CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH"

Transkrypt

1 CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH Rozważmy tylko takie czujniki, które nie zawierają żadnych części ruchomych. Zasadniczo, wyróżnia się dwa rodzaje czujników wielkości nieelektrycznych. Pierwszy rodzaj, to elementy (dwójniki), które zmieniają swoje właściwości elektryczne pod wpływem danej wielkości fizycznej. Przeważnie zmieniającą się własnością elektryczną jest rezystywność. W tej grupie można wymienić czujniki następujących wielkości: temperatury termorezystory metalowe i półprzewodnikowe promieniowania elektromagnetycznego fotorezystory, pola magnetycznego magnetorezystory czyli gaussotrony, siły (ciśnienia, naprężenia), ogólnie zwane tensometrami tensometry metalowe i półprzewodnikowe (piezorezystywne). Inny rodzaj czujników to takie, które zamieniają daną wielkość fizyczną na sygnał elektryczny np. na napięcie: czujniki temperatury termoelementy (termopary), czujniki z tranzystorem bipolarnym, promieniowania elektromagnetycznego fotodiody, pola magnetycznego hallotrony, siły (ciśnienie, naprężenia) tensometry piezoelektryczne. 1

2 Pojęcia wstępne - rezystywność Stwierdzono, że opór elektryczny materiału o kształcie prostopadłościanu (lub walca) jest wprost proporcjonalny do jego długości L i odwrotnie proporcjonalny do pola powierzchni bocznej A. Ponadto zauważono, że jeśli stosunek L/A jest stały, to opór nie zmienia się. Biorąc pod uwagę powyższe obserwacje, opór elektryczny (rezystancję) bryły materiału można wyrazić wzorem: R = ρ L A Współczynnik proporcjonalności ρ nazwano oporem właściwym materiału. kierunek prądu L A Def.:Rezystywność materiału, nazywana też oporem właściwym materiału jest to opór kostki sześciennej tego materiału o wymiarach 1m 1m 1m. Oznaczana jest literą ρ (rho) i jest w jednostkach [Ω m]. 2

3 Pojęcia wstępne - półprzewodnik Aby zrozumieć działanie czujników musimy najpierw omówić właściwości półprzewodników. Przewodnik np. metal T 1 0 K elektron swobodny Półprzewodnik samoistny T 1 > 0 K elektron swobodny Izolator T 1 > 0 K 1eV J, 1J ev 3

4 Pojęcia wstępne - półprzewodnik ρ i Można przyjąć, że w temperaturach T>300K obowiązuje zależność: ρ ( T ) = ρi + α T natomiast w temperaturach bardzo niskich: ρ( T ) = ρi + α T ρ i rezystancja resztkowa, która zależy głównie od obcych atomów 5 Rezystywność półprzewodnika samoistnego: = Wg ρ( T ) ρ exp 2k T W g szerokość pasma zabronionego (szerokość przerwy energetycznej). Dla krzemu wynosi 1.1eV, dla germanu 0.7eV. k stała Boltzmana. Podsumowując, wpływ temperatury na rezystywność jest dużo silniejszy w przypadku półprzewodników niż w przypadku metali. Ponadto kierunek (znak) zmian rezystywności jest inny. 4

5 Termorezystory Termorezystory można podzielić na dwie grupy: termorezystory metalowe inaczej nazywane rezystory termometryczne lub w skrócie RTD. Wykonuje się je np. z platyny, niklu, miedzi. Pomiary w zakresie o C. Są typu PTC (ang. positive temperature coefficient), czyli posiadają dodatki współczynnik temperaturowy. termorezystory półprzewodnikowe inaczej nazywane termistory. Pomiary w zakresie o C. Są w większości typu NTC (ang. negative temperature coefficient). Wykonuje się je z polikrystalicznych materiałów półprzewodnikowych. Są to zazwyczaj mieszaniny sproszkowanych tlenków takich metali jak żelazo, mangam, chrom, nikiel (mieszanin TiO 2 i MgO, tlenków Mn, Co, Cu i Ni, Fe 2 O 3 i MgAl 2 O 4, MgCr 2 O 4 i in., a również z syntetycznych diamentów). Żadziej spotyka się termistory typu PTC, które wykonuje się np. z tytanianu baru z domieszkami bizmutu, antymonu, lantanu. 5

