Nonconvex Variance Reduced Optimization with Arbitrary Sampling

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nonconvex Variance Reduced Optimization with Arbitrary Sampling"

Transkrypt

1 Nonconvex Variance Reduced Optimization with Arbitrary Sampling Samuel Horváth Peter Richtárik

2 Empirical Risk Minimization nx min x2r d f(x) := 1 n i=1 f i (x)

3 Empirical Risk Minimization nx min x2r d f(x) := 1 n n is big i=1 f i (x)

4 Empirical Risk Minimization nx min x2r d f(x) := 1 n i=1 f i (x) n is big non-convex, L i -smooth krf i (x) rf i (y)k applel i kx yk

5 Baseline Variance Reduced SGD Methods SVRG Johnson & Zhang NIPS 2013 SAGA Defazio, Bach & Lacoste-Julien NIPS 2014 SARAH Nguyen, Liu, Scheinberg & Takáč ICML 2017

6 Baseline Variance Reduced SGD Methods SVRG Johnson & Zhang NIPS 2013 Uniform sampling SAGA Defazio, Bach & Lacoste-Julien NIPS 2014 SARAH Nguyen, Liu, Scheinberg & Takáč ICML 2017 Uniform sampling Uniform sampling

7 Baseline Variance Reduced SGD Methods Mini-batch SVRG Konečný & Richtárik FAMS 2017 SAGA Reddi, Hefny, Sra, Poczos, Smola CDC 2016 SARAH Nguyen, Liu, Scheinberg & Takáč 2017

8 Baseline Variance Reduced SGD Methods Mini-batch Mini-batch size SVRG Konečný & Richtárik FAMS 2017 SAGA Reddi, Hefny, Sra, Poczos, Smola CDC 2016 SARAH Nguyen, Liu, Scheinberg & Takáč 2017 Uniform sampling Uniform sampling Uniform sampling

9 Contributions Analysis of SVRG, SAGA and SARAH in the arbitrary sampling paradigm Construction of optimal minibatch sampling

10 Contributions Richtárik & Takáč (OL 2016; arxiv 2013) Qu, Richtárik & Zhang (NIPS 2015) Qu & Richtárik (COAP 2016) Chambolle, Ehrhardt, Richtárik & Schoenlieb (SIOPT 2018) Hanzely & Richtárik (AISTATS 2019) Qian, Qu & Richtárik (ICML 2019) Gower, Loizou, Qian, Sailanbayev, Shulgin & Richtárik (ICML 2019) Analysis of SVRG, SAGA and SARAH in the arbitrary sampling paradigm Construction of optimal minibatch sampling

11 Contributions Richtárik & Takáč (OL 2016; arxiv 2013) Qu, Richtárik & Zhang (NIPS 2015) Qu & Richtárik (COAP 2016) Chambolle, Ehrhardt, Richtárik & Schoenlieb (SIOPT 2018) Hanzely & Richtárik (AISTATS 2019) Qian, Qu & Richtárik (ICML 2019) Gower, Loizou, Qian, Sailanbayev, Shulgin & Richtárik (ICML 2019) Analysis of SVRG, SAGA and SARAH in the arbitrary sampling paradigm Construction of optimal minibatch sampling First optimal/importance sampling for minibatches!

12 S S Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} Probability matrix P 2 R n n associated with sampling P ij := Prob({i, j} S) Probability vector p 2 R n associated with sampling p i := Prob({i} S) =P ii Proper sampling: p i > 0 for all i =1, 2,...,n

13 S S Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} A sampling is uniquely defined by assigning probabilities to all 2 n subsets of {1, 2,..., n} Probability matrix P 2 R n n associated with sampling P ij := Prob({i, j} S) Probability vector p 2 R n associated with sampling p i := Prob({i} S) =P ii Proper sampling: p i > 0 for all i =1, 2,...,n

14 S S <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} A sampling is uniquely defined by assigning probabilities to all 2 n subsets of {1, 2,..., n} Probability matrix Probability vector Proper sampling: P 2 R n n associated with sampling P ij := Prob({i, j} S) p 2 R n associated with sampling p i := Prob({i} S) =P ii p i > 0 for all i =1, 2,...,n Examples Standard sampling: S = {i} with probability 1 n for all i =1, 2,...,n Standard mini-batch sampling: S = C with probability 1 ( n b) for all C {1, 2,...,n} such that C = b

