Struktura magnetyczna tlenku manganu β-mno 2
|
|
- Aleksandra Król
- 9 lat temu
- Przeglądów:
Transkrypt
1 Struktura magnetyczna tlenku manganu β-mno 2 Marcin Regulski Sympozjum IFD 2004
2 Plan Dyfrakcja neutronów Historycznie ważne wyniki badań tlenków manganu metodą dyfrakcji neutronów MnO (Shull, Smart 1949) β-mno 2 (Yoshimori 1959) Nowe rezultaty dla β-mno 2 Dyfrakcja promieniowania synchrotronowego Dyfrakcja neutronów
3 Dyfrakcja neutronów Długość fali de Broglie a neutronów termicznych jest rzędu 1Å Neutrony posiadają niezerowy moment magnetyczny ( µ B ) Przekrój czynny na rozpraszanie neutronów na momentach magnetycznych jonów bądź atomów jest tego samego rzędu co przekrój czynny na rozpraszanie neutronów na jądrach atomowych
4 Dyfrakcja neutronów Przyrządem do badania dyfrakcji neutronów jest dyfraktometr
5 MnO (Shull, Smart 1949) Uporządkowanie antyferromagnetyczne Néel 1932 Nagroda Nobla 1970 Shull, Nagroda Nobla 1994 W. L. Rooth, Phys. Rev. 111 (1959) 772 C. G. Shull, J. S. Smart, Phys. Rev. 76 (1949) 1256
6 β-mno 2 (Yoshimori 1959) R. A. Erickson (1957) wykonał eksperyment dyfrakcji neutronów (nieopublikowany) Model struktury magnetycznej zaproponowany przez Yoshimoriego: spirala o okresie 7/2 c (wektor propagacji k=[0,0,2/7] ) (A. Yoshimori, J. Phys. Soc. Jpn. 14 (1959) 807) Sato et al. Phys. Rev. B 61 (2000) 3563
7 β-mno 2 (Yoshimori 1959) Model oddziaływań w β-mno 2 oddziałują spiny zlokalizowanych elektronów Mn 4+ hamiltonian typu Heisenberga H = i, j J i, j trzy całki wymiany: -J 1 <0, J 2 <0 (antyferromagnetyczne), -J 3 >0 (ferromagnetyczne) S i S j (A. Yoshimori, J. Phys. Soc. Jpn. 14 (1959) 807) Sato et al. Phys. Rev. B 61 (2000) 3563
8 Nowe rezultaty dla β-mno 2 Badania własności transportu duża koncentracja zdelokalizowanych nośników (H. Sato, T. Enoki, M. Isobe, Y. Ueda, Phys Rev. B 61 (2000) 3563) Badania magnetycznej dyfrakcji promieniowania synchrotronowego k z >2/7 (k z =2/7+ε) ε zwiększa się ze wzrostem temperatury wykładnik krytyczny β=0.25(5) zamiast β=0.346 (wynikający z hamiltonianu Heisenberga) (H. Sato, K. Wakiya, T. Enoki, T. Kiyama, Y. Wakabayashi, H. Nakao, Y. Murakami, J. Phys. Soc. Jpn. 70 (2001) 37; H. Sato, Y. Kawamura, T. Ogawa, Y. Murakami, H. Ohsumi, M. Mizumaki, N. Ikeda, Physica B (2003) 757)
9 Nowe rezultaty dla β-mno 2 dyfrakcja magnetyczna promieniowania synchrotronowego jest słabym efektem mała statystyka, duże błędy duży udział powierzchni ziaren w dyfrakcji
10 Nowe rezultaty dla β-mno 2 M. Regulski, R. Przeniosło, I. Sosnowska, J.-U. Hoffmann, Phys. Rev. B 68 (2003)
11 Nowe rezultaty dla β-mno 2 [1] J.A. Gonzalo, D. Cox, An. Fis. 66 (1970) 407 [2] M. Regulski, R. Przeniosło, I. Sosnowska, J.-U. Hoffmann Phys. Rev. B 68 (2003) [3] A. Yoshimori, J. Phys. Soc. Jpn. 14 (1959) 807
12 Nowe rezultaty dla β-mno 2 Długość wektora propagacji spirali jest niemonotoniczną funkcją temperatury k r 2 = [ 0,0, + ε ] 7 M. Regulski, R. Przeniosło, I. Sosnowska, J.-U. Hoffmann, J. Phys. Soc. Jpn 73 (2004)
13 Nowe rezultaty dla β-mno 2 Wykładnik krytyczny β=0.18(2). Lepsza statystyka i lepsza dokładność niż w pracy Sato et al. M. Regulski, R. Przeniosło, I. Sosnowska, J.-U. Hoffmann, J. Phys. Soc. Jpn 73 (2004)
14 Nowe rezultaty dla β-mno 2 Silne sprzężenie uporządkowania magnetycznego ze strukturą krystaliczną. Ujemna rozszerzalność termiczna w kierunku osi c. M. Regulski, R. Przeniosło, I. Sosnowska, J.-U. Hoffmann, J. Phys. Soc. Jpn 73 (2004)
