Nonconvex Variance Reduced Optimization with Arbitrary Sampling
|
|
- Aniela Nowak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Nonconvex Variance Reduced Optimization with Arbitrary Sampling Samuel Horváth Peter Richtárik
2 Empirical Risk Minimization nx min x2r d f(x) := 1 n i=1 f i (x)
3 Empirical Risk Minimization nx min x2r d f(x) := 1 n n is big i=1 f i (x)
4 Empirical Risk Minimization nx min x2r d f(x) := 1 n i=1 f i (x) n is big non-convex, L i -smooth krf i (x) rf i (y)k applel i kx yk
5 Baseline Variance Reduced SGD Methods SVRG Johnson & Zhang NIPS 2013 SAGA Defazio, Bach & Lacoste-Julien NIPS 2014 SARAH Nguyen, Liu, Scheinberg & Takáč ICML 2017
6 Baseline Variance Reduced SGD Methods SVRG Johnson & Zhang NIPS 2013 Uniform sampling SAGA Defazio, Bach & Lacoste-Julien NIPS 2014 SARAH Nguyen, Liu, Scheinberg & Takáč ICML 2017 Uniform sampling Uniform sampling
7 Baseline Variance Reduced SGD Methods Mini-batch SVRG Konečný & Richtárik FAMS 2017 SAGA Reddi, Hefny, Sra, Poczos, Smola CDC 2016 SARAH Nguyen, Liu, Scheinberg & Takáč 2017
8 Baseline Variance Reduced SGD Methods Mini-batch Mini-batch size SVRG Konečný & Richtárik FAMS 2017 SAGA Reddi, Hefny, Sra, Poczos, Smola CDC 2016 SARAH Nguyen, Liu, Scheinberg & Takáč 2017 Uniform sampling Uniform sampling Uniform sampling
9 Contributions Analysis of SVRG, SAGA and SARAH in the arbitrary sampling paradigm Construction of optimal minibatch sampling
10 Contributions Richtárik & Takáč (OL 2016; arxiv 2013) Qu, Richtárik & Zhang (NIPS 2015) Qu & Richtárik (COAP 2016) Chambolle, Ehrhardt, Richtárik & Schoenlieb (SIOPT 2018) Hanzely & Richtárik (AISTATS 2019) Qian, Qu & Richtárik (ICML 2019) Gower, Loizou, Qian, Sailanbayev, Shulgin & Richtárik (ICML 2019) Analysis of SVRG, SAGA and SARAH in the arbitrary sampling paradigm Construction of optimal minibatch sampling
11 Contributions Richtárik & Takáč (OL 2016; arxiv 2013) Qu, Richtárik & Zhang (NIPS 2015) Qu & Richtárik (COAP 2016) Chambolle, Ehrhardt, Richtárik & Schoenlieb (SIOPT 2018) Hanzely & Richtárik (AISTATS 2019) Qian, Qu & Richtárik (ICML 2019) Gower, Loizou, Qian, Sailanbayev, Shulgin & Richtárik (ICML 2019) Analysis of SVRG, SAGA and SARAH in the arbitrary sampling paradigm Construction of optimal minibatch sampling First optimal/importance sampling for minibatches!
12 S S Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} Probability matrix P 2 R n n associated with sampling P ij := Prob({i, j} S) Probability vector p 2 R n associated with sampling p i := Prob({i} S) =P ii Proper sampling: p i > 0 for all i =1, 2,...,n
13 S S Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} A sampling is uniquely defined by assigning probabilities to all 2 n subsets of {1, 2,..., n} Probability matrix P 2 R n n associated with sampling P ij := Prob({i, j} S) Probability vector p 2 R n associated with sampling p i := Prob({i} S) =P ii Proper sampling: p i > 0 for all i =1, 2,...,n
14 S S <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} A sampling is uniquely defined by assigning probabilities to all 2 n subsets of {1, 2,..., n} Probability matrix Probability vector Proper sampling: P 2 R n n associated with sampling P ij := Prob({i, j} S) p 2 R n associated with sampling p i := Prob({i} S) =P ii p i > 0 for all i =1, 2,...,n Examples Standard sampling: S = {i} with probability 1 n for all i =1, 2,...,n Standard mini-batch sampling: S = C with probability 1 ( n b) for all C {1, 2,...,n} such that C = b
15 S S <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} A sampling is uniquely defined by assigning probabilities to all 2 n subsets of {1, 2,..., n} Probability matrix Probability vector Proper sampling: P 2 R n n associated with sampling P ij := Prob({i, j} S) p 2 R n associated with sampling p i := Prob({i} S) =P ii p i > 0 for all i =1, 2,...,n Examples Standard sampling: S = {i} with probability 1 n for all i =1, 2,...,n Standard mini-batch sampling: S = C with probability 1 ( n b) for all C {1, 2,...,n} such that C = b Arbitrary sampling paradigm = perform iteration complexity analysis for any proper sampling
16 <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> From Standard Sampling to Arbitrary Sampling SVRG with Arbitrary Sampling x + X = x i2s 1 (rf i (x) np i rf i (ˆx)) + rf(ˆx)!
17 <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> From Standard Sampling to Arbitrary Sampling SVRG with Arbitrary Sampling x + = x X i2s 1 Unbiased estimator of the gradient np i (rf i (x) rf i (ˆx)) + rf(ˆx)!
18 <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> From Standard Sampling to Arbitrary Sampling SVRG with Arbitrary Sampling x + = x X i2s 1 Unbiased estimator of the gradient np i (rf i (x) rf i (ˆx)) + rf(ˆx) Standard sampling:! Arbitrary sampling p i = 1 n for all i
19 Convergence Rate I n + n2/3 O
20 <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> Convergence Rate I # data points n + n2/3 O Ekrf(x)k 2 apple
21 <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> Convergence Rate I # data points n + n2/3 O Ekrf(x)k 2 apple KEY QUANTITY: DEPENDS ON THE SAMPLING
22 Convergence Rate II := b Ln 2 nx i=1 v i L 2 i p i
23 <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> Convergence Rate II P ij := Prob({i, j} S) Constants satisfying: P pp > Diag(p 1 v 1,p 2 v 2,...,p n v n ). krf i (x) rf i (y)k applel i kx yk Expected mini-batch size: b =E S <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> b nx v i L 2 i := nx Ln 2 i=1 p i L = 1 n L i i=1 # data points p i := Prob({i} S) =P ii
24 <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> Convergence Rate II P ij := Prob({i, j} S) Constants satisfying: P pp > Diag(p 1 v 1,p 2 v 2,...,p n v n ). krf i (x) rf i (y)k applel i kx yk Expected mini-batch size: b =E S <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> b nx v i L 2 i := nx Ln 2 i=1 p i L = 1 n L i i=1 # data points p i := Prob({i} S) =P ii Optimal rate: minimize over {(v i,p i )} n i=1
25 Convergence Rate III
26 Experiments
27 Nonconvex Variance Reduced Optimization with Arbitrary Sampling Samuel Horváth 1 Peter Richtárik 1,2,3 1 KAUST 2 University of Edinburgh 3 Moscow Institute of Physics and Technology min xœr d The Problem nx f(x) := 1 f i(x) (1) n i=1 f i is L i-smooth but non-convex n is big Arbitrary Sampling Sampling: arandomset-valuedmappings with values being subsets of [n] :={1, 2,...,n}. A sampling is used to generate minibatches in each iteration. Probability matrix associated with sampling S : def P ij =Prob({i, j} S) Probability vector associated with sampling S : def p =(p 1,...,p n), p i =Prob(iœS) Minibatch size: b =E[ S ] (expected size of S) Proper sampling: Sampling for which p i > 0 for all i œ [n] Arbitrary sampling = any proper sampling Key Lemma Let 1, 2,..., n be vectors in R d def and let = 1 P n n i=1 i be their average. Let S be a proper sampling. Let v =(v 1,...,v n) > 0 be such that P pp Diag(p 1v 1, p 2v 2,...,p nv n). (2) Then 2 6 X i E 4 iœs np Æ 1 X n v i i n 2 Î iî 2. i=1 p i Whenever (2) holds, it must be the case that v i Ø 1 p i. Optimal Sampling & Superlinear Speedup Under our analysis, the independent sampling S ú defined by 8 >< def (b + k n) P Li kj=1 if i Æ k Lj, p i = >: 1, if i>k, is optimal, where k is the largest integer satisfying 0 <b+ k n Æ P k i=1 Li. Lk All 3 methods enjoy superlinear speed in b up to the minibatch size b max := max{b bl n Æ P n i=1 L i}. # Stochastic Gradient Evaluations to Achieve E apple ÎÒf(x)Î 2 Æ Alg Uniform sampling Arbitrary sampling [NEW] S ú (Best Sampling) [NEW] ( ) ( ) 8 9 SVRG max n, (1+4/3)Lmaxc1n2/3 2/3 < 2/3 (1+4 /3) Lc1n (1+4(n b) 3n ) Lc1n = [1] max n, max n, : ; SAGA n + 2Lmaxc2n2/3 2/3 (1+ ) Lc2n [2] n + n + (1+n b 2/3 n ) Lc2n SARAH n + n b n 1 L2 maxc3 [3] n + L 2 c3 2 n + n b L 2 n 2 c3 2 Constants: L max =max i L i L = 1 n Pi L i c 1,c 2,c 3 = universal constants := L b P n vil 2 2 n 2 i i=1 pi Numerical Results Main Contributions Samplings SVRG with Arbitrary Sampling We develop arbitrary sampling variants of 3 popular variance-reduced methods for solving the non-convex problem (1): SVRG [1], SAGA [2], SARAH [3]. We are able calculate the optimal sampling out of all samplings of a given minibatch size. This is the first time an optimal minibatch sampling was computed (from the class of all samplings). We design importance sampling & approximate importance sampling for minibatches, which vastly outperform standard uniform minibatch strategies in practice. Uniform S u :Everysubsetof[n] of size b (minibatch size) is chosen with the same probability: 1 /( n b) Independent S ú :Foreachi œ [n] we independently flip a coin, and with probability p i include element i into S. Approximate Independent S a :Fixsome k œ [n] and let a = Ák max iæk p ië. Wenow sample a single set S Õ of cardinality a using the uniform minibatch sampling S u.subsequently, we apply an independent sampling S ú to select elements of S Õ,withselectionprobabilities p Õ i = kp i/a. TheresultingrandomsetisS a. Algorithm 1: SVRG x 0 = x 0 m = x 0, M = ÁT/mË; for s =0to M 1 do x s+1 0 = x s m; g s+1 = 1 P n n i=1 Òf i( x s ) for t =0to m 1 do Draw a random subset (minibatch) S t S vt s+1 = P 1 (Òf itœst it (x s+1 npi t t ) Òf it ( x s )) + g s+1 x s+1 t+1 = x s+1 t vt s+1 end x s+1 = x s+1 m end Output: Iterate x a chosen uniformly random from {{x s+1 t } m t=0} M s=0 References [1] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic variance reduction for nonconvex optimization. In The 33th International Conference on Machine Learning, pages , [2] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast incremental method for smooth nonconvex optimization. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pages IEEE,2016. [3] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Taká. Stochastic recursive gradient algorithm for nonconvex optimization. arxiv: , Poster: Pacific Ballroom #95 (Today 6:30 9:00 PM)
28 Thank you!
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav
Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum At train time, learn A :2 X! Y Supervised Clustering aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Mixed-integer Convex Representability
Mixed-integer Convex Representability Juan Pablo Vielma Massachuse=s Ins?tute of Technology Joint work with Miles Lubin and Ilias Zadik INFORMS Annual Mee?ng, Phoenix, AZ, November, 2018. Mixed-Integer
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Label-Noise Robust Generative Adversarial Networks
Label-Noise Robust Generative Adversarial Networks Training data rcgan Noisy labeled Conditioned on clean labels Takuhiro Kaneko1 Yoshitaka Ushiku1 Tatsuya Harada1, 2 1The University of Tokyo 2RIKEN Talk
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion
DM-ML, DM-FL Descritpion DM-ML and DM-FL actuators are designed for driving round dampers and square multi-blade dampers. Example identification Product code: DM-FL-5-2 voltage Dimensions DM-ML-6 DM-ML-8
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Agnostic Learning and VC dimension
Agnostic Learning and VC dimension Machine Learning Spring 2019 The slides are based on Vivek Srikumar s 1 This Lecture Agnostic Learning What if I cannot guarantee zero training error? Can we still get
Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA
Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller
MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech
Logistic Regression Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech Outline Review conditional probability and classification Linear parameterization and logistic function Gradient descent Other
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Home Software Hardware Benchmarks Services Store Support Forums About Us
1 z 8 2013-03-08 11:49 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» Intel Core i5-2310 @ 2.90GHz CPU Benchmarks Video Card Benchmarks
Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.
aaaftxicbvtnbtnaehzdsov5aqthlimaokskuviowkfs+vekehjfkbapg6znehmvwa9d7zqksvwipa1xeaeuvagnhni1nshou5ll8tcz33w7o+thyjlunc7vtcq16vr1jc0b9s1bt+9sbe/cpzfbhbhajwepok9dlclngvyvu5x+ciok/sgnp8pjs+m/ndjiskb8vbchhfh4lniieaw05oxu6j0mxkjfjgeicthxvbrimhigpkzsws1+7ngn7w1nha8jbyzioeiddyoymhzxhrmg8/myu4bgqyq5zx05wctq2f89glebdsku09n1gzoggftogizzcvkp9bivtytcghv4ydfkaokbqdmwvf2iabcyov4hgec5x8+wjyhgdr3u8qq+hjtqfz9mkn5ceqd7mjutwp0pt3jqttw1gxsfagjrhccytefbhiolawya5kogufle59x8ky6pwvsyq8nkrepyaf7omhnlclq5bbtr3es84varia+kt2l8swbyhpgymznwpc/sfbysspy2s73baxeybzenbmhswsu61po1hdyaxd4vinas5vm3e6pbgipfckepjwjjq0wmeezptcmwpvlbkk10cg814oiej/0ibrm6njfgx8olf6gjfaw8ueoz4fw+s1inng4sjsjyuuhyqqoygwraxa9wwusj4hfawcriwisqd0eykh2jsluei3skhawdjomihx4jszkkaxqlwhkor4nccss2wqjdqsjgjrkljt0rulqfxlj0pnlrsvtoyjoq0hxuwaw3olnxuk5mksialft5mant/usi6uv9aqs5xzwhctrestftsvvw/0xe6yiidnisbwd91gjifmhuj1b3dwaug/399rn29/3+7uglypy2rfvwa6thda0n1qh12jq2+hapfkt8r/yo/kz+qv6p/q3+y0mra0xopau01jf+ayoux6w=
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
Maximum A Posteriori Chris Piech CS109, Stanford University
Maximum A Posteriori Chris Piech CS109, Stanford University Previously in CS109 Game of Estimators Estimators Maximum Likelihood Non spoiler alert: this didn t happen in game of thrones aaab7nicbva9swnbej2lxzf+rs1tfomqm3anghywarvlcoydkjpsbfasjxt7x+6cei78cbslrwz9pxb+gzfjfzr4yodx3gwz84jecoou++0u1ty3nrek26wd3b39g/lhucveqwa8ywiz605adzdc8sykllytae6jqpj2ml6d+e0nro2i1qnoeu5hdkhekbhfk7u7j1lvne/75ypbc+cgq8tlsqvynprlr94gzmneftjjjel6boj+rjukjvm01esntygb0yhvwqpoxi2fzc+dkjordegya1skyvz9pzhryjhjfnjoiolilhsz8t+vm2j47wdcjslyxralwlqsjmnsdziqmjoue0so08lestiiasrqjlsyixjll6+s1kxnc2ve/wwlfpphuyqtoiuqehafdbidbjsbwrie4rxenmr5cd6dj0vrwclnjuepnm8fuskpig==
Counting Rules. Counting operations on n objects. Sort, order matters (perms) Choose k (combinations) Put in r buckets. None Distinct.
Probability Review Counting Rules Counting operations on n objects Sort, order matters (perms) Choose k (combinations) Put in r buckets Distinct n! Some Distinct n! n 1!n 2!... n k Distinct = n! k!(n k)!