15 S S <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> <latexit sha1_base64="wyrux/pk9vh5a+mivjphdxvu0v4=">aaack3icbvc7tsmwfhv4lviqmljynegmvzv0gavsvrzgebqqnvhlue5r4dirfqokov4pc7/caampsfifukudrzmdnxop7r0nsgu34hmvztz8wulscmmlvlq2vrfz2dq+ncrtlhwoekp3i2ky4jj1ging3vqzkkscxuxxxxp/6ozpw5w8gdxlyukgksecerbsv9j2z3etbwupxi6+5tdcqvyribjgkgm3idwhht8uplvjpteraru86dcatwcgwnsk269uvbo3bf5l/bmpohlo+5vhg6vzwirqqyzp+v4kyue0ccryubxkhqwexpmh61kqscjmwex/hen9qwymp8rkap6q3xmfsyzjk8hojgrg5rc3ef/zehner2hbzzobk/rruzwjdappismdrhkfkvtcqob2vkxhxnydtt6ylch//fjfctmo+17dp2tuw+1zhsw0i/bqaflriwqhe3skooiio/santglc+88ow/o+9fondpl7kafcd4+ath6ptm=</latexit> Data Sampling (i.e., Mini-batching) Mechanisms Sampling: a random subset of {1, 2,, n} A sampling is uniquely defined by assigning probabilities to all 2 n subsets of {1, 2,..., n} Probability matrix Probability vector Proper sampling: P 2 R n n associated with sampling P ij := Prob({i, j} S) p 2 R n associated with sampling p i := Prob({i} S) =P ii p i > 0 for all i =1, 2,...,n Examples Standard sampling: S = {i} with probability 1 n for all i =1, 2,...,n Standard mini-batch sampling: S = C with probability 1 ( n b) for all C {1, 2,...,n} such that C = b Arbitrary sampling paradigm = perform iteration complexity analysis for any proper sampling

16 <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> From Standard Sampling to Arbitrary Sampling SVRG with Arbitrary Sampling x + X = x i2s 1 (rf i (x) np i rf i (ˆx)) + rf(ˆx)!

17 <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> From Standard Sampling to Arbitrary Sampling SVRG with Arbitrary Sampling x + = x X i2s 1 Unbiased estimator of the gradient np i (rf i (x) rf i (ˆx)) + rf(ˆx)!

18 <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="fors//lgdcrlu94d3yhmshgoank=">aaach3icbvfnbxmxepuubdrwlckry4gikaei7jykekeqcofybgkrxcvk63gtq17vyp5fisz/fx4un/4ntrqu0jkspef35nk8m0wjpmuk+rxft7zu37m7vdo7d//bw0f93ccntm4nfxneq9qcfcwkjbwyoeqlzhojwfuocvqcf1zrp9+fsblwx3hvikxicy1lyrkgku//onpltz14b0t4cvqga6bkldiktq1yj4fkdy5ucjkjzh6+ee9lw7hlvbsq6cax3v9xa1yobmuuh8vr+uw/d7pg6jz+bnti+qjhshepxmqdrlo8p0jgysbgjkg7mcbdhof9n3rw87ysgrli1k7tpmhmmyosk+f7tlwiyfyczcu0qm0qyto36cld88dmokxnobphw151ofzzu6qkkfkxxnjr2pr8nzztstzmnnrni0lzi0jlqwbrwc8fztiijmovaonghr8cx7awzayr64uhpndbvglo9sdpmk4/7w+opntj2czpytmyjcl5s47ij3jmjorhw9gl6hv0eo/er+i38effahx1nifkn4jf/wztysjs</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> <latexit sha1_base64="lmndbt30co6xq28rzf/6r/4u7hs=">aaacchicbvc7tsmwfhv4lvikmdjg0saxvukxwjaqwbilrb9sg0wo67rwhtuyhaqqysjcr7awgbarn8dg3+cmgadltefn3kt7zwktrpv23w9rzxvtfwozslxd3tnd27cpdjtkpbktnhzmyf6ifgguk7ammpfeigmkq0a64erm5ncfifru8hs9tygfoxgnecvigymwt5wkopakdikjcoblgc8dgakjewpqou5g19y6wwaue68knvcifdhfg6haauy4xgwp1ffcrpszkppirvlqifukqxicrqrvkecxux5wbmnhmvggxflica0l9fdghmklpnfojmokx2rrm4n/ef1ur5d+rnmsaslx/fcumqgfnluch1qsrnnueiqlnb9cpeamem26q5osvmxiy6ttqhtu3btr1jrxzr0vcaxowtnwwavoglvqam2awsn4bq/gzxqyxqx362m+umkvo0fgd6zph+iul/q=</latexit> From Standard Sampling to Arbitrary Sampling SVRG with Arbitrary Sampling x + = x X i2s 1 Unbiased estimator of the gradient np i (rf i (x) rf i (ˆx)) + rf(ˆx) Standard sampling:! Arbitrary sampling p i = 1 n for all i

19 Convergence Rate I n + n2/3 O

20 <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> Convergence Rate I # data points n + n2/3 O Ekrf(x)k 2 apple