15 Nowe rezultaty dla β-mno 2 W temperaturze pokojowej (ponad 200 K powyżej temperatury Néel a wynoszącej ok. 93 K) wciąż istnieje bliskozasięgowe uporządkowanie momentów magnetycznych w β-mno 2. M. Regulski, R. Przeniosło, I. Sosnowska, J.-U. Hoffmann, J. Phys. Soc. Jpn 73 (2004)
16 Podsumowanie Czasem warto sprawdzać prace znanych autorów i powtarzać wyniki eksperymentów przeprowadzanych przed laty. Dzięki ciągłej poprawie jakości instrumentów oraz poprawie metod analizy danych czasami można zaważyć efekty które wcześniej umknęły badaczom.
17 Współpraca Pracownia Struktury i Dynamiki Sieci. Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski R. Przeniosło I. Sosnowska W. Sławiński Instytut Hahn-Meitner w Berlinie J.-U. Hoffmann
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
Uporzadkowanie magnetyczne w niskowymiarowym magnetyku molekularnym
Uporzadkowanie magnetyczne w niskowymiarowym magnetyku molekularnym (tetrenh 5 ) 0.8 Cu 4 [W(CN) 8 ] 4 7.2H 2 O T. Wasiutyński Instytut Fizyki Jadrowej PAN 15 czerwca 2007 Zespół: M. Bałanda, R. Pełka,
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
Wykłady z Fizyki. Kwanty
Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
Magnetyczne grupy przestrzenne w badaniach materiałów magnetycznych Radosław Przeniosło
Magnetyczne grupy przestrzenne w badaniach materiałów magnetycznych Radosław Przeniosło Zakład Struktury Materii Skondensowanej (SMS) Instytut Fizyki Doświadczalnej Wydział Fizyki Uniwersytet Warszawski
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów
GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidualny klucz do wiedzy! *Kod na końcu klucza odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Vademecum i
Oddziaływania w magnetykach
9 Oddziaływania w magnetykach Zjawiska dia- i paramagnetyzmu są odpowiedzią indywidualnych (nieskorelowanych) jonów dia- i paramagnetycznych na działanie pola magnetycznego. Z drugiej strony spontaniczne
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC
Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Atomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.
Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Metody jądrowe fizyki ciała stałego
Dwuletnie studia II stopnia na kierunku fizyka, specjalność Metody jądrowe fizyki ciała stałego Specjalność Metody Jądrowe Fizyki Ciała Stałego ma na celu kształcenie specjalistów w dziedzinie nowoczesnych
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Leonard Sosnowski
Admiralty Research Laboratory w Teddington, Anglia (1945-1947). Leonard Sosnowski J. Starkiewicz, L. Sosnowski, O. Simpson, Nature 158, 28 (1946). L. Sosnowski, J. Starkiewicz, O. Simpson, Nature 159,
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012
Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Podstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska
Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów
Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura
Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji
Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13
5 Spis treści Przedmowa do wydania szóstego........................................ 13 Przedmowa do wydania czwartego....................................... 14 Przedmowa do wydania pierwszego.......................................