Department of Electrical- and Information Technology. Dealing with stochastic processes
Dealing with stochastic processes The stochastic process (SP) Definition (in the following material): A stochastic process is random process that happens over time, i.e. the process is dynamic and changes
Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE
Machie Learig for Data Sciece (CS4786) Lecture 8 Kerel PCA & Isomap + TSNE LINEAR PROJECTIONS X d W = Y K d K Works whe data lies i a low dimesioal liear sub-space KERNEL TRICK ( ) ( ) We have have ice
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent
Compressing the information contained in the different indexes is crucial for performance when implementing an IR system
4.2 Compression Compressing the information contained in the different indexes is crucial for performance when implementing an IR system on current hardware it is typically much faster to read compressed
RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS
SCIENTIFIC BULLETIN OF LOZ TECHNICAL UNIVERSITY Nr 78, TEXTILES 55, 997 ZESZYTY NAUKOWE POLITECHNIKI ŁÓZKIEJ Nr 78, WŁÓKIENNICTWO z. 55, 997 Pages: 8- http://bhp-k4.p.loz.pl/ JERZY ZAJACZKOWSKI Loz Technical
OPTYMALIZACJA LICZBY WARSTW DLA ALOKACJI NEYMANA
Tomasz Bąk Uniwersytet Ekonomiczny w Katowicach OPTYMALIZACJA LICZBY WARSTW DLA ALOKACJI NEYMANA Wprowadzenie Losowanie warstwowe jest często wykorzystywaną w praktyce metodą doboru próby w przypadku estymacji
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
TTIC 31190: Natural Language Processing
TTIC 31190: Natural Language Processing Kevin Gimpel Spring 2018 Lecture 17: Machine TranslaDon; SemanDcs Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX
UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin
Stability of Tikhonov Regularization 9.520 Class 07, March 2003 Alex Rakhlin Plan Review of Stability Bounds Stability of Tikhonov Regularization Algorithms Uniform Stability Review notation: S = {z 1,...,
STATISTICAL METHODS IN BIOLOGY
STATISTICAL METHODS IN BIOLOGY 1. Introduction 2. Populations and samples 3. Hypotheses testing and parameter estimation 4. Experimental design for biological data 5. Most widely used statistical tests
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
Presented by. Dr. Morten Middelfart, CTO
Meeting Big Data challenges in Leadership with Human-Computer Synergy. Presented by Dr. Morten Middelfart, CTO Big Data Data that exists in such large amounts or in such unstructured form that it is difficult
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski)
Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski) PWN- Oxford Wielki s ownik polsko> angielski - PWN-Oxford Wielki s ownik polsko>angielski (Great Polish>English) The most comprehensive
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
EN 71. (389 x 410 x h272cm) (389 x 410 x h272cm) fungoo.eu FLEPPI
PLAYGROUND PLAC ZABAW (389 x 410 x h272cm) (389 x 410 x h272cm) 003_04630_06082019 003_04630_06082019 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU Warranty period - 2 years from purchase date Okres gwarancji
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png
USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian
1 / 12 Content list / Spis Treści 1. Hardware and software requirements, preparing device to upgrade Wymagania sprzętowe i programowe, przygotowanie urządzenia do aktualizacji 2. Installing drivers needed
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
PassMark - CPU Benchmarks - List of Benchmarked CPUs
Pass - CPU Benchmarks - List of Benchmarked CPUs Strona 1 z 29 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks
EGARA 2011. Adam Małyszko FORS. POLAND - KRAKÓW 2-3 12 2011r
EGARA 2011 Adam Małyszko FORS POLAND - KRAKÓW 2-3 12 2011r HISTORIA ELV / HISTORY ELV 1992r. 5 Program działań na rzecz ochrony środowiska / EAP (Environmental Action Plan) 1994r. Strategia dobrowolnego
Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu
IONS-14 / OPTO Meeting For Young Researchers 2013 Khet Tournament On 3-6 July 2013 at the Faculty of Physics, Astronomy and Informatics of Nicolaus Copernicus University in Torun (Poland) there were two
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
P R A C A D Y P L O M O W A
POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu P R A C A D Y P L O M O W A Autor: inż. METODA Ε-CONSTRAINTS I PRZEGLĄDU FRONTU PARETO W ZASTOSOWANIU DO ROZWIĄZYWANIA PROBLEMU OPTYMALIZACJI
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to
No matter how much you have, it matters how much you need
CSR STRATEGY KANCELARIA FINANSOWA TRITUM GROUP SP. Z O.O. No matter how much you have, it matters how much you need Kancelaria Finansowa Tritum Group Sp. z o.o. was established in 2007 we build trust among
Wykorzystanie możliwości serwerów Online Judge w przygotowaniu drużyny oraz w organizacji zawodów w programowaniu
Wykorzystanie możliwości serwerów Online w przygotowaniu drużyny oraz w organizacji zawodów w programowaniu Alexander Denisjuk Elbląska Uczelnia Humanistyczno-Ekonomiczna mailto:denisjuk@matman.uwm.edu.pl
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
photo graphic Jan Witkowski Project for exhibition compositions typography colors : +48 506 780 943 : janwi@janwi.com
Jan Witkowski : +48 506 780 943 : janwi@janwi.com Project for exhibition photo graphic compositions typography colors Berlin London Paris Barcelona Vienna Prague Krakow Zakopane Jan Witkowski ARTIST FROM
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
Counting quadrant walks via Tutte s invariant method
Counting quadrant walks via Tutte s invariant method Olivier Bernardi - Brandeis University Mireille Bousquet-Mélou - CNRS, Université de Bordeaux Kilian Raschel - CNRS, Université de Tours Vancouver,
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
Bayesian graph convolutional neural networks
Bayesian graph convolutional neural networks Mark Coates Collaborators: Soumyasundar Pal, Yingxue Zhang, Deniz Üstebay McGill University, Huawei Noah s Ark Lab February 13, 2019 Montreal 2 / 36 Introduction
Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle
Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle Diego Lonardoni FRIB Theory Fellow In collaboration with: S. Gandolfi, LAL J. A. Carlson, LAL A. Lovato, AL & IF F. Pederiva,
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1
CS 6170: Computational Topology, Spring 2019 Lecture 09
CS 6170: Computtionl Topology, Spring 2019 Lecture 09 Topologicl Dt Anlysis for Dt Scientists Dr. Bei Wng School of Computing Scientific Computing nd Imging Institute (SCI) University of Uth www.sci.uth.edu/~beiwng
Employment. Number of employees employed on a contract of employment by gender in 2012. Company
Im not found /sites/eneacsr2012.mess-asp.com/themes/eneacsr2012/img/enea.jpg Employt Capital Group is one of the largest companies in the energy industry. Therefore it has an influence, as an employer,
Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a
Modulacja i kodowanie Labolatorium Kodowanie źródłowe Kod Huffman a W tym ćwiczeniu zajmiemy się kodowaniem źródłowym (source coding). 1. Kodowanie źródłowe Głównym celem kodowanie źródłowego jest zmniejszenie
Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
Najlepsze drukarki 3D
Pass - CPU Benchmarks - List of Benchmarked CPUs Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO Internet Rzeczy w wyobraźni gracza komputerowego NAUKA PRZEZ ZABAWĘ Strategia nauczania: Planowe, Zorganizowane Lub zainicjowane przez nauczyciela
Home Software Hardware Benchmarks Services Store Support Forums About Us
Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android
Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Maszyny wektorów podpierajacych w regresji rangowej
Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R Z = (X, Y ), Z = (X, Y ) - niezależne
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
HAPPY ANIMALS RW08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K M M ZM ZW G 0 szt. / pcs W szt. / pcs B szt. / pcs szt. / pcs W U 8 szt. / pcs 4 szt. / pcs U N szt. / pcs Ø3 x szt. /
HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1
HAPPY K0 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS W Akcesoria / Fittings W W G K szt. / pcs M Ø Ø 0 Ø, Ø Ø. 0 ø8 M 8 szt. / pcs 0 szt. / pcs szt. / pcs T U U szt. / pcs szt. / pcs szt. / pcs S TZ szt.
reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley
reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study of how to use