21 <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> <latexit sha1_base64="ti37wostf5wqbv622wqejirgk/m=">aaacenicbvc7tgjbfj3ff+iltbszccbqkf0alyngxbitesqsktnhlkyynv1nzo1k4rts/bubc42xtblzbxwehyinucnjoffm3nu8idolbfvbsq2srq1vpdczw9s7u3vz/yo6cmnjouzdhsqmrxrwjqcmmebqjcsqwopq8ayxe79xd1kxunzoyqttgpqe8xkl2kidbdgfudlal2psjlxbpe6wx3gouqpbmny53gexisv4kpkdbm4u2vpgzelmsq7nue1kv9xusomahkacknvy7ei3eyi1oxzggtdwebe6id1ogspiakqdtf8a4xojdlefslnc46n6eyihgvldwdodadf9tehnxp+8vqz9s3bcrbrrehs2yi851ige5io7talvfggiozkzwzhte0monilmtajo4svlpf4uoxbjus7nkufzonlocb2janlqkaqgk1rfnutri3pgr+jnerjerhfry9aasuyzh+gprm8f8d2cya==</latexit> Convergence Rate I # data points n + n2/3 O Ekrf(x)k 2 apple KEY QUANTITY: DEPENDS ON THE SAMPLING

22 Convergence Rate II := b Ln 2 nx i=1 v i L 2 i p i

23 <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> Convergence Rate II P ij := Prob({i, j} S) Constants satisfying: P pp > Diag(p 1 v 1,p 2 v 2,...,p n v n ). krf i (x) rf i (y)k applel i kx yk Expected mini-batch size: b =E S <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> b nx v i L 2 i := nx Ln 2 i=1 p i L = 1 n L i i=1 # data points p i := Prob({i} S) =P ii

24 <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> <latexit sha1_base64="lz5g7p8kggfaagfrymokojesgpi=">aaacehicbvc7tsmwfhv4lvikmljyvaimku4cs6ukfoyoraipqqmr4zqtvcejbaepivijlpwkcwmistky8te4bqzoodkvjs65v/feeyscke0439bk6tr6xmzpq7y9s7u3bx8cdlscsklbjoax7avyuc4ebwumoe0lkuio4lqbjk+nfvebssvicacncfuipbqszarri/n2mdt3ayyzzl53q4ljhvjm5k5kiz9jdztfc9j0mev5dswpojpazyikugefwr795q5ikkzuamkxun3kjnrlsnsmcjqx3vtrbjmxhtk+oqjhvhnz7kecnhplamnymhiazttfexmoljpegemmsb6prw8q/uf1ux1eehktsaqpipnfycqhjue0hthgkhlnj4zgipm5fzirnrlok2hzhiawx14mnvovovv0w6s0roo4suaynibzgmafaiab0ajtqmajeaav4m16sl6sd+tj3rpiftnh4a+szx/jkz0x</latexit> Convergence Rate II P ij := Prob({i, j} S) Constants satisfying: P pp > Diag(p 1 v 1,p 2 v 2,...,p n v n ). krf i (x) rf i (y)k applel i kx yk Expected mini-batch size: b =E S <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> <latexit sha1_base64="tpgusjk+wuyjr/gurkqvcvd3bus=">aaab+xicbvbntwixej3fl8svvy9egshee9nlohctojhxifgqbdakwwo0tn1n2yuhc//eiwen8eo/8ea/scaefhzjjc/vzwrmxhhzpo3nftu5tfwnza38dmfnd2//wd08augouytwscqj1qyxppxjwjfmcnqmfcui5pqphn7m/kcrvzpf8tgmyxoi3jesxwg2vuq4bim8qmlbcxq7rzohsanjfr2ynwdajx5gipch1ng/2t2ijijkqzjwuuv7sqlsrawjne4l7uttgjmh7towprilqon0fvkunvmli3qrsiunmqu/j1istb6l0hykbaz62zuj/3mtxpqug5tjodfukswixskridasbtrlihldx5zgopi9fzebvpgyg1bbhuavv7xkgpwy75x9+0qxep3fkyctoivz8oecqnahnagdgre8wyu8oanz4rw7h4vwnjpnhmmfoj8/mdqsuw==</latexit> b nx v i L 2 i := nx Ln 2 i=1 p i L = 1 n L i i=1 # data points p i := Prob({i} S) =P ii Optimal rate: minimize over {(v i,p i )} n i=1

25 Convergence Rate III

26 Experiments

27 Nonconvex Variance Reduced Optimization with Arbitrary Sampling Samuel Horváth 1 Peter Richtárik 1,2,3 1 KAUST 2 University of Edinburgh 3 Moscow Institute of Physics and Technology min xœr d The Problem nx f(x) := 1 f i(x) (1) n i=1 f i is L i-smooth but non-convex n is big Arbitrary Sampling Sampling: arandomset-valuedmappings with values being subsets of [n] :={1, 2,...,n}. A sampling is used to generate minibatches in each iteration. Probability matrix associated with sampling S : def P ij =Prob({i, j} S) Probability vector associated with sampling S : def p =(p 1,...,p n), p i =Prob(iœS) Minibatch size: b =E[ S ] (expected size of S) Proper sampling: Sampling for which p i > 0 for all i œ [n] Arbitrary sampling = any proper sampling Key Lemma Let 1, 2,..., n be vectors in R d def and let = 1 P n n i=1 i be their average. Let S be a proper sampling. Let v =(v 1,...,v n) > 0 be such that P pp Diag(p 1v 1, p 2v 2,...,p nv n). (2) Then 2 6 X i E 4 iœs np Æ 1 X n v i i n 2 Î iî 2. i=1 p i Whenever (2) holds, it must be the case that v i Ø 1 p i. Optimal Sampling & Superlinear Speedup Under our analysis, the independent sampling S ú defined by 8 >< def (b + k n) P Li kj=1 if i Æ k Lj, p i = >: 1, if i>k, is optimal, where k is the largest integer satisfying 0 <b+ k n Æ P k i=1 Li. Lk All 3 methods enjoy superlinear speed in b up to the minibatch size b max := max{b bl n Æ P n i=1 L i}. # Stochastic Gradient Evaluations to Achieve E apple ÎÒf(x)Î 2 Æ Alg Uniform sampling Arbitrary sampling [NEW] S ú (Best Sampling) [NEW] ( ) ( ) 8 9 SVRG max n, (1+4/3)Lmaxc1n2/3 2/3 < 2/3 (1+4 /3) Lc1n (1+4(n b) 3n ) Lc1n = [1] max n, max n, : ; SAGA n + 2Lmaxc2n2/3 2/3 (1+ ) Lc2n [2] n + n + (1+n b 2/3 n ) Lc2n SARAH n + n b n 1 L2 maxc3 [3] n + L 2 c3 2 n + n b L 2 n 2 c3 2 Constants: L max =max i L i L = 1 n Pi L i c 1,c 2,c 3 = universal constants := L b P n vil 2 2 n 2 i i=1 pi Numerical Results Main Contributions Samplings SVRG with Arbitrary Sampling We develop arbitrary sampling variants of 3 popular variance-reduced methods for solving the non-convex problem (1): SVRG [1], SAGA [2], SARAH [3]. We are able calculate the optimal sampling out of all samplings of a given minibatch size. This is the first time an optimal minibatch sampling was computed (from the class of all samplings). We design importance sampling & approximate importance sampling for minibatches, which vastly outperform standard uniform minibatch strategies in practice. Uniform S u :Everysubsetof[n] of size b (minibatch size) is chosen with the same probability: 1 /( n b) Independent S ú :Foreachi œ [n] we independently flip a coin, and with probability p i include element i into S. Approximate Independent S a :Fixsome k œ [n] and let a = Ák max iæk p ië. Wenow sample a single set S Õ of cardinality a using the uniform minibatch sampling S u.subsequently, we apply an independent sampling S ú to select elements of S Õ,withselectionprobabilities p Õ i = kp i/a. TheresultingrandomsetisS a. Algorithm 1: SVRG x 0 = x 0 m = x 0, M = ÁT/mË; for s =0to M 1 do x s+1 0 = x s m; g s+1 = 1 P n n i=1 Òf i( x s ) for t =0to m 1 do Draw a random subset (minibatch) S t S vt s+1 = P 1 (Òf itœst it (x s+1 npi t t ) Òf it ( x s )) + g s+1 x s+1 t+1 = x s+1 t vt s+1 end x s+1 = x s+1 m end Output: Iterate x a chosen uniformly random from {{x s+1 t } m t=0} M s=0 References [1] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic variance reduction for nonconvex optimization. In The 33th International Conference on Machine Learning, pages , [2] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast incremental method for smooth nonconvex optimization. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pages IEEE,2016. [3] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Taká. Stochastic recursive gradient algorithm for nonconvex optimization. arxiv: , Poster: Pacific Ballroom #95 (Today 6:30 9:00 PM)

28 Thank you!

Hard-Margin Support Vector Machines

Hard-Margin Support Vector Machines Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv

Bardziej szczegółowo

Gradient Coding using the Stochastic Block Model

Gradient Coding using the Stochastic Block Model Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each

Bardziej szczegółowo

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum At train time, learn A :2 X! Y Supervised Clustering aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction

Bardziej szczegółowo

Mixed-integer Convex Representability

Mixed-integer Convex Representability Mixed-integer Convex Representability Juan Pablo Vielma Massachuse=s Ins?tute of Technology Joint work with Miles Lubin and Ilias Zadik INFORMS Annual Mee?ng, Phoenix, AZ, November, 2018. Mixed-Integer

Bardziej szczegółowo

Revenue Maximization. Sept. 25, 2018

Revenue Maximization. Sept. 25, 2018 Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time

Bardziej szczegółowo

tum.de/fall2018/ in2357

tum.de/fall2018/ in2357 https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning

Bardziej szczegółowo

Label-Noise Robust Generative Adversarial Networks

Label-Noise Robust Generative Adversarial Networks Label-Noise Robust Generative Adversarial Networks Training data rcgan Noisy labeled Conditioned on clean labels Takuhiro Kaneko1 Yoshitaka Ushiku1 Tatsuya Harada1, 2 1The University of Tokyo 2RIKEN Talk

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2 TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)

Bardziej szczegółowo

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion DM-ML, DM-FL Descritpion DM-ML and DM-FL actuators are designed for driving round dampers and square multi-blade dampers. Example identification Product code: DM-FL-5-2 voltage Dimensions DM-ML-6 DM-ML-8

Bardziej szczegółowo

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==

Bardziej szczegółowo

Agnostic Learning and VC dimension

Agnostic Learning and VC dimension Agnostic Learning and VC dimension Machine Learning Spring 2019 The slides are based on Vivek Srikumar s 1 This Lecture Agnostic Learning What if I cannot guarantee zero training error? Can we still get

Bardziej szczegółowo

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries

Bardziej szczegółowo

The Lorenz System and Chaos in Nonlinear DEs

The Lorenz System and Chaos in Nonlinear DEs The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of

Bardziej szczegółowo

Few-fermion thermometry

Few-fermion thermometry Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl

Bardziej szczegółowo

deep learning for NLP (5 lectures)

deep learning for NLP (5 lectures) TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta  1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona

Bardziej szczegółowo

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,

Bardziej szczegółowo

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Rozpoznawanie twarzy metodą PCA Michał Bereta   1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.

Bardziej szczegółowo

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Previously on CSCI 4622

Previously on CSCI 4622 More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech

Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech Logistic Regression Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech Outline Review conditional probability and classification Linear parameterization and logistic function Gradient descent Other

Bardziej szczegółowo

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical

Bardziej szczegółowo

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych

Bardziej szczegółowo

Home Software Hardware Benchmarks Services Store Support Forums About Us

Home Software Hardware Benchmarks Services Store Support Forums About Us 1 z 8 2013-03-08 11:49 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» Intel Core i5-2310 @ 2.90GHz CPU Benchmarks Video Card Benchmarks

Bardziej szczegółowo

Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.

Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation. aaaftxicbvtnbtnaehzdsov5aqthlimaokskuviowkfs+vekehjfkbapg6znehmvwa9d7zqksvwipa1xeaeuvagnhni1nshou5ll8tcz33w7o+thyjlunc7vtcq16vr1jc0b9s1bt+9sbe/cpzfbhbhajwepok9dlclngvyvu5x+ciok/sgnp8pjs+m/ndjiskb8vbchhfh4lniieaw05oxu6j0mxkjfjgeicthxvbrimhigpkzsws1+7ngn7w1nha8jbyzioeiddyoymhzxhrmg8/myu4bgqyq5zx05wctq2f89glebdsku09n1gzoggftogizzcvkp9bivtytcghv4ydfkaokbqdmwvf2iabcyov4hgec5x8+wjyhgdr3u8qq+hjtqfz9mkn5ceqd7mjutwp0pt3jqttw1gxsfagjrhccytefbhiolawya5kogufle59x8ky6pwvsyq8nkrepyaf7omhnlclq5bbtr3es84varia+kt2l8swbyhpgymznwpc/sfbysspy2s73baxeybzenbmhswsu61po1hdyaxd4vinas5vm3e6pbgipfckepjwjjq0wmeezptcmwpvlbkk10cg814oiej/0ibrm6njfgx8olf6gjfaw8ueoz4fw+s1inng4sjsjyuuhyqqoygwraxa9wwusj4hfawcriwisqd0eykh2jsluei3skhawdjomihx4jszkkaxqlwhkor4nccss2wqjdqsjgjrkljt0rulqfxlj0pnlrsvtoyjoq0hxuwaw3olnxuk5mksialft5mant/usi6uv9aqs5xzwhctrestftsvvw/0xe6yiidnisbwd91gjifmhuj1b3dwaug/399rn29/3+7uglypy2rfvwa6thda0n1qh12jq2+hapfkt8r/yo/kz+qv6p/q3+y0mra0xopau01jf+ayoux6w=

Bardziej szczegółowo

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE

Bardziej szczegółowo

Maximum A Posteriori Chris Piech CS109, Stanford University

Maximum A Posteriori Chris Piech CS109, Stanford University Maximum A Posteriori Chris Piech CS109, Stanford University Previously in CS109 Game of Estimators Estimators Maximum Likelihood Non spoiler alert: this didn t happen in game of thrones aaab7nicbva9swnbej2lxzf+rs1tfomqm3anghywarvlcoydkjpsbfasjxt7x+6cei78cbslrwz9pxb+gzfjfzr4yodx3gwz84jecoou++0u1ty3nrek26wd3b39g/lhucveqwa8ywiz605adzdc8sykllytae6jqpj2ml6d+e0nro2i1qnoeu5hdkhekbhfk7u7j1lvne/75ypbc+cgq8tlsqvynprlr94gzmneftjjjel6boj+rjukjvm01esntygb0yhvwqpoxi2fzc+dkjordegya1skyvz9pzhryjhjfnjoiolilhsz8t+vm2j47wdcjslyxralwlqsjmnsdziqmjoue0so08lestiiasrqjlsyixjll6+s1kxnc2ve/wwlfpphuyqtoiuqehafdbidbjsbwrie4rxenmr5cd6dj0vrwclnjuepnm8fuskpig==

Bardziej szczegółowo

Counting Rules. Counting operations on n objects. Sort, order matters (perms) Choose k (combinations) Put in r buckets. None Distinct.

Counting Rules. Counting operations on n objects. Sort, order matters (perms) Choose k (combinations) Put in r buckets. None Distinct. Probability Review Counting Rules Counting operations on n objects Sort, order matters (perms) Choose k (combinations) Put in r buckets Distinct n! Some Distinct n! n 1!n 2!... n k Distinct = n! k!(n k)!

Bardziej szczegółowo

Department of Electrical- and Information Technology. Dealing with stochastic processes

Department of Electrical- and Information Technology. Dealing with stochastic processes Dealing with stochastic processes The stochastic process (SP) Definition (in the following material): A stochastic process is random process that happens over time, i.e. the process is dynamic and changes

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE

Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE Machie Learig for Data Sciece (CS4786) Lecture 8 Kerel PCA & Isomap + TSNE LINEAR PROJECTIONS X d W = Y K d K Works whe data lies i a low dimesioal liear sub-space KERNEL TRICK ( ) ( ) We have have ice

Bardziej szczegółowo

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia

Bardziej szczegółowo

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent

Bardziej szczegółowo

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system 4.2 Compression Compressing the information contained in the different indexes is crucial for performance when implementing an IR system on current hardware it is typically much faster to read compressed

Bardziej szczegółowo

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS SCIENTIFIC BULLETIN OF LOZ TECHNICAL UNIVERSITY Nr 78, TEXTILES 55, 997 ZESZYTY NAUKOWE POLITECHNIKI ŁÓZKIEJ Nr 78, WŁÓKIENNICTWO z. 55, 997 Pages: 8- http://bhp-k4.p.loz.pl/ JERZY ZAJACZKOWSKI Loz Technical

Bardziej szczegółowo

OPTYMALIZACJA LICZBY WARSTW DLA ALOKACJI NEYMANA

OPTYMALIZACJA LICZBY WARSTW DLA ALOKACJI NEYMANA Tomasz Bąk Uniwersytet Ekonomiczny w Katowicach OPTYMALIZACJA LICZBY WARSTW DLA ALOKACJI NEYMANA Wprowadzenie Losowanie warstwowe jest często wykorzystywaną w praktyce metodą doboru próby w przypadku estymacji

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

Instrukcja obsługi User s manual

Instrukcja obsługi User s manual Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja

Bardziej szczegółowo

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci

Bardziej szczegółowo

OpenPoland.net API Documentation

OpenPoland.net API Documentation OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets

Bardziej szczegółowo

TTIC 31190: Natural Language Processing

TTIC 31190: Natural Language Processing TTIC 31190: Natural Language Processing Kevin Gimpel Spring 2018 Lecture 17: Machine TranslaDon; SemanDcs Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language

Bardziej szczegółowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques

Bardziej szczegółowo

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu

Bardziej szczegółowo

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe

Bardziej szczegółowo

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r. OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego

Bardziej szczegółowo

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin Stability of Tikhonov Regularization 9.520 Class 07, March 2003 Alex Rakhlin Plan Review of Stability Bounds Stability of Tikhonov Regularization Algorithms Uniform Stability Review notation: S = {z 1,...,

Bardziej szczegółowo

STATISTICAL METHODS IN BIOLOGY

STATISTICAL METHODS IN BIOLOGY STATISTICAL METHODS IN BIOLOGY 1. Introduction 2. Populations and samples 3. Hypotheses testing and parameter estimation 4. Experimental design for biological data 5. Most widely used statistical tests

Bardziej szczegółowo

Lecture 18 Review for Exam 1

Lecture 18 Review for Exam 1 Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February

Bardziej szczegółowo

Presented by. Dr. Morten Middelfart, CTO

Presented by. Dr. Morten Middelfart, CTO Meeting Big Data challenges in Leadership with Human-Computer Synergy. Presented by Dr. Morten Middelfart, CTO Big Data Data that exists in such large amounts or in such unstructured form that it is difficult

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski)

Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski) Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski) PWN- Oxford Wielki s ownik polsko> angielski - PWN-Oxford Wielki s ownik polsko>angielski (Great Polish>English) The most comprehensive

Bardziej szczegółowo

Cracow University of Economics Poland

Cracow University of Economics Poland Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

EN 71. (389 x 410 x h272cm) (389 x 410 x h272cm) fungoo.eu FLEPPI

EN 71. (389 x 410 x h272cm) (389 x 410 x h272cm) fungoo.eu FLEPPI PLAYGROUND PLAC ZABAW (389 x 410 x h272cm) (389 x 410 x h272cm) 003_04630_06082019 003_04630_06082019 INSTALLATION INSTRUCTIONS INSTRUKCJA MONTAŻU Warranty period - 2 years from purchase date Okres gwarancji

Bardziej szczegółowo

Camspot 4.4 Camspot 4.5

Camspot 4.4 Camspot 4.5 User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja

Bardziej szczegółowo

Rachunek lambda, zima

Rachunek lambda, zima Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli

Bardziej szczegółowo

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info

Bardziej szczegółowo

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png

Bardziej szczegółowo

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian 1 / 12 Content list / Spis Treści 1. Hardware and software requirements, preparing device to upgrade Wymagania sprzętowe i programowe, przygotowanie urządzenia do aktualizacji 2. Installing drivers needed

Bardziej szczegółowo

Convolution semigroups with linear Jacobi parameters

Convolution semigroups with linear Jacobi parameters Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,

Bardziej szczegółowo

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Bardziej szczegółowo

PassMark - CPU Benchmarks - List of Benchmarked CPUs

PassMark - CPU Benchmarks - List of Benchmarked CPUs Pass - CPU Benchmarks - List of Benchmarked CPUs Strona 1 z 29 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks

Bardziej szczegółowo

EGARA 2011. Adam Małyszko FORS. POLAND - KRAKÓW 2-3 12 2011r

EGARA 2011. Adam Małyszko FORS. POLAND - KRAKÓW 2-3 12 2011r EGARA 2011 Adam Małyszko FORS POLAND - KRAKÓW 2-3 12 2011r HISTORIA ELV / HISTORY ELV 1992r. 5 Program działań na rzecz ochrony środowiska / EAP (Environmental Action Plan) 1994r. Strategia dobrowolnego

Bardziej szczegółowo

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu IONS-14 / OPTO Meeting For Young Researchers 2013 Khet Tournament On 3-6 July 2013 at the Faculty of Physics, Astronomy and Informatics of Nicolaus Copernicus University in Torun (Poland) there were two

Bardziej szczegółowo

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT

Bardziej szczegółowo

P R A C A D Y P L O M O W A

P R A C A D Y P L O M O W A POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu P R A C A D Y P L O M O W A Autor: inż. METODA Ε-CONSTRAINTS I PRZEGLĄDU FRONTU PARETO W ZASTOSOWANIU DO ROZWIĄZYWANIA PROBLEMU OPTYMALIZACJI

Bardziej szczegółowo

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to

Bardziej szczegółowo

No matter how much you have, it matters how much you need

No matter how much you have, it matters how much you need CSR STRATEGY KANCELARIA FINANSOWA TRITUM GROUP SP. Z O.O. No matter how much you have, it matters how much you need Kancelaria Finansowa Tritum Group Sp. z o.o. was established in 2007 we build trust among

Bardziej szczegółowo

Wykorzystanie możliwości serwerów Online Judge w przygotowaniu drużyny oraz w organizacji zawodów w programowaniu

Wykorzystanie możliwości serwerów Online Judge w przygotowaniu drużyny oraz w organizacji zawodów w programowaniu Wykorzystanie możliwości serwerów Online w przygotowaniu drużyny oraz w organizacji zawodów w programowaniu Alexander Denisjuk Elbląska Uczelnia Humanistyczno-Ekonomiczna mailto:denisjuk@matman.uwm.edu.pl

Bardziej szczegółowo

Knovel Math: Jakość produktu

Knovel Math: Jakość produktu Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających

Bardziej szczegółowo

photo graphic Jan Witkowski Project for exhibition compositions typography colors : +48 506 780 943 : janwi@janwi.com

photo graphic Jan Witkowski Project for exhibition compositions typography colors : +48 506 780 943 : janwi@janwi.com Jan Witkowski : +48 506 780 943 : janwi@janwi.com Project for exhibition photo graphic compositions typography colors Berlin London Paris Barcelona Vienna Prague Krakow Zakopane Jan Witkowski ARTIST FROM

Bardziej szczegółowo

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE

Bardziej szczegółowo

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs

Bardziej szczegółowo

Counting quadrant walks via Tutte s invariant method

Counting quadrant walks via Tutte s invariant method Counting quadrant walks via Tutte s invariant method Olivier Bernardi - Brandeis University Mireille Bousquet-Mélou - CNRS, Université de Bordeaux Kilian Raschel - CNRS, Université de Tours Vancouver,

Bardziej szczegółowo

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment

Bardziej szczegółowo

Bayesian graph convolutional neural networks

Bayesian graph convolutional neural networks Bayesian graph convolutional neural networks Mark Coates Collaborators: Soumyasundar Pal, Yingxue Zhang, Deniz Üstebay McGill University, Huawei Noah s Ark Lab February 13, 2019 Montreal 2 / 36 Introduction

Bardziej szczegółowo

Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle

Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle Diego Lonardoni FRIB Theory Fellow In collaboration with: S. Gandolfi, LAL J. A. Carlson, LAL A. Lovato, AL & IF F. Pederiva,

Bardziej szczegółowo

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! 1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1

Bardziej szczegółowo

CS 6170: Computational Topology, Spring 2019 Lecture 09

CS 6170: Computational Topology, Spring 2019 Lecture 09 CS 6170: Computtionl Topology, Spring 2019 Lecture 09 Topologicl Dt Anlysis for Dt Scientists Dr. Bei Wng School of Computing Scientific Computing nd Imging Institute (SCI) University of Uth www.sci.uth.edu/~beiwng

Bardziej szczegółowo

Employment. Number of employees employed on a contract of employment by gender in 2012. Company

Employment. Number of employees employed on a contract of employment by gender in 2012. Company Im not found /sites/eneacsr2012.mess-asp.com/themes/eneacsr2012/img/enea.jpg Employt Capital Group is one of the largest companies in the energy industry. Therefore it has an influence, as an employer,

Bardziej szczegółowo

Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a

Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a Modulacja i kodowanie Labolatorium Kodowanie źródłowe Kod Huffman a W tym ćwiczeniu zajmiemy się kodowaniem źródłowym (source coding). 1. Kodowanie źródłowe Głównym celem kodowanie źródłowego jest zmniejszenie

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

DODATKOWE ĆWICZENIA EGZAMINACYJNE

DODATKOWE ĆWICZENIA EGZAMINACYJNE I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What

Bardziej szczegółowo

Najlepsze drukarki 3D

Najlepsze drukarki 3D Pass - CPU Benchmarks - List of Benchmarked CPUs Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks

Bardziej szczegółowo

GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego

GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO Internet Rzeczy w wyobraźni gracza komputerowego NAUKA PRZEZ ZABAWĘ Strategia nauczania: Planowe, Zorganizowane Lub zainicjowane przez nauczyciela

Bardziej szczegółowo

Home Software Hardware Benchmarks Services Store Support Forums About Us

Home Software Hardware Benchmarks Services Store Support Forums About Us Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

Stargard Szczecinski i okolice (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition) Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz

Bardziej szczegółowo

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences. The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)

Bardziej szczegółowo

Maszyny wektorów podpierajacych w regresji rangowej

Maszyny wektorów podpierajacych w regresji rangowej Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R Z = (X, Y ), Z = (X, Y ) - niezależne

Bardziej szczegółowo

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! HAPPY ANIMALS RW08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K M M ZM ZW G 0 szt. / pcs W szt. / pcs B szt. / pcs szt. / pcs W U 8 szt. / pcs 4 szt. / pcs U N szt. / pcs Ø3 x szt. /

Bardziej szczegółowo

HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1

HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1 HAPPY K0 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS W Akcesoria / Fittings W W G K szt. / pcs M Ø Ø 0 Ø, Ø Ø. 0 ø8 M 8 szt. / pcs 0 szt. / pcs szt. / pcs T U U szt. / pcs szt. / pcs szt. / pcs S TZ szt.

Bardziej szczegółowo

reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley

reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study of how to use

Bardziej szczegółowo