Wszechświat cząstek elementarnych WYKŁAD 5
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:
Marcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Prezentacja tematów na prace doktorskie, 28/5/2015 1 Marcin Sikora KFCS WFiIS & ACMiN Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał Faculty of Physics, A. Mickiewicz
Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych
SEMINARIUM SPRAWOZDAWCZE z prac naukowych prowadzonych w IFM PAN w 2014 roku projekt badawczy: Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych Umowa nr UMO-2013/08/M/ST3/00960
POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW
Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku
WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny
Własności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Henryk Szymczak Instytut Fizyki PAN
NNnnNowe kwazicząstki w magnetykach Henryk Szymczak Instytut Fizyki PAN Zjazd Fizyków 2015 1 Enrico Fermi: nigdy nie należy lekceważyć przyjemności, jaką każdy z nas odczuwa, słysząc coś, o czym już wie
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)
h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
cz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
Podstawowe własności jąder atomowych
Fizyka jądrowa Struktura jądra (stan podstawowy) Oznaczenia, terminologia Promienie jądrowe i kształt jąder Jądra stabilne; warunki stabilności; energia wiązania Jądrowe momenty magnetyczne Modele struktury
Magnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Spektroskopia. mössbauerowska
Spektroskopia Spektroskopia Mӧssbauerowska mössbauerowska Adrianna Rokosa Maria Dawiec 1. Zarys historyczny 2. Podstawy teoretyczne 3. Efekt Mössbauera 4. Spektroskopia mössbauerowska 5. Zastosowanie w
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Astrofizyka teoretyczna II. Równanie stanu materii gęstej
Astrofizyka teoretyczna II Równanie stanu materii gęstej 1 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects by Stuart L. Shapiro, Saul A. Teukolsky " Rozdziały 2, 3 i 8 2 Odkrycie
Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła
Optyka falowa Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Fizjologiczne, fotochemiczne, fotoelektryczne działanie światła wywołane jest drganiami wektora
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
REAKTOR MARIA BUDOWA I ZASTOSOWANIE
Katarzyna Bzymek Barbara Trzeciak Tomasz Cetner Jan Gładysz REAKTOR MARIA BUDOWA I ZASTOSOWANIE Wstęp Reaktor MARIA jest jedynym obecnie czynnym reaktorem jądrowym w Polsce. Został uruchomiony w grudniu
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Elektron w fizyce. dr Paweł Możejko Katedra Fizyki Atomowej i Luminescencji Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Elektron w fizyce dr Paweł Możejko Katedra Fizyki Atomowej i Luminescencji Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska Gdańsk, 16.04.2011 Powstanie elektronów i Model Wielkiego
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej
Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Monika Cecot, Witold Skowroński, Sławomir Ziętek, Tomasz Stobiecki Wisła, 13.09.2016 Plan prezentacji Spinowy efekt Halla
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak
Wyk³ady z Fizyki J¹dra 12 Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
Klasyfikacja przypadków w ND280
Klasyfikacja przypadków w ND280 Arkadiusz Trawiński Warszawa, 20 maja 2008 pod opieką: prof Danuta Kiełczewska prof Ewa Rondio 1 Abstrakt Celem analizy symulacji jest bliższe zapoznanie się z możliwymi
Przejścia fazowe w 1D modelu Isinga
Przejścia fazowe w 1D modelu Isinga z zero-temperaturową dynamiką Glaubera Rafał Topolnicki rafal.topolnicki@gmail.com Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wydział Podstawowych Problemów
BUDOWA ATOMU. Pierwiastki chemiczne
BUDOWA ATOMU Pierwiastki chemiczne p.n.e. Sb Sn n Pb Hg S Ag C Au Fe Cu ()* do XVII w. As (5 r.) P (669 r.) () XVIII w. N Cl Cr Co Y Mn Mo () Ni Pt Te O U H W XIX w. (m.in.) Na Ca Al Si F Cs Ba B Bi I
OCHRONA RADIOLOGICZNA PACJENTA. Budowa atomu, wytwarzanie promieniowania rentgenowskiego, oddziaływanie promieniowania z materią.
OCHRONA RADIOLOGICZNA PACJENTA Budowa atomu, wytwarzanie promieniowania rentgenowskiego, oddziaływanie promieniowania z materią. 2 Protony i neutrony (nukleony) wchodzą w skład jądra atomowego Chmura elektronowa
PRACA INDUKCYJNEGO LICZNIKA ENERGII ELEKTRYCZNEJ W OBECNOŚCI POLA SILNEGO MAGNESU TRWAŁEGO
SYSTEMY POMIAROWE W BADANIACH NAUKOWYCH I W PRZEMYŚLE SP 2010 ŁAGÓW, 21-23.06.2010 PRACA INDUKCYJNEGO LICZNIKA ENERGII ELEKTRYCZNEJ W OBECNOŚCI POLA SILNEGO MAGNESU TRWAŁEGO Eligiusz PAWŁOWSKI Politechnika
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Dział: 7. Światło i jego rola w przyrodzie.
Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
Kwantowa implementacja paradoksu Parrondo
Kwantowa implementacja paradoksu Parrondo Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN, Gliwice oraz Zakład Fizyki Teoretycznej, Uniwersytet Śląski, Katowice 7 Czerwca 2005 Plan
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Chłodzenie jedno-wymiarowego gazu bozonów
Chłodzenie jedno-wymiarowego gazu bozonów Piotr Deuar (IF PAN) Emilia Witkowska, Mariusz Gajda (IF PAN) Kazimierz Rzążewski (CFT PAN) Cover of Phys. Rev. Lett., 1 Apr 2011 E. Witkowska, PD, M. Gajda, K.
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Wykaz specjalności na studiach magisterskich
Wykaz specjalności na studiach magisterskich Na Wydziale Fizyki UW prowadzone są studia magisterskie w ramach następujących specjalnościach: specjalności na kierunku fizyka fizyka cząstek i oddziaływań
Ą Ą Ł Ą Ą Ń Ł Ś Ł Ś Ł Ś Ł Ś Ł ż Ł ŚĆ Ł Ś Ą ć ż ż Ą Ś Ś Ł Ś ż Ł Ź Ś Ś Ś Ź Ś ż ż ż Ł ż ż ż Ł Ś Ś ż Ś Ś ć ż ć Ą ć Ł ć ż ć ć ć ż Ś Ł Ś Ł Ą ż ć Ą ż Ś ć Ś ż ż ż Ś Ł ż Ą Ą ż ż ż ż Ą ż ż Ś Ś ż ż ż Ś ć ż Ł ż ż
MAGNETOCERAMIKA 2013-06-12. Historia. Historia
MAGNETOCERAMIKA Historia ok. 1400 BC chiński kompas; 1269 Pierre Pelerin de Maricourt (Epistola de magnete) naturalne sferyczne magnesy z magnetytu magnetyzujące igły, obraz pola magnetycznego, pojęcie
Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
Elektron i proton jako cząstki przyspieszane
Elektron i proton jako cząstki przyspieszane Streszczenie Obecnie znanych jest wiele metod przyśpieszania cząstek. Przyśpieszane są elektrony, protony, deuterony a nawet jony ciężkie. Wszystkie one znalazły
ń ę ń ę ń ę ń ę ę ę ę ę ź ń ź Ś ę Ł ń ę ę ń ę ń ę ę ę ę ę ę ź ę ę Ż ę ŚĆ ę Ż ń ń ę ń ę ę ę ę ę ź ę ę Ś Ś Ś Ś ź ę ń ę ę Ź ń Ś Ś ę ń ę ę ę ę ę ź ń ŚĆ Ś ń ń ń Ą ń ę ę ŚĆ ę Ż ę ń ę ę ę ę ę ź ń Ś Ś ź Ś Ł ę
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Doświadczenie Rutherforda. Budowa jądra atomowego.
Doświadczenie Rutherforda. Budowa jądra atomowego. Rozwój poglądów na budowę atomu Model atomu Thomsona - zwany także modelem "'ciasta z rodzynkami". Został zaproponowany przez brytyjskiego fizyka J. J.
Jądra o dużych deformacjach. Jądra o wysokich spinach.
Jądra o dużych deformacjach. Jądra o wysokich spinach. 1. Kształty jąder atomowych 2. Powstawanie deformacji jądra 3. Model rotacyjny jądra 4. Jądra w stanach wzbudzonych o wysokich spinach 5. Stany superzdeformowane
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Siła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne
Anna Grych Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne Informacja do zadań -7 75 Dany jest pierwiastek 33 As. Zadanie. ( pkt) Uzupełnij poniższą tabelkę.
I etap ewolucji :od ciągu głównego do olbrzyma
I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma
WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO
WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO Moment magnetyczny atomu Polaryzacja magnetyczna Podatność magnetyczna i namagnesowanie Klasyfikacja materiałów magnetycznych Diamagnetyzm, paramagnetyzm, ferromagnetyzm
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Wykład 9. Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów
Wykład 9 Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów 1 Przełom wieków i nauka skończona Kiedy rozpoczynałem studia fizyczne i u mego czcigodnego nauczyciela Philippa
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej