. Tworzenie obrazu Omówienie tematyki sprawdzianu końcowego. Tworzenie obrazu
WYKŁAD 15 Tworzenie obrazu Omówienie tematyki sprawdzianu końcowego Tworzenie obrazu Podstawowe kierunki prac nad obrazami: Przetwarzanie obrazów (przekształcanie istniejącego obrazu w inny), Rozpoznawanie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
maska 1 maska 2 maska 3 ogólnie
WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie
Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University.
Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 14 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadania
Przetwarzanie obrazów wykład 2
Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium GRAFIKA KOMPUTEROWA Computer Graphics Forma studiów: studia
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Przetwarzanie obrazów Grafika komputerowa. dr inż. Marcin Wilczewski 2016/2017
Przetwarzanie obrazów Grafika komputerowa dr inż. Marcin Wilczewski 216/217 1 Zagadnienia, wykład, laboratorium Wykład: Reprezentacja danych multimedialnych na przykładzie obrazów cyfrowych oraz wideo.
samopodobnym nieskończenie subtelny
Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne
KONWERSJA OBRAZÓW CYFROWYCH DO POSTACI ZBIORÓW UCZĄCYCH DLA POTRZEB MODELOWANIA NEURONOWEGO
Inżynieria Rolnicza 9(118)/2009 KONWERSJA OBRAZÓW CYFROWYCH DO POSTACI ZBIORÓW UCZĄCYCH DLA POTRZEB MODELOWANIA NEURONOWEGO Andrzej Przybylak, Piotr Boniecki, Krzysztof Nowakowski Instytut Inżynierii Rolniczej,
Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu
Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych Kod przedmiotu 06.5-WE-EP-PSzZPS
CECHY BIOMETRYCZNE: ODCISK PALCA
CECHY BIOMETRYCZNE: ODCISK PALCA Odcisk palca można jednoznacznie przyporządkować do osoby. Techniki pobierania odcisków palców: Czujniki pojemnościowe - matryca płytek przewodnika i wykorzystują zjawisko
Metodyki i techniki programowania
Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy
Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):
WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych
Reprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek
Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę
Wydział Elektroniki PWr KARTA PRZEDMIOTU Nazwa w języku polskim: Robotyka 1 Nazwa w języku angielskim: Robotics 1 Kierunek studiów: Automatyka i Robotyka Stopień studiów i forma: I stopień, stacjonarna
Histogram obrazu, modyfikacje histogramu
March 15, 2013 Histogram Jeden z graficznych sposobów przedstawiania rozkładu cechy. Składa się z szeregu prostokatów umieszczonych na osi współrzędnych. Prostokaty te sa z jednej strony wyznaczone przez
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Systemy inteligentne Rok akademicki: 2013/2014 Kod: RME-2-108-SI-s Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Systemy inteligentne Poziom
Cyfrowe Przetwarzanie Obrazów. Karol Czapnik
Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja
Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L
Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,
Automatyka i Robotyka II stopień ogólno akademicki
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015
Ćwiczenia z grafiki komputerowej 5 FILTRY Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 12 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadanie ilustruje
ALGORYTM PRZETWARZANIA OBRAZU DETEKCJA I ANALIZA OBSZARÓW IMAGE PROCESSING ALGORITHM BLOB DETECTION AND ANALYSIS
ELEKTRYKA 203 Zeszyt 2-3 (226-227) Rok LIX Marek SZYMCZAK Politechnika Śląska w Gliwicach ALGORYTM PRZETWARZANIA OBRAZU DETEKCJA I ANALIZA OBSZARÓW Streszczenie. W artykule przedstawiono algorytm przetwarzania
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
Zamiana reprezentacji wektorowej na rastrową - rasteryzacja
MODEL RASTROWY Siatka kwadratów lub prostokątów stanowi elementy rastra. Piksel - pojedynczy element jest najmniejszą rozróŝnialną jednostką powierzchniową, której własności są opisane atrybutami. Model
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt TELEMEDYCYNA Telemedicine Forma studiów: studia stacjonarne
Analiza i przetwarzanie obrazów
Analiza i przetwarzanie obrazów Temat projektu: Aplikacja na system Android wyodrębniająca litery(znaki) z tekstu Marcin Nycz 1. Wstęp Tematem projektu była aplikacja na system Android do wyodrębniania
Zastosowanie kompresji w kryptografii Piotr Piotrowski
Zastosowanie kompresji w kryptografii Piotr Piotrowski 1 Plan prezentacji I. Wstęp II. Kryteria oceny algorytmów III. Główne klasy algorytmów IV. Przykłady algorytmów selektywnego szyfrowania V. Podsumowanie
Problemy i Zastosowania Informatyki
Problemy i Zastosowania Informatyki Sem. 2 Magisterskich Studiów Uzupełniających Wymiar wykład 18 h laboratorium 12 h (4 3h) Prowadzący wykład i laboratorium dr inż. Mariusz Szwoch szwoch@eti.pg.gda.pl