6 Tensometry metalowe Tensometr metalowy jest to (w uproszczeniu) płaski i bardzo cienki odcinek folii metalowej lub bardzo cienki drut. Jest naklejany specjalnym klejem na elementy konstrukcji mechanicznych, poddawanych naprężeniom. Do celów pomiarowych wykorzystuje się zmianę rezystancji drutu pod wpływem rozciągania w granicach odkształceń sprężystych, tj. po usunięciu naprężenia drut wraca do poprzedniej długości. Rezystancję R drutu można wyrazić wzorem: ρ rezystywność materiału drutu (parametr stały), L długość drutu, A pole przekroju drutu. Charakterystyka rozciągania drutu, w granicach deformacji sprężystych (prawo Hooke a): F/A naprężenie jednostkowe zależne od siły naciągu F i przekroju drutu A, L/L wydłużenie jednostkowe (deformacja); E moduł sprężystości wzdłużnej (moduł Younga). Wykonując przekształcenia matematyczne, otrzymuje się zależność zmian rezystancji drutu od jego wydłużenia: R R = k t L L R = ρ L A L E = L k t czułość tensometru; dla metalowego wynosi 2 3, dla półprzewodnikowego jest razy większa. F A 6

7 Tensometry półprzewodnikowe piezorezystywne W przewodniku poddanym działaniu sił występują naprężenia w kierunku działania siły, zmiany wymiarów geometrycznych oraz własności elektrycznych. Zmiany wymiarów geometrycznych wyrażają się zmianą długości i pola przekroju poprzecznego. Wynikiem tych zmian jest zmiana rezystancji przewodnika. W przypadku półprzewodników naprężenia mogą spowodować zmiany siatki krystalicznej i rezystywności kryształu. Zjawisko to znane jest pod nazwą piezorezystywności. W zjawisku tym zmiany geometryczne nie odgrywają większej roli, ponieważ o zmianie rezystancji decyduje zmiana rezystywności. R = ρ L A Podczas odkształcenia R = ρ L A Stałe dla metalu (przewodnika) Zmienne dla półprzewodnika 7

8 Tensometr przykład Tensometr naklejono na belkę stalową. Czułość tensometru k t = 2. Zaprojektuj mostek pomiarowy czuły na zmiany długości rzędu ( L/L) 1mm/1m. Względna zmiana rezystancji tensometru wynosi: ( R x /R x ) = k t ( L/L) Stąd, napięcie wyjściowe mostka pomiarowego wynosi: V o k t L R 1 + L R 2 1 U 2 REF Posiadamy wzmacniacz operacyjny z wyjściem i wejściem typu rail-to rail i na napięcie zasilania 10V. Można więc przyjąć napięcie U REF = 10V. Weźmy R 2 =19k i R 1 =1k. Mamy więc: V o L 19kΩ 2 1+ L 1kΩ 10V 2 L = 200 L [ V ] V o Mostek aktywny. R R Dyskusja: czy czułość mostka jest wystarczająca? x x R 1 + R 2 1 U 2 REF Czułość mostka Przy zasilaniu asymetrycznym, napięcie V o nie może być mniejsze od 0V i większe od V DD. 8

9 Hallotron Hallotron jest cienką płytką mono- lub polikrystaliczną w postaci prostopadłościanu wykonanego z półprzewodnika typu n. Czujniki mają wymiary rzędu milimetrów, ich grubość jest rzędu 100 mikrometrów. Na poruszające się w płytce elektrony działa pole magnetyczne z siłą Lorentza, powodując skręcenie ich drogi w kierunku jednej z bocznych ścianek. Pojawi się tam ładunek ujemny, a po przeciwnej stronie płytki ładunek dodatni. W miarę wzrostu ładunków wzrasta natężenie pola elektrycznego między ściankami do takiej wartości, przy której siła pochodząca od pola elektrycznego zrównoważy siłę od pola magnetycznego. Ustanie wówczas przepływ elektronów w kierunku prostopadłym do kierunku prądu I H i pola B, a między ściankami bocznymi ustali się różnica potencjałów U H, nazywana napięciem Halla. Uzyskiwane napięcia U H wynoszą kilka miliwoltów, dochodzą do setek miliwoltów i zależą od wartości prądu zasilającego I H. B - wektor indukcji magnetycznej; d - grubość płytki czujnika; I H - prąd zasilający hallotron U H = R H 1 I d H B czułość Hallotronu R H współczynnik Halla. Zależy od materiału i jego czystości, temperatury. 9

10 Hallotron Istotną zaletą hallotronów jest możliwość zintegrowania z innymi układami elektronicznymi w jednym układzie scalonym (np. ze wzmacniaczem operacyjnym, korektorem, koncentratorem strumienia). Prawdopodobnie najważniejszą zaletą hallotronu są jego małe wymiary, co pozwala na nieinwazyjne pomiary. Zastosowanie: badanie położenia elementów ruchomych np. w silnikach spalinowych bezinwazyjny pomiar prądu stałego i zmiennego w przewodniku badanie drgań elementów pomiar szybkości obrotowej bezszczotkowe silniki prądu stałego itd. 10

11 Fotorezystor zjawisko fotoelektryczne wewnętrzne Foton o energii równej pasmu wzbronionemu. elektron swobodny Półprzewodnik samoistny T 1 > 0 K 11

12 Fotorezystor Fotorezystor jest elementem, którego rezystancja zależy od natężenia padającego światła (inną kwestią jest długość fali). Przy ustalonym natężeniu oświetlenia ma cechy zwykłego rezystora, to znaczy spełnia prawo Ohma. Część czynną fotorezystora stanowi próbka półprzewodnika umieszczona w obudowie zawierającej okienko, przez które może padać promieniowanie. Najbardziej rozpowszechnionymi materiałami używanymi do wytwarzania fotorezystorów są: siarczek kadmu CdS, selenek kadmu CdSe, siarczek ołowiu PbS i tellurek ołowiu PbTe. (źródło W. Janke Elementy elektroniczne Gdańsk PG 1980). I + I Φ + Φ Czułość prądowa fotorezystora jest to stosunek przyrostu prądu I do wywołującego go przyrostu natężenia oświetlenia Φ, przy ustalonym napięciu: S I = I Φ U = const 12

13 Fotorezystor wady i zalety Duża czułość fotorezystora stanowi istotną zaletę tego elementu w porównaniu z innymi detektorami promieniowania. Zaletą jest również symetria charakterystyki prądowonapięciowej względem początku układu współrzędnych. Głównymi wadami fotorezystorów są ograniczony od góry zakres temperatur pracy (typowo do 75 o C) oraz mała szybkość działania uniemożliwiająca zastosowanie do detekcji zmian oświetlenia o częstotliwości przekraczającej 1 khz. Poszukajmy więc element pozbawiony wymienionych wad. 13

14 Fotodioda dioda trochę inna Aby przejść do omawiania fotodiody, musimy najpierw omówić działanie diody. Diody małej mocy Diody dużej mocy 14

15 Dioda złącze półprzewodnikowe Symbol diody 15

16 Dioda W przybliżeniu pierwszego stopnia prąd diody wyraża się wzorem: I = I S e U n V T 1 gdzie: I S prąd nasycenia złącza (typowo rzędu pa, na) V T potencjał elektrotermiczny (VT = kt/q) n współczynnik nieidealności złącza (bezwymiarowy, rzędu kilku, często przyjmuje się n=1) Maksymalny średni prąd przewodzenia IFmax - uznawany za prąd znamionowy IFn diody spolaryzowanej w kierunku przewodzenia (jest to parametr graniczny, którego nie można przekroczyć bez uszkodzenia diody). Szczytowe wsteczne napięcie pracy URwm (dodatkowo podaje się jeszcze powtarzalne szczytowe napięcie wsteczne URrm i niepowtarzalne szczytowe napięcie wsteczne URsm ). Napięcie przewodzenia UFp przy prądzie przewodzenia IF=0,1 IFmax. Prąd wsteczny IR przy określonym napięciu wstecznym UR (zazwyczaj UR=URwm). Rys. Przykładowa ch-ka diody prostowniczej na zakres 10A. 16

17 Fotodioda Co się stanie, kiedy złącze półprzewodnikowe zostanie oświetlone? U n VT I = I S e 1 SΦ Φ gdzie: I S prąd nasycenia złącza (typowo rzędu pa, na), V T potencjał elektrotermiczny (V T = kt/q), n współczynnik nieidealności złącza (bezwymiarowy, rzędu kilku, często przyjmuje się n=1), S Φ czułość prądowa fotodiody, Φ natężenie oświetlenia. Dla U < 0 można zapisać: I R S Φ Φ 17

18 Fotodioda Czujnik światła ze wzmacniaczem operacyjnym. 18

19 Fotodioda Figure from Datasheet Burr-Brown. 19

20 Fotodioda Odczyt CD ROMu Przeźroczysta warstwa ochronna λ/4 Warstwa odblaskowa Poliwęglanowa warstwa podłożowa Promień opóźniony o λ/2 Dioda laserowa AlGaAs 20

21 Fotodioda Czujnik prędkości kątowej Rys. Fotoelektryczne czujniki prędkości kątowej: na zasadzie przesłaniania strumienia świetlnego (a), na zasadzie odbijania strumienia świetlnego (b). 21

22 Fotodioda Matryca CMOS 22

23 Czujniki magnetoindukcyjne Zasada działania: indukowanie siły SEM w uzwojeniu pod wpływem zmiennego pola magnetycznego. Nieruchomy magnes, ruchome uzwojenie czujnik elektrodynamiczny. Ruchomy magnes, nieruchome uzwojenie czujnik elektromagnetyczny (reluktancyjny). Zastosowanie: pomiar prędkości liniowej i obrotowej (tachometry), przyśpieszenia (akcelerometry), drgań mechanicznych (wibrometry), chropowatości powierzchni (profilometry). SEM = z dφ dt z liczba zwojów Φ strumień magnetyczny skojarzony z uzwojeniem 23

24 Czujniki magnetoindukcyjne Rys. Przykłady czujników elektrodynamicznych : o ruchu postępowym (a), o ruchu obrotowym (b); 1 - magnes trwały, 2 - uzwojenie ruchome. Rys. Przykłady czujników magnetoindukcyjnych (reluktancyjnych): z wirującym ekranem ferromagnetycznym 1 (a), z wirującym rdzeniem ferromagnetycznym 2 (b). Magnes i uzwojenie w obu przypadkach są nieruchome. 24

25 Reluktancyjny czujnik prędkości kątowej ABS SEM Rys. Magnetoindukcyjny (reluktancyjny) przetwornik prędkości obrotowej. Źródło: A. Łukjaniuk, W. Walendziuk Pomiar prędkości obrotowej Instrukcja do zajęć laboratoryjnych, Politechnika Białostocka, Wydz. Elektryczny,

26 Elektrodynamiczny czujnik do pomiaru chropowatości Wzmacniacz SEM Wartość jest SEM proporcjonalna do prędkości ruchu pionowego, która jest proporcjonalna do wysokości chropowatości. Elektroniczny układ całkujący uśrednia wartość SEM w celu określenia średniej chropowatości po długości profilu badanej powierzchni. 26

27 Czujniki indukcyjny z wykorzystaniem prądów wirowych L+ L Rys. Czujnik do pomiaru grubości blach. W szczelinie elekromagnesu umieszczono materiał diamagnetyczny. W materiale diamagnetycznym indukują się prądy wirowe, które powodują zmniejszenie strumienia magnetycznego, a więc również indukcyjności L. Pomiar grubości blach. Pomiar grubości pokryć diamagnetycznych. 27

28 Czujniki piezoelektryczne Efekt piezoelektr. wzdłużny Efekt piezoelektr. poprzeczny Rys. Ilustracja powstawania zjawiska piezoelektrycznego w krysztale kwarcu: działanie siły F w kierunku osi x (a), działanie siły F w kierunku osi y (b). 28

29 Czujniki piezoelektryczne Ładunek Q pojawiający się na elektrodach płytki kwarcowej jest liniowo zależny od siły F wg wzoru Q = k p F C gdzie k p - stała piezoelektryczna. N Napięcie stałe U pojawiające się na elektrodach czujnika jest również liniową funkcją siły F, ponieważ U = Q C = k p C F gdzie: C = C k + C m ; C k - pojemność kryształu, C m - pojemność układu pomiarowego. 29

30 Czujniki piezoelektryczne pomiar przyspieszenia Rys. Zasada działania akcelerometru piezoelektrycznego; płytka piezoelektryczna (1), elektrody (2), masa sejsmiczna (3), obiekt drgający (4). Drgania o amplitudzie x obiektu 4 powodują, że na płytkę piezoelektryczną 1 działa siła F(t) określona równaniem 2 d x F(t) = a(t)m = m 2 dt Na elektrodach powstają ładunki elektryczne Q(t) = k p F(t) = k p m a(t) Napięcie wyjściowe Stąd u(t) = Q(t) C = k C a(t) = u(t) k m p p m C a(t) 30

31 Czujniki pojemnościowe Zmiana pojemności kondensatora pod wpływem wielkości nieelektrycznej. Zmiana pojemności na skutek zmiany: - odległości między okładzinami (typ A), - efektywnej powierzchni okładzin (typ B), - wypadkowej przenikalności elektrycznej (typ C). Rys. Podstawowe typy czujników pojemnościowych: czujnik o zmiennej odległości między okładzinami (typ A) (a), czujnik o zmiennej efektywnej powierzchni okładzin (typ B) (b), czujnik o zmiennej wypadkowej przenikalności elektrycznej (typ C) (c). 31

32 Czujniki pojemnościowe 32

33 Czujniki pojemnościowe Czujnik poduszki Rys. Scalony mikromechaniczny czujnik firmy Analog Devices ADXL50. Obudowa TO-100. Wymiary przetwornika pojemnościowego 0,5mm x 0,6mm. Pojemność 0.1 pf. Zmiana pojemności ±0.01 pf. Masa pomiarowa mg. 33

34 Czujniki pojemnościowe Czujnik poduszki Rys. Scalony mikromechaniczny czujnik firmy Analog Devices ADXL50. Wymiary sensora pojemnościowego 0,5mm x 0,6mm. 34

35 Czujniki pojemnościowe Czujnik poduszki 35

CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH

CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH CZUJNIKI WIELKOŚCI NIEELEKTRYCZNYCH Rozważmy tylko takie czujniki, które nie zawierają żadnych części ruchomych. Zasadniczo, wyróżnia się dwa rodzaje czujników wielkości nieelektrycznych. Pierwszy rodzaj,

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki) Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

PRZETWORNIKI POMIAROWE

PRZETWORNIKI POMIAROWE PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość

Bardziej szczegółowo

Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne)

Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne) Pomiary prędkości (kątowej, liniowej) Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne) Różniczkowanie numeryczne W dziedzinie czasu (ilorazy różnicowe) W dziedzinie częstotliwości.

Bardziej szczegółowo

(zwane również sensorami)

(zwane również sensorami) Czujniki (zwane również sensorami) Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do

Bardziej szczegółowo

Czujniki wielkości nieelektrycznych

Czujniki wielkości nieelektrycznych Czujniki wielkości nieelektrycznych odzaje, parametry, zasady pomiarów temperatury, promieniowania elektromagnetycznego, pola magnetycznego, siły, ciśnienia, naprężenia, przemieszczenia, prędkości i przyspieszenia.

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

CZUJNIKI I UKŁADY POMIAROWE

CZUJNIKI I UKŁADY POMIAROWE POLITECHNIKA WARSZAWSKA Wydział Mechaniczny Energetyki i Lotnictwa Instytut Techniki Lotniczej i Mechaniki Stosowanej Zakład Automatyki i Osprzętu Lotniczego CZUJNIKI I UKŁADY POMIAROWE Czujniki przykładowe

Bardziej szczegółowo

Czujniki i urządzenia pomiarowe

Czujniki i urządzenia pomiarowe Czujniki i urządzenia pomiarowe Czujniki zbliŝeniowe (krańcowe), detekcja obecności Wyłączniki krańcowe mechaniczne Dane techniczne Napięcia znamionowe 8-250VAC/VDC Prądy ciągłe do 10A śywotność mechaniczna

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

SENSORY W BUDOWIE MASZYN I POJAZDÓW

SENSORY W BUDOWIE MASZYN I POJAZDÓW SENSORY W BUDOWIE MASZYN I POJAZDÓW Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2015/2016 Fizyczne zasady działania sensorów elementy oporowe Przy pomiarach wielkości

Bardziej szczegółowo

Elementy optoelektroniczne. Przygotował: Witold Skowroński

Elementy optoelektroniczne. Przygotował: Witold Skowroński Elementy optoelektroniczne Przygotował: Witold Skowroński Plan prezentacji Wstęp Diody świecące LED, Wyświetlacze LED Fotodiody Fotorezystory Fototranzystory Transoptory Dioda LED Dioda LED z elektrycznego

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Czujniki temperatury

Czujniki temperatury Czujniki temperatury Pomiar temperatury Pomiar temperatury jest jednym z najczęściej wykonywanych pomiarów wielkości nieelektrycznej w gospodarstwach domowych jak i w przemyśle. Do pomiaru temperatury

Bardziej szczegółowo

Wykład 12 Technologia na urządzenia mobilne. Mgr inż. Łukasz Kirchner

Wykład 12 Technologia na urządzenia mobilne. Mgr inż. Łukasz Kirchner Wykład 12 Technologia na urządzenia mobilne Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Sztuka Elektroniki - P. Horowitz, W.Hill Układy półprzewodnikowe

Bardziej szczegółowo

Pomiar prędkości obrotowej

Pomiar prędkości obrotowej 2.3.2. Pomiar prędkości obrotowej Metody: Kontaktowe mechaniczne (prądniczki tachometryczne różnych typów), Bezkontaktowe: optyczne (światło widzialne, podczerwień, laser), elektromagnetyczne (indukcyjne,

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne

Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych 1. Prąd stały 1.1. Obwód elektryczny prądu stałego 1.1.1. Podstawowe wielkości i jednostki elektryczne 1.1.2. Natężenie prądu

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

SENSORY I SYSTEMY POMIAROWE

SENSORY I SYSTEMY POMIAROWE SENSORY I SYSTEMY POMIAROWE Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2016/2017 Elementy pojemnościowe Elementem pojemnościowym nazywamy element, którego zadaniem

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C300 018

ELEMENTY ELEKTRONICZNE TS1C300 018 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

P Y T A N I A. 8. Lepkość

P Y T A N I A. 8. Lepkość P Y T A N I A 1. Moment bezwładności 1.1 Co to jest bryła sztywna? 1.2 Co to jest środek masy ciała? 1.3 Co to jest moment bezwładności? 1.4 Co to jest wahadło torsyjne? 1.5 Jak zapisać II zasadę dynamiki

Bardziej szczegółowo

Wybrane elementy optoelektroniczne. 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5.

Wybrane elementy optoelektroniczne. 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5. Wybrane elementy optoelektroniczne 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5. Podsumowanie a) b) Light Emitting Diode Diody elektrolumiscencyjne Light

Bardziej szczegółowo

Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia)

Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia) Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia) Nr ćw. w Temat ćwiczenia skrypcie 1 ćwiczenia 7 12 Badanie zależności temperatury wrzenia wody od ciśnienia 24 16 16 Wyznaczenie równoważnika elektrochemicznego

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6a

Instrukcja do ćwiczenia laboratoryjnego nr 6a Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Temat: POMIAR SIŁ SKRAWANIA

Temat: POMIAR SIŁ SKRAWANIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

Podstawy mechatroniki 5. Sensory II

Podstawy mechatroniki 5. Sensory II Podstawy mechatroniki 5. Sensory Politechnika Poznańska Katedra Podstaw Konstrukcji Maszyn Poznań, 20 grudnia 2015 Budowa w odróżnieniu od czujników indukcyjnych mogą, oprócz obiektów metalowych wykrywać,

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;

Bardziej szczegółowo

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω =

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω = Rozwiazanie zadania 1 1. Dolna płyta podskoczy, jeśli działająca na nią siła naciągu sprężyny będzie większa od siły ciężkości. W chwili oderwania oznacza to, że k(z 0 l 0 ) = m g, (1) gdzie z 0 jest wysokością

Bardziej szczegółowo

Indukcja własna i wzajemna. Prądy wirowe

Indukcja własna i wzajemna. Prądy wirowe Indukcja własna i wzajemna. Prądy wirowe Indukcja własna (samoindukcja) Warunkiem wzbudzenia SEM indukcji w obwodzie jest przenikanie przez ten obwód zmiennego strumienia magnetycznego, przy czym sposób

Bardziej szczegółowo

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Temat ćwiczenia. Pomiary drgań

Temat ćwiczenia. Pomiary drgań POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary drgań 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodami pomiarów drgań urządzeń mechanicznych oraz zasadą działania przetwornika

Bardziej szczegółowo

Technika sensorowa. Czujniki wielkości mechanicznych. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

Technika sensorowa. Czujniki wielkości mechanicznych. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel Technika sensorowa Czujniki wielkości mechanicznych dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 1 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki wielkości mechanicznych Wielkości mechaniczne

Bardziej szczegółowo

ĆWICZENIE 6b POMIARY SIŁ. Celem ćwiczenia jest poznanie budowy, zasady działania i właściwości metrologicznych tensometrycznego przetwornika siły.

ĆWICZENIE 6b POMIARY SIŁ. Celem ćwiczenia jest poznanie budowy, zasady działania i właściwości metrologicznych tensometrycznego przetwornika siły. ĆWICZEIE 6b POMIAY SIŁ 8.1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie budowy, zasady działania i właściwości metrologicznych tensometrycznego przetwornika siły. 8.2. WPOWADZEIE 8.2.1. Efekt tensometryczny

Bardziej szczegółowo

Elementy indukcyjne. duża czułość i sztywność układu stateczne i bezstopniowe przekazywanie sygnału mała siła oddziaływania duża pewność ruchu

Elementy indukcyjne. duża czułość i sztywność układu stateczne i bezstopniowe przekazywanie sygnału mała siła oddziaływania duża pewność ruchu Elementy indukcyjne Elementem indukcyjnym nazywamy urządzenie, którego zadaniem jest przetworzenie dowolnej wielkości nieelektrycznej lub elektrycznej na elektryczny sygnał napięciowy lub prądowy. Sygnał

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Materiał do tematu: Piezoelektryczne czujniki ciśnienia. piezoelektryczny

Materiał do tematu: Piezoelektryczne czujniki ciśnienia. piezoelektryczny Materiał do tematu: Piezoelektryczne czujniki ciśnienia Efekt piezoelektryczny Cel zajęć: Celem zajęć jest zapoznanie się ze zjawiskiem piezoelektrycznym, zachodzącym w niektórych materiałach krystalicznych

Bardziej szczegółowo

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof PIEZOELEKTRYKI I PIROELEKTRYKI Krajewski Krzysztof Zjawisko piezoelektryczne Zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach

Bardziej szczegółowo

2.1 Cechowanie termopary i termistora(c1)

2.1 Cechowanie termopary i termistora(c1) 76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Badanie półprzewodnikowych elementów bezzłączowych

Badanie półprzewodnikowych elementów bezzłączowych Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej

Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej W układach elektronicznych występują: Rezystory Rezystor potocznie nazywany opornikiem jest jednym z najczęściej spotykanych

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

IV. TRANZYSTOR POLOWY

IV. TRANZYSTOR POLOWY 1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Zastosowania wzmacniaczy operacyjnych cz. 3 podstawowe układy nieliniowe

Zastosowania wzmacniaczy operacyjnych cz. 3 podstawowe układy nieliniowe Zastosowania wzmacniaczy operacyjnych cz. 3 podstawowe układy nieliniowe Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA. W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy.

PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA. W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy. PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy. Jeśli plus (+) zasilania jest podłączony do anody a minus (-)

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

( ) u( λ) w( f) Sygnał detektora

( ) u( λ) w( f) Sygnał detektora PARAMETRY DETEKTORÓW FOTOELEKTRYCZNYCH Sygnał detektora V = V(b,f, λ,j,a) b f λ J A - polaryzacja, - częstotliwość modulacji, - długość fali, - strumień (moc) padającego promieniowania, - pole powierzchni

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

Zjawisko piezoelektryczne 1. Wstęp

Zjawisko piezoelektryczne 1. Wstęp Zjawisko piezoelektryczne. Wstęp W roku 880 Piotr i Jakub Curie stwierdzili, że na powierzchni niektórych kryształów poddanych działaniu zewnętrznych naprężeń mechanicznych indukują się ładunki elektryczne,

Bardziej szczegółowo

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel Technika sensorowa Czujniki piezorezystancyjne dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki działające w oparciu o efekt Tensometry,

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Urządzenia półprzewodnikowe

Urządzenia półprzewodnikowe Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Diody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy)

Diody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) Diody i tranzystory - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) bipolarne (NPN i PNP) i polowe (PNFET i MOSFET), Fototranzystory i IGBT (Insulated

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

BADANIE CHARAKTERYSTYK FOTOELEMENTU

BADANIE CHARAKTERYSTYK FOTOELEMENTU Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

SENSORY I SYSTEMY POMIAROWE

SENSORY I SYSTEMY POMIAROWE SENSORY I SYSTEMY POMIAROWE Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2015/2016 Elementy indukcyjne Elementem indukcyjnym nazywamy urządzenie, którego zadaniem jest

Bardziej szczegółowo

POMIAR NATĘŻENIA PRZEPŁYWU

POMIAR NATĘŻENIA PRZEPŁYWU POMIAR NATĘŻENIA PRZEPŁYWU Określenie ilości płynu (objętościowego lub masowego natężenia przepływu) jeden z najpowszechniejszych rodzajów pomiaru w gospodarce przemysłowej produkcja światowa w 1979 ropa

Bardziej szczegółowo

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci

Bardziej szczegółowo

Temat ćwiczenia. Pomiary oświetlenia

Temat ćwiczenia. Pomiary oświetlenia POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary oświetlenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodami pomiaru natęŝenia oświetlenia oraz wyznaczania poŝądanej wartości

Bardziej szczegółowo

spis urządzeń użytych dnia moduł O-01

spis urządzeń użytych dnia moduł O-01 Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych reprezentatywnych elementów optoelektronicznych nadajników światła (fotoemiterów), odbiorników światła (fotodetektorów) i transoptorów oraz zapoznanie

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo