TTIC 31190: Natural Language Processing
|
|
- Mateusz Makowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 TTIC 31190: Natural Language Processing Kevin Gimpel Spring 2018 Lecture 17: Machine TranslaDon; SemanDcs
2 Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language modeling and word embeddings recurrent/recursive/convoludonal networks in NLP sequence labeling, HMMs, dynamic programming syntax and syntacdc parsing machine transladon semandcs 2
3 3
4 Google s NMT System 4
5 Google s NMT System 5
6 Google s NMT System they use a procedure that determinis1cally segments any character sequence into wordpieces vocab: 8k- 32k wordpieces they first learn a wordpiece model 6
7 Google s NMT System 7
8 8
9 9
10 Noisy Channel Model from Noah Smith
11 <latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u /fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> <latexit sha1_base64="hzphb84eohhsi2oxga9qnsqx7tu=">aaa0t3icnvt7c9y2ezf7tnvx0v7zf9hkmtqxpoocp03b8uwu27u7cvtvj7xewqosob4kkqab8hrnhv0o/v79nt0feecsacu5mrffal9dlba7i8vduzkxqq4o/nfrbz/80y9/8tp3frb581/88le/fv+d33wpesvi+irmgrdfr0tsjbx0lwiqo1+xgpi8yuhx0cvdbp9qtovkvhipliu9zulascmliykqs/f/u1nk5estvwufz3izz0ixufp2jl2ub7+50wqpgjtm6ftdjkzv3gqq7wahrpkz+vzbphldhxl0lpczghqbjvgk6lmzxr49o199h4klm3vnc+f4djinsaoxtzizjdcfzxnnc/w1gra8qpkiis2z97co9g/0t+b+tnqpry325/jsg49uhqmpq5wwks6ilcetg1kd1kqofmcuefeslis+ick9gc+c5fse1lqrtbadnukw5ql+fsrqtx2kmurslvmikdlrm2m3yawv7ars009oa1aulajfbdqavlmgeiczeirmwnizjxyqwdcqnyc5ecrwmhebg25kkshcfxwwlfrrhyp5xg5ru0hkgysxw9q8yhqt/hjyg/m5k1lfi2h1nae+vaggtrtmhwqiqmuzbi7kvfq1ysvamow6yirm7c39cddyc8bvfe8hlydoljiroqvbdcqqgzhbrnulpyumhko754kczuenpqlqlg/rzbvnwwqpfid8ucw4qsuogsfownjyi03ajrkuw/zm8nvw0cor00sil2aqooiycta9mnoijyisrhwqym4yq5uywk5ipwzclckruwlmcmqriiqyrzkypexc0aheuhwypstlpwpvh2ctgtkuoh5qr1tljnyfhy9apqj/hjtoipssfnmqpuchqtvpk28qjmdnhuy0zuwtjxcdqqrhcbfqakyzbxoa1ageolo29qhnm36djrhkcfhmfbd/sd0kcscnajpobtcqjini4yjsqoecjnli1mzqcyb35atqwosyxw8yt3myoa1d4zowdxwuvrrhnq2mcoktygss7o19fvzktnxgmktb5dtyotp8ceoiqwqfyq+fb5vwsatm+vbji6uztzneffv0alrcefxo8dwosvf46poeazgntf34aid64okjfpzibg3m+gvcpyd5cqulm04ifyidx+3wxzskbr1ta+gb8fg0q63ox2/2/xmkoq23jg6rqiwje3q6ixt8klspeo3vwshmnwgtme9vbkhqqftb/llwmsigi1vx1tebcstzexopbgw1v5bitavz4jdffkrmwo4s3zwud8fjsjw6zhugbm9plpnfzhoadelmbeicede75hmyncnjhvulqqpnwyklic/qg6km2c6cudkrzgm+x9d3fqjqxa+yz0mswscyprl86+ggm1sw33ri40rgipxclne6bmpzcri6zqxdheggu8hz4ojw8ogzocqlfx9z1qymbculnwit+tibgys8brzqaxhw2zpmtfqrgctetv2e1whl9/yy+c5y3bmbiimhdgkvu9omksyzq2qixkmvikcriouqdonco0wl3l3rtzyrnmc1wwswcczk/i4ciruyrbz3c1unpxfifmfs383is8dudmdtxrkap7cxu8s7bhtbmtm6fmsllaxt4aypdnxlmkplnnumzzdyaoe3qr4+68yb307ropmzttubalnks+cads6mpsi+2n6abi+y9umvjp4dr0z7hdnzc1livkcmaln0562qlx0oowsvpowg5ux4iujatbq3m7ksoj5ysabekrlpogiubcicqc4r0w4dftzgdjtsgtlm9t0l9cbtepbttwz5tyeotusrx3krqa6oasbmt1iukwkoh6goijeaalfpbavajwywnxhqcrkwkzj8ybl7eqfwcdzlqqpp3foxrnh0qswuvjgw92loy4c8yglolayvtvmvjgzbjyribtd5syelgwizxzqvneoog9z7k/0jzr0kbldqq/8llzjoxdmax0agerftt1cm+wl/u9ziot/yjcwvdbymreaegbbhh64dw140gwqfq6g1lul4g5fnzsbgogunbj5fn5/7mifxbrnxjthzlguzfz6n9io1fi34yxy+dd2qpgvkuhnu5ey2gjbb1bny34owqr1ez8mozo4juqj0zbvapj5ya9wbtly2ua7ceru17/jnshsndojabyhzc1zgsq3yauyy+msfri+6hnbrtdpo8peoyhi2cbs1qqzz/1ewsl9pu+7rotjryg3xqmwyhnp4z6h77nnjv+hfrzp10xyxg9h/uw36lkzd1zqeurbwj9sykkwzvqsk2rdvfafwhszkcuchsy+u+bfxmd8fptj3urdpde4njm4+tzfbaw9b2deow3pb2l+dvnkhpdm+mcavuwzzgf/mycw8ojbgoencdsnswdnexkru2gsv64uvke7pzl93tgmur3najbpzwownhbdtukf7jd8bw6drgn80zoqh+7+roywghcobxwfkglet4qljdl6q18i8ybejw2gzy9yxmj92xmjwynvinrpgnstarvz0xmhcd/em/owoh3rb467og/zlcw/0w8cdclrdlz0rqn4d5aq3ck9ijvmfltelkbsmze+tg+s1njm20pxntmhrebugrgbsoe1hfo7o+hp87ggf22pcs4becqx3pd+dlcui02ngpewwumqheok/0zcpndej31qe4syunxqwqboqnfv3gnvn/ubrfyfabujaalye5poqkbaaci9lzr+xovdctgnntodnajtg0xudxc3x+q1yiebk3qmvwgjgr+ute5p7sgsqwlxihjxtjimejc6a4rgujmlujxsszbiwnxvdnazcmsxhxtaycsegzbiwegywryasxq+8evokkju9kpsqmbn1gk/16cvn8urc3y2ieiwweticqkwn0mkitjyxomqdpa7fw3o5ixhg+ylwro5jqnfor1dpjthrzfhsdvstktqvsrjyxkuk5vgsuqmsrho1vzkylerplyzvddk2cozhasbesczsfwdkjqb6tif1pwdnwhixwbm/hppl7gajaljrbeu8oh3sffcyyqgcz5nkyjdnxotsc4w99wuzcgkdxsf7pb4h7xtnoaghgujiw/clhvin0l3zpkgggjaigdr7iu+hun1w11yipybr2y281rdkv+erk1e0omg5mmh0pxu7krv0cwvniotf7velgf0u1f9sdnz8sjuxkfkpvvjm1wax1uxnukt3o4afe5kuvbuwc/yfbim7dizyo+wbqhoqaobqbghz9ojirs1ofbngcwpqekjreois6foubbrpgtfdcrguwmwyqmi6jqilyjg6im6jvvgtg1viiafvwewtf3prppobubjzaoo4j76zwuj3coi92fnwkhjl/vz12ik/tzjphevpku9s0pvc8jymxappbn7klxnwi3e4derhfudjz/xelbqzh/f7o4qi6hqzz6dljpusldkx3q7rk+zyjzjrgdfezd1zpq9kunsnd8o9mm+xu+mzo1t37xzn42e8mctvelsz7ckdu+lj8njhxgwbulvnxqvsqdy5wsqy+vhh8nnyvqmv3qnpgt6zjgbghwwfyqy9cezat5ooi5z6uxrmaneygflgxhxredlahedgqooqhlel7zqd89dh/ed7ya2+r1zkvvhw5kplmrchq/ckjvseetmiwjfe1xqpc4jp49jjgggfewjc+kzgbckcu1guvepat9kvurd2y1frs2wpx4ketjcvomiopehcc0lbwdaed+z2ybddoflptabtb2ds7t6klfh4rbwp9wpluduzbbc7lxm6mbt1snmmwng+idm+aae4jxvmu4jklscem7azaqwjtdxgikdds3raole59gkl3ka/kd6v7dzdwcedxudrfjce9d1rj1gj17loes14bgzrkd6bp/ti5glomeyktjyzwernyvh9vq9yrwzjs+yehyk9tp5f+pswhlzy00dymqmamx/ba9y2pudfcipbeft3zytaoyau8eggywv0iet3q3wx/m6wb29+uwxzapzatitso5afjtvx0cunjswlthuqytms1y8uyms6q/yznslnpm1nnwjnfsl8wbdsyh3bpiqbgp9a6oad+wx4mi9lgynlfewjcv4uslzkqmgkgejp0ver1vsj975tcfhccyo2voy65q2783eksk/zfvpez8fuz2nxvtubjntdl0xqddphic3w2s+0uez3zqunq/mie7j1k77jzoho4mx2vj7b/hvjhfeql4sqo/qbzqirliyxaj5k9sghfhyoev15/+m4bwl42qkel0roggcyxhqsiey1/yef69e6/qef+kmmfizmhcbcrmnsgdgkynfbsd/4x4xuxf30e2/jv8etz53v9bqzslf2w7e9alcmtloa6na7ffgkgv5rbnqmct6eztzoyrj3991rbzkqeh+xj025crxm82stowqwe/vdehhmetwgablx9yxy6gfqgtfzga82yumuc7azkofeuq/mfwz5bigdmlwrxsxrpa1ds4ib7rfsxg6fp3lcb4egarj3ohcjypqvzhlegqldwlrkkjmp7ywlib2yg+ulvjljhbii2ghlxd9r0d6f4dnkdti1bgvcrzsgfvoftog/snqsdnu6mkxf5yhv69iovpdiospq0ij2s+ziesnpb19vgdd5ttkujs9xsyqsbh+gg371yij+ccfnrxjuvg3m+psxquuagwvuguvuhjrdsj6kqj9e1pgdwpzzwsqxkqsqfwt/o932n4myeioguoz1+7upx7yfj5lqdzsna1gpemmlxtkak7bytd7u1q7gmrccrf0se+ch67obnkn47dtbnunyaijjuljoyz6biggow3n7wedd5azv3j7ecj5chthu7e+rybgm29/4rzmt+09k3i8v7+1pdvyn/76/9ekn7z/pvlfxu40/bnzemgz8zeptjacbxxuvnujbp7r14a2pbt2//9f7z/en92cg+onblc1vnwy/99/8h6itpg8=</latexit> <latexit sha1_base64="3ahrn4ufn5n9i409tvza2imd2fq=">aaa1l3icnvtbc922ezbdw6rekqyvnb6wldtksatqohwascbtklzrd+koii3nylhsgcqodytedidnyob9n33vd+kuwhniaqakrzo2codbxwkxu1hcfbqje3j//7+3bv/oxz/56c/e+fn6l375q1//5t33fvu1yese0pdhnut824aimrcmvprmjvtbglosbgn9jrh8io3ftckxlm+o5akgpymjmzzmizfqdf7erxors4rrx594wc7eipyqbh3rztk7q7zf36m9b17sj3qstwndttucyruel8r0vlp4mkrpkj+b3ijyxkfjxxvfqd2rv9g35xflb5+zeclvrg8dbfttgspqxvspizxdwntqsqxfx9ad+uri788ppj/wocxz82rzuntlnova6/cz13f8lm/knkdc99fdpp6yk7bq5fd6gnry36k7mbjdtaxvxhtf5vzdjf29ffxj2r+j5mnjrfk5on/vw1t+lidlsjmzjksik9f+iu8rwiulewqakwutshhjynocnxljqtitlkhu3hburn445/avk56q7vjujbvikqaatimcclmnk11tj6ucf3xasawojc1c3dg4tdyze2h1xsq4dd1zwacjoqnzpta1maqjtrne66ygcdhmlvegukk6l2gefv3amjniwsj5vzyte8l4puvxhvmuzbhms371oaw+zsb7trsmh3iiqcezbs7fwbi10qw9fubtmult9oz+sootooc3dpe8gqg68szksshvpaheii4xudmjnfoefxwnoafguufttokcpp06uqzjfpujxqnvvffcoml7wbmmheibi43ajpi4h/mzppemoqdgpzmifmaqooiqcta9mnosdoguthwysg4yqyxvw05iksc5x1dcdzjmeyixerkwuyvfqboiorg8opigeuikf2ay8sfae2qoqp2gxiexca2yhl5o8ad61kuhlamzmk1blawdqmqmt7wumzjulr/qmgwvmlymcwgewuraazgmfmxpuvlq6mhrv/s0rbsnimdgivczan/vvtkkytwf+mgyugf1srtjfbifxdvqgdfryep1nq7wjpranx9zxpgn46lprqevr10hpqekkpliqmaevo534m2mvn3dl46endbawhhjihhllochl04tyqinipnb800d/qmhwd98fgh09macqfdpr0zfffgphl+nklwpl6/pkwzpxfepd3uol59y4icxrtbaj1+e1xosfrbwwuoe0mdz4ljpv3hdwqa3tqb9dt6kdqju+fj13n98tsfvxshivryfyvxndxadx/kylmdyryssdzw/4tnohedzbts1lc8yjynsmfi1vs2zpreuzweuzi+h4ocl9i5ig19uuzayyqlnffdt3h0mi2vsk+1qsl03gsziar7rpe83irasglje0z/aob4yk6wqerp4nks4goyjekoqennfefckpaj151l114uazxuguyykohksa4rlkwch1dyweougd0uog1qlu1qpegxny4vomgumczzhjxmeeochbw+fequpkp/evjoyeqwsxqb1ymcfhpynibcvc4idr86znwlzbk4q1fubavhdd3vhfe/n7wxakzefhqyr3amhsbbmitiew6sse9bifkmihngunkjb7yzpg5vw6/okyx6bwrmyfrso2v3mkbo7qangjjgkcgcpb2fxglbbpfb4vodm8fz8z3hhbmmlplv7gjirbwcqnhxrvqocurviu8f07hgl5fam1cnn7tjg22rtnt9tttpdyiasfxywwbm2r8r7mxujzqhtfvzl4bojpwm/jttztjlrcmhkpyv2vgvi1oisondcihzstlgtgqttpds7e4us5ymfa0ckjogkhudzhewj5bihbtfqywjevypjka3p7hmg13glgg+jnuk7orgsxfbwlvmicnbmmzf/wqjyekd9aewzddfai0ndkqbambboxvodyzwisodpht1pw4bdsdhjqo7djrpujaupyqcwwrk4f9m8bmglbttig8gxburehh77yqnz7sovybbkqidjwkwyu9xx0gp3tdeiqywe7vzl9l+gatozcelds8halzfncuoux+wfd9pkh/oerawwfgxjposbsichtgpdxjsbbb9dobeuqxidku1oiezac41qvlg1x7iaixfuslef0dmwdtmxpov2i5uwdfhxa++hhkifowxtdkpyvy2gzxzulvap1za1g+ik38hemkfkpipspdjybauhet2uyxtkqlhio/yt/+x3b4vbhkgj0wuodvyqftsnsvj968kordfbbrvwm0k+egumwxzuowaivf4/yal2n03xhvplogq57qoowrjre28tdj8/e/ws/atrsyqalqyx6n+7qz3fnouagkaxxuorgxaysnaxwdit4pwiae7qmhtu3gfphdi39grmf4mufy4kiqzbqyte2udjxingtqv7znjyj0j5q5vkupdn2iegudkblrviyxymmumhgiwmozd9cjnw9rgxarumwvl1uttfxdxs6s50wmv1doheqw64ulednl13al9zo2adtb3wu9pa8xd/d3wubyrlzjmrjazwplu8tczbcxiamrm5ygrlllpzwkbmxg4y2qpsgtlt28j6wnping4yme0ujoefd/qhezzsiq7bhw97oxs+7jcd6jp2rkbqd5as3cg8isnmf0befenu0de/n3aqv3powe/xx5iirucshxoysis2h/gfpesr8iudfggocc8aoscvusv9bqvcqqxok1yifqnkbiiv3gcaorvzovhrkkdcgongazzvl5wmqx6wuq4eko1vebgn8zjhmk9fw3kcagdusyzsy6zyz3mtdm55ec5avxy8zcbz/xvxa1a8prl3aiqwivfztxfpcy9prjkll4yqs8kkxppred0fg4qkmcqbjquew+jmy7iglt2gxcaygkb2gkqew0knafbvrndrlvdgnlswuknyeykmtw7wtrq9odgeiku7u1scwuiaw1ci7kqydjhwmeaurkfulxgrljcxdjxfujpvffq12uro6snroppysrqoqlgsvejjbourlcqdspi3vdj1ojzkkqas3kmstppexlzm8ehn2ztjwkzujpqrvmfphlr0ba1y7aa4ywdqp8styea1kxphkc9ol3tpvozok8fapblyzzmhibtcyw9dwxpcmkbbya6pq0gzxbmoakickndufyeh/rgw1zwhqoygdaigza7md1godrgrkxeow2jtrlzrw4wt88dkkxpqyb0yjkrsuj1infq5gwzzxmlmqbkmlgiqf9uqaz7zgoku+drckzoyt5iqonxc1bkdwik5tplowosf8wkdfg07fswddg8ghajzq0inghl7rphwfjs+8pc40wsihheincpqlgstbzpg9ja59wpgzhhuzpxg+flpgv0wnteqk1fbkjleuldg5om/vmhtyu1y8invrzwt19lgpjo5wr7mksskczjurnpkxz8noekc66ms61lsmdzkky2ja57c/jqrzcet3ui2qin3hy09cxnrkiu5jn/zuub425t5bl1eszooejbttlixzec2wvqfvd5uap/rovdc3ms4upbrflpchu3y+ap762ged+obislx25p+twmyshedxz4mpg9q3vr3wkulmsnruobmxzichxerhxhhh0hz9jlvnnauzppqmu5amalanbrcxnjnpwuciizjn0eeyzy6ihuocnwils3ciaqgbbn1/vqog3wf2ch3modpjxyc2uos+u3bmrxiyrrbzhoreezsrxe4gjgulh0mihaxgcctbgswiczyi0wwtwj41vsl+8ju6cp6sijusxcfzqlkfbk1j5y7vijy79vjvtk+6rdbj/+xdrtn7uyc27dibt5eku1qvdwsbox6g8t25yrkjk290prxljvvsdyvmwfu4p75lqecrbdn9mxmqeiiew6r4lhxpooxqe0oxdosb6lfqo/xdu5g4jlb4km03xvc6u61w6hw61wwvmy8jrovsg/b034kcjllgcmijoqelntzmf895lyywtrg18w+dkv6zt1z/48n3ls0p4gkruibpj82v7hnc4cspvq08qjvmwmbd0a5xwczoq9rh6zfl/nf/3tthrz5btpmsv5qmreyj0lmngxdq5wsnjbme+wpoucwvj86hxgrrppnedqfgted3qicucvzyufijxufm7iaanxqqqio7bfgqz+w9cyskrsnyvurx9ii5xjtte9nl7qpnn5p2pdtfcd8mhuxxtxxmw/sny8lgxmdn1cnoltmpwuz7o3emjnrumbcqdmma3gg1366xta6a15ohogxmzctg/edz0zfa2u2w9umdt9irnkj+tive6oewpoqackci/qpzbfsq8fvknfhe/fdtpbgz8t7pc+gy5xhgku3hgjvdb9+rl7rup9+qiez6pkw5qolu6zrdekqgivnxv7tfhw6e/xtt7yn/wfpprew06tlwt6ab9x2atzsu84cqspt8eewcfox4amzyvlmdgy7jqvc3bevtulecnyjpztlondozzox5sje7tun6waw5xgaoilf1xfko56pk1zhyxzygmxjniodqqn3kmo1l2hlx0eckkkm1gjeia3v60vcb79g93lw/mnjatpxdmc4h7lruvz8vzbwfkzohkzvqel//capnemvhvwv5zvmppaqwuyrydwzfux9cz6tbppty6yiferdakffwht+u0dhymfpf5lv6xwpk1uaxhksxbzyvrrefp5cpmikbuhlcu0mz0kc0+g5lolqgudpcmmvh4zqlyg4qrwd6rfnutplrcseb+cao+c6o/t1h5jgmvcpkrvmhzafwzjomozatytsfbjt/nnrfkirbne0an7x1xhzcskoekdz2omvpc9yoza0+qsppk2ooru9ejjzhkydlzrgh6u6hjsheo3uwp6pcg+csti/7gce64oeqf1zo8bhbew6a94+qjq/nqmr5vdvmaygze/183c3ruafyngfx9/bg+3vjb7628znhzd/pvpo2h/w/rs2vtza+/vaz2tp147wxq6ft/53e/32+7d/d//39/9x/5/3n2ro7vsnzftrvz/7x/0fykp43q==</latexit> <latexit sha1_base64="pim2buniwj2/wyvvvvkikbweovg=">aaa0rxicnvtbc922ezz7tdvb0j72ha2kqrrlio7jpjlkpbpfvu1ohfw15dxesqosodyqedmanosz9lf0z/wv9km7am8hcycshm3yiobvf4vf7mjxuvaktmidg//e+8lpf/bzx/zynv+t//o3v/3d79997w9fi7zkix0v5knovw2ioanl6cvjzek/ltglazdqb4lrx9j+zzrywflsvc4kep6sognjfhijvzfv/mcrs4rrj596wc7eipyqbh3rzsw7qlzf79teiy/2ezqw24gu2htb5x3pf2v6wv09gtuxlz9azxg5rkcxrr1voj7vk+yby6vlt89zpje76yfb/psgsprxfsoitxcw9c66n+vzmqaur1++u3gwf6b+pptj1hxsrdu/j5fvfxjpj/kwtgkmw4qicty6kor5rbhkyulrdb8utcdhnynpgxxmjkxivflqq70tqim8cc7hxyy9vdulqegqxcinajksorfmg1a62s5kof7kvgjzuuqahbqjczl4mvdwlryicrh8soapenigsnowa5yeemzsvddnqrkysszvdawsdc7dpc36ttenxysf835twias8xzwrw3zkctimwf96nekfmtm9mspza/lrfkdmwyci7ewaqmz2i+m2mospuwnfx/xw3habxnuezmqdojnyjscbxocieecl6byrmmmcpvqtnnowz6d2pweoun7daimxiw2r4st3qviuutf9ofn6e5cwyonwi6soif5maqpjkehrqczihzgkjjokhewpzjala6iflycmkjumkml78poscknov9qwnc5zbgilxezmfmlrugzikervktymhlmir9nsvlbwhnkked9of4hfwmtshy+apgo+syros2jm5pnqzqmhapqpk+8lpmy1juf0jhllzpcdp8agg8ioabmewrmnkl8nxw0qksdmtbdbkuwyxh4thww/5hzctemjrw6qhtqn0srzidr2funbrizlqxev+ma70gj1pnxryzfmj76bhre+dp1ybqqickpjmrsaev4z97gynvb+/lk6xmjjrwxjii35hj8+plceozwcpifvtjuqzfwmpxno2ojszctrh3/7gzurbh15ohmvkl6fhvljzrl47o6ou6hvnpqiz/egefrpx4rvi9iwsbyyo0tqh/pgeom//j1cypenah0nfgo2qfs59hr/x/7ni6rjzhfqiwkwria7iwgv/jllc+wwglz73p+xkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4qnvjlfgupi5baxpc15f1hmllgntmejttzk6vknuyrtfp0ewihayjrxf0jdoqbsckqeqgb50mei2geodcectfdbhffuopaf15u910i0fwhsmdciprbsqa4fo/gojobft87ymos4ydvwprwqgtd2fiiomyzw8xhegoep97x4ehj515bcso/tdumpgqrizfone9ygshnaqhs5rzi4pexzjq0lajxcoqqukz8hu/2wvvbm+8mqjgrbyzkiu3uqyqlzhfpgmfsyqlojishbmm4v07rohex9i1n+pvlxtdty6wjmb4nh+w+po7z/druy0ccegsw1lezearyrr54pf9a83h7vrvysdvygunwvibozmgzcmddtk8qh1qt0tqxpbveqjm8sfx4etso+lzae83pla32ejgj6wuhbhcu7rhx3ubgahpati++on5+sjttt2rnzkkmgggzrhtrnrdmzfpqqudosnfcigl3qpc0nxrnz2krtxywyacilcsctbaom5apgvwipc0gkkym6hckoax1xqmd9dpuefbttczpryewtqseznieqq6oasbmt1guswkoh6aosyeaadfpoavakwywrxiqc7kgeen8ybd7aqtwcdzmxmhx2fgxqrh0qqwuvlgw93kahwb5yekugaxodvmnjvtbj0vibld5syylewizxyqvnekog1z7o/0rts0kblcqo/8ffzjohbmaxkmger1ptlci+gl/y9ziot/mcytkys0ykkwja2gpd20hhr1oagk+hkjjxvlxbiobnecmtbya1xy1ar5ynupi3gsvcqozlrtmlnwk7uyqlrrw0wbedz2qpnpk2hlu5xobdzvtqlzsm69hagbrsb+diwwclegv2xqwsqtwq/w6kzcpliwwxebtw/7z794kgzhqe6lxhbu4vct2gpkk+tafuyuug91qrtatfcqkgiyt3eynekv8f5af7g+arju0lnquctsvulikoibewui+eh70cv2rubmqmi6mmep/u0gdxttrmojaf8bqerswsrdwl1gye+kcigbo0jh07txn6yqyn/yg5ledffcucikswamexnrnscyp4e0l+85ywcdi+auvsrqql9onhrgymy0b4sscjjldbxosjjmxfqozvvax1wevjsffdb00xt3v7orodmdfbq6iremoulizazzdd2i/cztga7qd8lvawvfw/3dzlawezwstg4wm8kzvplpmwqlygpktowbksyyz2vpg5syognkkbbrzm9vi+ljtyj4ngjntlo6bnw76orm87iquwz8oe6mbpuyqg+o6daygag+qetwopcup5n9g3hrdbta3vzd2kfd6tlhp11+aoq1aricageilnofxpt3rk/cva3xljgnpgjrhfbkr/w6lxekstpncibajsgyil9xngjq1czrx65ja3bjjrgm2vdecjqseslquhintb3m4dfgyxzjpx055agia7rgm7gomcs95k3zuexguql18vgqgc/11dqdwvd57cg4kmirxrbxxqhgpauy5c5emklpjjmat0xndh4oejjnkgy6lhspibmo4hzu9hsxagbpg9hikhsncjqh21utq25vxyj5uslpdchciprco8luavaaxnoirg0vugsfcaftqio5egayr1jbglkyn1jv4ky53mq48x1cavx30ndrq6obj0tqaweq6japrkrxbsqalm5qkhuqsd1xsbai2spkmktypkraaxszwtpbitds7svis7oz0evth6ys69gwnwowcomlnud/llwbanssaysnpajd0376m6cvh2qqs2gwtisg7qmfvxvl6qppaw8goqunim12zdmpigpdq1h2bb/6xsnc8b6qgbgwcim2ezpdqqha4kysrdsno7ubc6lufrfpayisaugadgcsq0ridsdx6hyfmwctc5qgsjc4iqn/ukms+2xjpfpncxcmtsreyqqj13nw5hcccuuzyzlqlbfmcgxrtoxbmhxypibwi2unijyb5e0lx1hy0vvdwunfrcirxcdqj6prre22aypsqofckygyyvgacrvhzarldfjbrkitxwsoyxfc3yoajv75ou8lnwpip1uwce9fzyky6ocmezckrjamsbq56yswfpznphoupkuts0pnc5cmniqoe3p2uk83bld7inqiddx2npxctuziloyzf2vfaenubeqzdrlgtqbcw7bzyl2qnnsfubbw+bmqf6zlqwt5rofd20xyz3j1m2owqe+tohg/jgsepv9uafk8jmeoxg8c+jqypun1a91pfczlj0vkgzmc4gh8xqx14yr9ic/szvttqlmt6udluqdac2p20xmtyzavlaoigsz9hnss2oiibqhdccjutwigqog2zdf76pbt8n9jb9zjnascwhnvqevrtwtk8yskuqcx6exhgbk13uicyli4djohwmyharw4elias2itflrci+nb7jfvcbugqerio1esqn2ai5bqznsece1yooojb44hzpuq3wyf/sq60ze1mnnu3ygu+xpfnar3cem6mehve9uwesiznvdkuczy1b0g2r5sbbuke+t6ngkww5/tmtebcihmokejr16tqmahndl3alg+i30dvt3buyocswecjnn8bwurutcoovutcml5lpcazluhvwdn+jhi9zrgjiiakhczu8zcsvqywrja28twzj0orxlnp3p9za/euzwkgazfqgompzrvu0xygzckvjtzq+25c4b1qzvfbhs5r1chrd8t80f/bladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znz3ccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/i+8fha5fxiiump6vl3kcb7cfu+rq+y33ijtrjlouanvfoxjdcv8+bqrgfl7gdh1r3rgyzzxrdmkhwaysdo8nppt9hgd8sljup9ihoydso+48yoagdndriawe4bysgviv/mzulva0sfii1zyfe/leycffukhcx6ep+jmk09+nnyjuyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdiv3a9c925++om38t/iyefwcnq1tnhb863axojbespzqhw4ht7mik7/kjw1u1nenm5sp2sbu/v2ttajscf3hl/r6mchn0/gmin7u1c3pipblmcbgiz+w18oj3qmrnadj3fgaxapcw52bixcs6rvviqthwdxqkyyuit5hbs+rxdxvf2c3cvhi6dh1aavgybxd3pxoqz4qizhlzjqouyrgjl++ffsatibo7hdyhuztcehgo1wkqtnlcr7ezxb2ftblk1f+isg0ek/gin8z4golcoelisr1zlsvqo0iouku26xqjsi/sk5fsji3mkxfdpnxpa4ptelxbkhbmgf4yzfphqhx0jwuysg1w+bc3xkwfc8dsa1d8f1dw/qpisnyq4eiivmawa+tjdrdqybagnz/3c3+aejliqick5p1fyuq9pm40xq9y7mvacref7kqi1p9vltev6ddgp78ddnovg7x3taj1d1pwhc8dqpht1x5r4ek3b+3cg80bu9ulvmdobp2sp117y9j+e8hjyirprfn8ewgda/8y9mruafyngfxz/yhx3sj/71copzt5o/n3ln7u9rf1nbxhut/w3t87vnaydrr9bctf/d8+7t3hv/4qcpxz30h15o6e/untr/xov9piz/dws7ovw=</latexit> <latexit sha1_base64="wu5pkq/f1oibhpdr2sfc7aj8t44=">aaa0t3icnvt7c9y2ezf7tnvx0v7zf9hkmtqxpoocp03b8uwu27u7cvtvj7xewqosob4kkqab8hrnhv0o/v79nt0feecsacu5mrffal9dlba7i8vduzkxqq4o/nfrbz/80y9/8tp3frb581/88le/fv+d33wpesvi+irmgrdfr0tsjbx0lwiqo1+xgpi8yuhx0cvdbp9qtovkvhipliu9zulascmliykqs/f/u1nk5estvwufz3izz0ixufp2jl2ub7+50wqpgjtm6ftdjkzv3gqq7wahrpkz+vzbphldhxl0lpczghqbjvgk6lmzxr49o199h4klm3vnc+f4djinsaoxtzizjdcfzxnnc1w9gra8qpkiis2z97co9g/0t+b+tnqpry325/jsg49uhqmpq5wwks6ilcetg1kd1kqofmcuefeslis+ick9gc+c5fse1lqrtbadnukw5ql+fsrqtx2kmurslvmikdlrm2m3yawv7ars009oa1aulajfbdqavlmgeiczeirmwnizjxyqwdcqnyc5ecrwmhebg25kkshcfxwwlfrrhyp5xg5ru0hkgysxw9q8yhqt/hjyg/m5k1lfi2h1nae+vaggtrtmhwqiqmuzbi7kvfq1ysvamow6yirm7c39cddyc8bvfe8hlydoljiroqvbdcqqgzhbrnulpyumhko754kczuenpqlqlg/rzbvnwwqpfid8ucw4qsuogsfownjyi03ajrkuw/zm8nvw0cor00sil2aqooiycta9mnoijyisrhwqym4yq5uywk5ipwzclckruwlmcmqriiqyrzkypexc0aheuhwypstlpwpvh2ctgtkuoh5qr1tljnyfhy9apqj/hjtoipssfnmqpuchqtvpk28qjmdnhuy0zuwtjxcdqqrhcbfqakyzbxoa1ageolo29qhnm36djrhkcfhmfbd/sd0kcscnajpobtcqjini4yjsqoecjnli1mzqcyb35atqwosyxw8yt3myoa1d4zowdxwuvrrhnq2mcoktygss7o19fvzktnxgmktb5dtyotp8ceoiqwqfyq+fb5vwsatm+vbji6uztzneffv0alrcefxo8dwosvf46poeazgntf34aid64okjfpzibg3m+gvcpyd5cqulm04ifyidx+3wxzskbr1ta+gb8fg0q63ox2/2/xmkoq23jg6rqiwje3q6ixt8klspeo3vwshmnwgtme9vbkhqqftb/llwmsigi1vx1tebcstzexopbgw1v5bitavz4jdffkrmwo4s3zwud8fjsjw6zhugbm9plpnfzhoadelmbeicede75hmyncnjhvulqqpnwyklic/qg6km2c6cudkrzgm+x9d3fqjqxa+yz0mswscyprl86+ggm1sw33ri40rgipxclne6bmpzcri6zqxdheggu8hz4ojw8ogzocqlfx9z1qymbculnwit+tibgys8brzqaxhw2zpmtfqrgctetv2e1whl9/yy+c5y3bmbiimhdgkvu9omksyzq2qixkmvikcriouqdonco0wl3l3rtzyrnmc1wwswcczk/i4ciruyrbz3c1unpxfifmfs383is8dudmdtxrkap7cxu8s7bhtbmtm6fmsllaxt4aypdnxlmkplnnumzzdyaoe3qr4+68yb307ropmzttubalnks+cads6mpsi+2n6abi+y9umvjp4dr0z7hdnzc1livkcmaln0562qlx0oowsvpowg5ux4iujatbq3m7ksoj5ysabekrlpogiubcicqc4r0w4dftzgdjtsgtlm9t0l9cbtepbttwz5tyeotusrx3krqa6oasbmt1iukwkoh6goijeaalfpbavajwywnxhqcrkwkzj8ybl7eqfwcdzlqqpp3foxrnh0qswuvjgw92loy4c8yglolayvtvmvjgzbjyribtd5syelgwizxzqvneoog9z7k/0jzr0kbldqq/8llzjoxdmax0agerftt1cm+wl/u9ziot/yjcwvdbymreaegbbhh64dw140gwqfq6g1lul4g5fnzsbgogunbj5fn5/7mifxbrnxjthzlguzfz6n9io1fi34yxy+dd2qpgvkuhnu5ey2gjbb1bny34owqr1ez8mozo4juqj0zbvapj5ya9wbtly2ua7ceru17/jnshsndojabyhzc1zgsq3yauyy+msfri+6hnbrtdpo8peoyhi2cbs1qqzz/1ewsl9pu+7rotjryg3xqmwyhnp4z6h77nnjv+hfrzp10xyxg9h/uw36lkzd1zqeurbwj9sykkwzvqsk2rdvfafwhszkcuchsy+u+bfxmd8fptj3urdpde4njm4+tzfbaw9b2deow3pb2l+dvnkhpdm+mcavuwzzgf/mycw8ojbgoencdsnswdnexkru2gsv64uvke7pzl93tgmur3najbpzwownhbdtukf7jd8bw6drgn80zoqh+7+roywghcobxwfkglet4qljdl6q18i8ybejw2gzy9yxmj92xmjwynvinrpgnstarvz0xmhcd/em/owoh3rb467og/zlcw/0w8cdclrdlz0rqn4d5aq3ck9ijvmfltelkbsmze+tg+s1njm20pxntmhrebugrgbsoe1hfo7o+hp87ggf22pcs4becqx3pd+dlcui02ngpewwumqheok/0zcpndej31qe4syunxqwqboqnfv3gnvn/ubrfyfabujaalye5poqkbaaci9lzr+xovdctgnntodnajtg0xudxc3x+q1yiebk3qmvwgjgr+ute5p7sgsqwlxihjxtjimejc6a4rgujmlujxsszbiwnxvdnazcmsxhxtaycsegzbiwegywryasxq+8evokkju9kpsqmbn1gk/16cvn8urc3y2ieiwweticqkwn0mkitjyxomqdpa7fw3o5ixhg+ylwro5jqnfor1dpjthrzfhsdvstktqvsrjyxkuk5vgsuqmsrho1vzkylerplyzvddk2cozhasbesczsfwdkjqb6tif1pwdnwhixwbm/hppl7gajaljrbeu8oh3sffcyyqgcz5nkyjdnxotsc4w99wuzcgkdxsf7pb4h7xtnoaghgujiw/clhvin0l3zpkgggjaigdr7iu+hun1w11yipybr2y281rdkv+erk1e0omg5mmh0pxu7krv0cwvniotf7velgf0u1f9sdnz8sjuxkfkpvvjm1wax1uxnukt3o4afe5kuvbuwc/yfbim7dizyo+wbqhoqaobqbghz9ojirs1ofbngcwpqekjreois6foubbrpgtfdcrguwmwyqmi6jqilyjg6im6jvvgtg1viiafvwewtf3prppobubjzaoo4j76zwuj3coi92fnwkhjl/vz12ik/tzjphevpku9s0pvc8jymxappbn7klxnwi3e4derhfudjz/xelbqzh/f7o4qi6hqzz6dljpusldkx3q7rk+zyjzjrgdfezd1zpq9kunsnd8o9mm+xu+mzo1t37xzn42e8mctvelsz7ckdu+lj8njhxgwbulvnxqvsqdy5wsqy+vhh8nnyvqmv3qnpgt6zjgbghwwfyqy9cezat5ooi5z6uxrmaneygflgxhxredlahedgqooqhlel7zqd89dh/ed7ya2+r1zkvvhw5kplmrchq/ckjvseetmiwjfe1xqpc4jp49jjgggfewjc+kzgbckcu1guvepat9kvurd2y1frs2wpx4ketjcvomiopehcc0lbwdaed+z2ybddoflptabtb2ds7t6klfh4rbwp9wpluduzbbc7lxm6mbt1snmmwng+idm+aae4jxvmu4jklscem7azaqwjtdxgikdds3raole59gkl3ka/kd6v7dzdwcedxudrfjce9d1rj1gj17loes14bgzrkd6bp/ti5glomeyktjyzwernyvh9vq9yrwzjs+yehyk9tp5f+pswhlzy00dymqmamx/ba9y2pudfcipbeft3zytaoyau8eggywv0iet3q3wx/m6wb29+uwxzapzatitso5afjtvx0cunjswlthuqytms1y8uyms6q/yznslnpm1nnwjnfsl8wbdsyh3bpiqbgp9a6oad+wx4mi9lgynlfewjcv4uslzkqmgkgejp0ver1vsj975tcfhccyo2voy65q2783eksk/zfvpez8fuz2nxvtubjntdl0xqddphic3w2s+0uez3zqunq/mie7j1k77jzoho4mx2vj7b/hvjhfeql4sqo/qbzqirliyxaj5k9sghfhyoev15/+m4bwl42qkel0roggcyxhqsiey1/yef69e6/qef+kmmfizmhcbcrmnsgdgkynfbsd/4x4xuxf30e2/jv8etz53v9bqzslf2w7e9alcmtloa6na7ffgkgv5rbnqmct6eztzoyrj3991rbzkqeh+xj025crxm82stowqwe/vdehhmetwgablx9yxy6gfqgtfzga82yumuc7azkofeuq/mfwz5bigdmlwrxsxrpa1ds4ib7rfsxg6fp3lcb4egarj3ohcjypqvzhlegqldwlrkkjmp7ywlib2yg+ulvjljhbii2ghlxd9r0d6f4dnkdti1bgvcrzsgfvoftog/snqsdnu6mkxf5yhv69iovpdiospq0ij2s+ziesnpb19vgdd5ttkujs9xsyqsbh+gg371yij+ccfnrxjuvg3m+psxquuagwvuguvuhjrdsj6kqj9e1pgdwpzzwsqxkqsqfwt/o932n4myeioguoz1+7upx7yfj5lqdzsna1gpemmlxtkak7bytd7u1q7gmrccrf0se+ch67obnkn47dtbnunyaijjuljoyz6biggow3n7wedd5azv3j7ecj5chthu7e+rybgm29/4rzmt+09k3i8v7+1pdvyn/76/9ekn7z/pvlfxu40/bnzemgz8zeptjacbxxuvnujbp7r14a2pbt2//9f7z/en92cg+onblc1vnwy/99/8h25tpg4=</latexit> Noisy Channel Model for TranslaDng French (x) to English (y) from Noah Smith
12 Modeling for the Noisy Channel we need to model two probability distribudons: should favor fluent transladons should favor accurate/faithful transladons <latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u /fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> <latexit sha1_base64="pim2buniwj2/wyvvvvkikbweovg=">aaa0rxicnvtbc922ezz7tdvb0j72ha2kqrrlio7jpjlkpbpfvu1ohfw15dxesqosodyqedmanosz9lf0z/wv9km7am8hcycshm3yiobvf4vf7mjxuvaktmidg//e+8lpf/bzx/zynv+t//o3v/3d79997w9fi7zkix0v5knovw2ioanl6cvjzek/ltglazdqb4lrx9j+zzrywflsvc4kep6sognjfhijvzfv/mcrs4rrj596wc7eipyqbh3rzsw7qlzf79teiy/2ezqw24gu2htb5x3pf2v6wv09gtuxlz9azxg5rkcxrr1voj7vk+yby6vlt89zpje76yfb/psgsprxfsoitxcw9c66n+vzmqaur1++u3gwf6b+pptj1hxsrdu/j5fvfxjpj/kwtgkmw4qicty6kor5rbhkyulrdb8utcdhnynpgxxmjkxivflqq70tqim8cc7hxyy9vdulqegqxcinajksorfmg1a62s5kof7kvgjzuuqahbqjczl4mvdwlryicrh8soapenigsnowa5yeemzsvddnqrkysszvdawsdc7dpc36ttenxysf835twias8xzwrw3zkctimwf96nekfmtm9mspza/lrfkdmwyci7ewaqmz2i+m2mospuwnfx/xw3habxnuezmqdojnyjscbxocieecl6byrmmmcpvqtnnowz6d2pweoun7daimxiw2r4st3qviuutf9ofn6e5cwyonwi6soif5maqpjkehrqczihzgkjjokhewpzjala6iflycmkjumkml78poscknov9qwnc5zbgilxezmfmlrugzikervktymhlmir9nsvlbwhnkked9of4hfwmtshy+apgo+syros2jm5pnqzqmhapqpk+8lpmy1juf0jhllzpcdp8agg8ioabmewrmnkl8nxw0qksdmtbdbkuwyxh4thww/5hzctemjrw6qhtqn0srzidr2funbrizlqxev+ma70gj1pnxryzfmj76bhre+dp1ybqqickpjmrsaev4z97gynvb+/lk6xmjjrwxjii35hj8+plceozwcpifvtjuqzfwmpxno2ojszctrh3/7gzurbh15ohmvkl6fhvljzrl47o6ou6hvnpqiz/egefrpx4rvi9iwsbyyo0tqh/pgeom//j1cypenah0nfgo2qfs59hr/x/7ni6rjzhfqiwkwria7iwgv/jllc+wwglz73p+xkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4qnvjlfgupi5baxpc15f1hmllgntmejttzk6vknuyrtfp0ewihayjrxf0jdoqbsckqeqgb50mei2geodcectfdbhffuopaf15u910i0fwhsmdciprbsqa4fo/gojobft87ymos4ydvwprwqgtd2fiiomyzw8xhegoep97x4ehj515bcso/tdumpgqrizfone9ygshnaqhs5rzi4pexzjq0lajxcoqqukz8hu/2wvvbm+8mqjgrbyzkiu3uqyqlzhfpgmfsyqlojishbmm4v07rohex9i1n+pvlxtdty6wjmb4nh+w+po7z/druy0ccegsw1lezearyrr54pf9a83h7vrvysdvygunwvibozmgzcmddtk8qh1qt0tqxpbveqjm8sfx4etso+lzae83pla32ejgj6wuhbhcu7rhx3ubgahpati++on5+sjttt2rnzkkmgggzrhtrnrdmzfpqqudosnfcigl3qpc0nxrnz2krtxywyacilcsctbaom5apgvwipc0gkkym6hckoax1xqmd9dpuefbttczpryewtqseznieqq6oasbmt1guswkoh6aosyeaadfpoavakwywrxiqc7kgeen8ybd7aqtwcdzmxmhx2fgxqrh0qqwuvlgw93kahwb5yekugaxodvmnjvtbj0vibld5syylewizxyqvnekog1z7o/0rts0kblcqo/8ffzjohbmaxkmger1ptlci+gl/y9ziot/mcytkys0ykkwja2gpd20hhr1oagk+hkjjxvlxbiobnecmtbya1xy1ar5ynupi3gsvcqozlrtmlnwk7uyqlrrw0wbedz2qpnpk2hlu5xobdzvtqlzsm69hagbrsb+diwwclegv2xqwsqtwq/w6kzcpliwwxebtw/7z794kgzhqe6lxhbu4vct2gpkk+tafuyuug91qrtatfcqkgiyt3eynekv8f5af7g+arju0lnquctsvulikoibewui+eh70cv2rubmqmi6mmep/u0gdxttrmojaf8bqerswsrdwl1gye+kcigbo0jh07txn6yqyn/yg5ledffcucikswamexnrnscyp4e0l+85ywcdi+auvsrqql9onhrgymy0b4sscjjldbxosjjmxfqozvvax1wevjsffdb00xt3v7orodmdfbq6iremoulizazzdd2i/cztga7qd8lvawvfw/3dzlawezwstg4wm8kzvplpmwqlygpktowbksyyz2vpg5syognkkbbrzm9vi+ljtyj4ngjntlo6bnw76orm87iquwz8oe6mbpuyqg+o6daygag+qetwopcup5n9g3hrdbta3vzd2kfd6tlhp11+aoq1aricageilnofxpt3rk/cva3xljgnpgjrhfbkr/w6lxekstpncibajsgyil9xngjq1czrx65ja3bjjrgm2vdecjqseslquhintb3m4dfgyxzjpx055agia7rgm7gomcs95k3zuexguql18vgqgc/11dqdwvd57cg4kmirxrbxxqhgpauy5c5emklpjjmat0xndh4oejjnkgy6lhspibmo4hzu9hsxagbpg9hikhsncjqh21utq25vxyj5uslpdchciprco8luavaaxnoirg0vugsfcaftqio5egayr1jbglkyn1jv4ky53mq48x1cavx30ndrq6obj0tqaweq6japrkrxbsqalm5qkhuqsd1xsbai2spkmktypkraaxszwtpbitds7svis7oz0evth6ys69gwnwowcomlnud/llwbanssaysnpajd0376m6cvh2qqs2gwtisg7qmfvxvl6qppaw8goqunim12zdmpigpdq1h2bb/6xsnc8b6qgbgwcim2ezpdqqha4kysrdsno7ubc6lufrfpayisaugadgcsq0ridsdx6hyfmwctc5qgsjc4iqn/ukms+2xjpfpncxcmtsreyqqj13nw5hcccuuzyzlqlbfmcgxrtoxbmhxypibwi2unijyb5e0lx1hy0vvdwunfrcirxcdqj6prre22aypsqofckygyyvgacrvhzarldfjbrkitxwsoyxfc3yoajv75ou8lnwpip1uwce9fzyky6ocmezckrjamsbq56yswfpznphoupkuts0pnc5cmniqoe3p2uk83bld7inqiddx2npxctuziloyzf2vfaenubeqzdrlgtqbcw7bzyl2qnnsfubbw+bmqf6zlqwt5rofd20xyz3j1m2owqe+tohg/jgsepv9uafk8jmeoxg8c+jqypun1a91pfczlj0vkgzmc4gh8xqx14yr9ic/szvttqlmt6udluqdac2p20xmtyzavlaoigsz9hnss2oiibqhdccjutwigqog2zdf76pbt8n9jb9zjnascwhnvqevrtwtk8yskuqcx6exhgbk13uicyli4djohwmyharw4elias2itflrci+nb7jfvcbugqerio1esqn2ai5bqznsece1yooojb44hzpuq3wyf/sq60ze1mnnu3ygu+xpfnar3cem6mehve9uwesiznvdkuczy1b0g2r5sbbuke+t6ngkww5/tmtebcihmokejr16tqmahndl3alg+i30dvt3buyocswecjnn8bwurutcoovutcml5lpcazluhvwdn+jhi9zrgjiiakhczu8zcsvqywrja28twzj0orxlnp3p9za/euzwkgazfqgompzrvu0xygzckvjtzq+25c4b1qzvfbhs5r1chrd8t80f/bladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znz3ccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/i+8fha5fxiiump6vl3kcb7cfu+rq+y33ijtrjlouanvfoxjdcv8+bqrgfl7gdh1r3rgyzzxrdmkhwaysdo8nppt9hgd8sljup9ihoydso+48yoagdndriawe4bysgviv/mzulva0sfii1zyfe/leycffukhcx6ep+jmk09+nnyjuyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdiv3a9c925++om38t/iyefwcnq1tnhb863axojbespzqhw4ht7mik7/kjw1u1nenm5sp2sbu/v2ttajscf3hl/r6mchn0/gmin7u1c3pipblmcbgiz+w18oj3qmrnadj3fgaxapcw52bixcs6rvviqthwdxqkyyuit5hbs+rxdxvf2c3cvhi6dh1aavgybxd3pxoqz4qizhlzjqouyrgjl++ffsatibo7hdyhuztcehgo1wkqtnlcr7ezxb2ftblk1f+isg0ek/gin8z4golcoelisr1zlsvqo0iouku26xqjsi/sk5fsji3mkxfdpnxpa4ptelxbkhbmgf4yzfphqhx0jwuysg1w+bc3xkwfc8dsa1d8f1dw/qpisnyq4eiivmawa+tjdrdqybagnz/3c3+aejliqick5p1fyuq9pm40xq9y7mvacref7kqi1p9vltev6ddgp78ddnovg7x3taj1d1pwhc8dqpht1x5r4ek3b+3cg80bu9ulvmdobp2sp117y9j+e8hjyirprfn8ewgda/8y9mruafyngfxz/yhx3sj/71copzt5o/n3ln7u9rf1nbxhut/w3t87vnaydrr9bctf/d8+7t3hv/4qcpxz30h15o6e/untr/xov9piz/dws7ovw=</latexit>
13 <latexit sha1_base64="pim2buniwj2/wyvvvvkikbweovg=">aaa0rxicnvtbc922ezz7tdvb0j72ha2kqrrlio7jpjlkpbpfvu1ohfw15dxesqosodyqedmanosz9lf0z/wv9km7am8hcycshm3yiobvf4vf7mjxuvaktmidg//e+8lpf/bzx/zynv+t//o3v/3d79997w9fi7zkix0v5knovw2ioanl6cvjzek/ltglazdqb4lrx9j+zzrywflsvc4kep6sognjfhijvzfv/mcrs4rrj596wc7eipyqbh3rzsw7qlzf79teiy/2ezqw24gu2htb5x3pf2v6wv09gtuxlz9azxg5rkcxrr1voj7vk+yby6vlt89zpje76yfb/psgsprxfsoitxcw9c66n+vzmqaur1++u3gwf6b+pptj1hxsrdu/j5fvfxjpj/kwtgkmw4qicty6kor5rbhkyulrdb8utcdhnynpgxxmjkxivflqq70tqim8cc7hxyy9vdulqegqxcinajksorfmg1a62s5kof7kvgjzuuqahbqjczl4mvdwlryicrh8soapenigsnowa5yeemzsvddnqrkysszvdawsdc7dpc36ttenxysf835twias8xzwrw3zkctimwf96nekfmtm9mspza/lrfkdmwyci7ewaqmz2i+m2mospuwnfx/xw3habxnuezmqdojnyjscbxocieecl6byrmmmcpvqtnnowz6d2pweoun7daimxiw2r4st3qviuutf9ofn6e5cwyonwi6soif5maqpjkehrqczihzgkjjokhewpzjala6iflycmkjumkml78poscknov9qwnc5zbgilxezmfmlrugzikervktymhlmir9nsvlbwhnkked9of4hfwmtshy+apgo+syros2jm5pnqzqmhapqpk+8lpmy1juf0jhllzpcdp8agg8ioabmewrmnkl8nxw0qksdmtbdbkuwyxh4thww/5hzctemjrw6qhtqn0srzidr2funbrizlqxev+ma70gj1pnxryzfmj76bhre+dp1ybqqickpjmrsaev4z97gynvb+/lk6xmjjrwxjii35hj8+plceozwcpifvtjuqzfwmpxno2ojszctrh3/7gzurbh15ohmvkl6fhvljzrl47o6ou6hvnpqiz/egefrpx4rvi9iwsbyyo0tqh/pgeom//j1cypenah0nfgo2qfs59hr/x/7ni6rjzhfqiwkwria7iwgv/jllc+wwglz73p+xkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4qnvjlfgupi5baxpc15f1hmllgntmejttzk6vknuyrtfp0ewihayjrxf0jdoqbsckqeqgb50mei2geodcectfdbhffuopaf15u910i0fwhsmdciprbsqa4fo/gojobft87ymos4ydvwprwqgtd2fiiomyzw8xhegoep97x4ehj515bcso/tdumpgqrizfone9ygshnaqhs5rzi4pexzjq0lajxcoqqukz8hu/2wvvbm+8mqjgrbyzkiu3uqyqlzhfpgmfsyqlojishbmm4v07rohex9i1n+pvlxtdty6wjmb4nh+w+po7z/druy0ccegsw1lezearyrr54pf9a83h7vrvysdvygunwvibozmgzcmddtk8qh1qt0tqxpbveqjm8sfx4etso+lzae83pla32ejgj6wuhbhcu7rhx3ubgahpati++on5+sjttt2rnzkkmgggzrhtrnrdmzfpqqudosnfcigl3qpc0nxrnz2krtxywyacilcsctbaom5apgvwipc0gkkym6hckoax1xqmd9dpuefbttczpryewtqseznieqq6oasbmt1guswkoh6aosyeaadfpoavakwywrxiqc7kgeen8ybd7aqtwcdzmxmhx2fgxqrh0qqwuvlgw93kahwb5yekugaxodvmnjvtbj0vibld5syylewizxyqvnekog1z7o/0rts0kblcqo/8ffzjohbmaxkmger1ptlci+gl/y9ziot/mcytkys0ykkwja2gpd20hhr1oagk+hkjjxvlxbiobnecmtbya1xy1ar5ynupi3gsvcqozlrtmlnwk7uyqlrrw0wbedz2qpnpk2hlu5xobdzvtqlzsm69hagbrsb+diwwclegv2xqwsqtwq/w6kzcpliwwxebtw/7z794kgzhqe6lxhbu4vct2gpkk+tafuyuug91qrtatfcqkgiyt3eynekv8f5af7g+arju0lnquctsvulikoibewui+eh70cv2rubmqmi6mmep/u0gdxttrmojaf8bqerswsrdwl1gye+kcigbo0jh07txn6yqyn/yg5ledffcucikswamexnrnscyp4e0l+85ywcdi+auvsrqql9onhrgymy0b4sscjjldbxosjjmxfqozvvax1wevjsffdb00xt3v7orodmdfbq6iremoulizazzdd2i/cztga7qd8lvawvfw/3dzlawezwstg4wm8kzvplpmwqlygpktowbksyyz2vpg5syognkkbbrzm9vi+ljtyj4ngjntlo6bnw76orm87iquwz8oe6mbpuyqg+o6daygag+qetwopcup5n9g3hrdbta3vzd2kfd6tlhp11+aoq1aricageilnofxpt3rk/cva3xljgnpgjrhfbkr/w6lxekstpncibajsgyil9xngjq1czrx65ja3bjjrgm2vdecjqseslquhintb3m4dfgyxzjpx055agia7rgm7gomcs95k3zuexguql18vgqgc/11dqdwvd57cg4kmirxrbxxqhgpauy5c5emklpjjmat0xndh4oejjnkgy6lhspibmo4hzu9hsxagbpg9hikhsncjqh21utq25vxyj5uslpdchciprco8luavaaxnoirg0vugsfcaftqio5egayr1jbglkyn1jv4ky53mq48x1cavx30ndrq6obj0tqaweq6japrkrxbsqalm5qkhuqsd1xsbai2spkmktypkraaxszwtpbitds7svis7oz0evth6ys69gwnwowcomlnud/llwbanssaysnpajd0376m6cvh2qqs2gwtisg7qmfvxvl6qppaw8goqunim12zdmpigpdq1h2bb/6xsnc8b6qgbgwcim2ezpdqqha4kysrdsno7ubc6lufrfpayisaugadgcsq0ridsdx6hyfmwctc5qgsjc4iqn/ukms+2xjpfpncxcmtsreyqqj13nw5hcccuuzyzlqlbfmcgxrtoxbmhxypibwi2unijyb5e0lx1hy0vvdwunfrcirxcdqj6prre22aypsqofckygyyvgacrvhzarldfjbrkitxwsoyxfc3yoajv75ou8lnwpip1uwce9fzyky6ocmezckrjamsbq56yswfpznphoupkuts0pnc5cmniqoe3p2uk83bld7inqiddx2npxctuziloyzf2vfaenubeqzdrlgtqbcw7bzyl2qnnsfubbw+bmqf6zlqwt5rofd20xyz3j1m2owqe+tohg/jgsepv9uafk8jmeoxg8c+jqypun1a91pfczlj0vkgzmc4gh8xqx14yr9ic/szvttqlmt6udluqdac2p20xmtyzavlaoigsz9hnss2oiibqhdccjutwigqog2zdf76pbt8n9jb9zjnascwhnvqevrtwtk8yskuqcx6exhgbk13uicyli4djohwmyharw4elias2itflrci+nb7jfvcbugqerio1esqn2ai5bqznsece1yooojb44hzpuq3wyf/sq60ze1mnnu3ygu+xpfnar3cem6mehve9uwesiznvdkuczy1b0g2r5sbbuke+t6ngkww5/tmtebcihmokejr16tqmahndl3alg+i30dvt3buyocswecjnn8bwurutcoovutcml5lpcazluhvwdn+jhi9zrgjiiakhczu8zcsvqywrja28twzj0orxlnp3p9za/euzwkgazfqgompzrvu0xygzckvjtzq+25c4b1qzvfbhs5r1chrd8t80f/bladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znz3ccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/i+8fha5fxiiump6vl3kcb7cfu+rq+y33ijtrjlouanvfoxjdcv8+bqrgfl7gdh1r3rgyzzxrdmkhwaysdo8nppt9hgd8sljup9ihoydso+48yoagdndriawe4bysgviv/mzulva0sfii1zyfe/leycffukhcx6ep+jmk09+nnyjuyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdiv3a9c925++om38t/iyefwcnq1tnhb863axojbespzqhw4ht7mik7/kjw1u1nenm5sp2sbu/v2ttajscf3hl/r6mchn0/gmin7u1c3pipblmcbgiz+w18oj3qmrnadj3fgaxapcw52bixcs6rvviqthwdxqkyyuit5hbs+rxdxvf2c3cvhi6dh1aavgybxd3pxoqz4qizhlzjqouyrgjl++ffsatibo7hdyhuztcehgo1wkqtnlcr7ezxb2ftblk1f+isg0ek/gin8z4golcoelisr1zlsvqo0iouku26xqjsi/sk5fsji3mkxfdpnxpa4ptelxbkhbmgf4yzfphqhx0jwuysg1w+bc3xkwfc8dsa1d8f1dw/qpisnyq4eiivmawa+tjdrdqybagnz/3c3+aejliqick5p1fyuq9pm40xq9y7mvacref7kqi1p9vltev6ddgp78ddnovg7x3taj1d1pwhc8dqpht1x5r4ek3b+3cg80bu9ulvmdobp2sp117y9j+e8hjyirprfn8ewgda/8y9mruafyngfxz/yhx3sj/71copzt5o/n3ln7u9rf1nbxhut/w3t87vnaydrr9bctf/d8+7t3hv/4qcpxz30h15o6e/untr/xov9piz/dws7ovw=</latexit> <latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u /fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> Modeling for the Noisy Channel we need to model two probability distribudons: should favor fluent transladons should favor accurate/faithful transladons let s start with <latexit sha1_base64="pw8oji3ujegpi9vjlgbxuppo7ly=">aaa0ohicnvvrct22ezbtw6rekuzn2xk2kqzylkk6jpnmkvfmffu1o3euxzzzsshrqbkhbxjvbsbzmcp+7tp2ifoo3qv4dkkaloroxhybfltylhyxi4ucimfc7u//99zbp/v5l375q7d/vf6b3/7u /fivykof0ezgnof8+iiimlkppjzmj/b7glkrbqr8llh9g+3dtygxlsxo5kohzsukmjvlijfsdv/ofrswprp986mu5e4twqrl1rdfn7gw1/ep27d33yj+hy7kd6krdevte8xxrpufvxf1r/blye+gsiucvnna19x3us3qffx1+sfz2oysn8vb68by/pagsfvxtdt/lszinkf8/f2djf29f/xj2x6j52fhrfo7p3/3wlh/lyznstiyjeej0tf/is4pwycke1ut+kwhbwkss01p4zehkxvmlnfz7w1ateeocw79meqq2s1grvihfggayjxiizdasdlwdlnl8yvnfsqkunat1r+my8wtuofq9iheyflkadxjybrj6ohroqgmttn7rpiajtfkw94zsstqxyz4w/dqyk2lcwnm/ni0tyxg+69eg+zrlscyzfvu4bb5ljvu1foahcikpwrkgzsvyglxrde0wru0xsvp2mn6w46044lcm97wzcdrxjmrkweg8acqgjhdqoam0u4r9dac5p2dcqw1ogpyk/tprbmmwm6pfce9v8vyiyvvau/qgoa2rrmbhszzd/ezsu8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkoe7hoyixmuidjipkqkgwctqcj5reza8imu/m1n5yk0jmhsgflcvkiuevlkox7s4x33m1dcw0rnnpibkhg5vndmnxpvmtorkd2jmskpnlnp8apegevaapgkfc5puvpo6wttvpk3rbomimleifkba3/vibiuakxiohdq9qe+isobdkoyqhgkmwutwr6txghekbor8yylgbxhpfto6q3ztojanvzcufec19rryvfnvy+tt7n55/ois0caks0beg3i5onh2zgldoaxjd55u6jhiomz65ugr0dnrcajepl4afvfepty8glwqhp9f0ypn0riudo96qk8eweinmubqwo9fhnvtkhawgljjhndhc+c46t97vckgn00afqu+inao1hn4au/fpqfjamnkssqlgjcupjulwa98gcuxwk2erhc8p+lttoxncwu0tzxpmicjbdbytvutsz63lgvhlmspoelneyf3fbv8couclbflbei7mvlombkpy5tsv5ptuslsmk/zicz9ugmbkade9y7+bab1wfhhvynqwpmkwsuwt9abgosylok4iilfrt9fvndccnbcb7jrqikawbkmulxwcfdndysxdvkw5dhittcllsrbcla8ii5zxjdzed6y56l3dhdw4ilxkilyt201gynbymimwqc4vmdierocwzmhopjinfmtlkxgckfdfeev3/ddxng/evpba1bkziehf2k36ygsbboinmewqeqenjlfeijhncunana7s/rgjvz6vgky6wxwhezfhen2b7pf7e5qqrejdgkcworbwtwb7fyppj4vohm8pd9z3lbb2ilp1r4gtmtbmqpnxbsvkoduldlumt073ki5ven14ek7dvi2wnvnt5st9hcyi+sfb2xwru0r8d7mxmhzwlqpvzp6crw07tdkz85jjhobmax00z63tmxauelntkjrqoojd0kqtj10z2dikbv8sgaaijqknlqqkjuqkyfciqqtbipmjoh3jdml9cu7buhv3clg22hn0o5olgsxpjzlpiichnnmzj+wkjyeud9auwzdnnbi0nakgfymlfrxvodydsls+znh99mw4bbszliq47cjllvj6ymykkywlo7zna8b8ozfkteynoimtkzotx+vkn2u8pimsyyemo5vkjvfhqetdkd7i5pasnhuvub/cyownqknnlyedpry05ygrphf/se4kun/zbmwlcjamcszegbchh3ydgx70qqsfayfxrqk4g1gnjmbggktnkr5ytv84wqgxlnjxhvgz1s2zfz4fnqnvfo04ccnvb96ih3mlluzqmr1nho221g52gdew9qmopn+bxplbcmrkrl1ygmxribqdvmuuyglyymn2rf8s9+9fqzxoczerzk2cklw7dqksfw9c6mwxqe71vptjvlifdamw7ingibw+f8gc9jfnf13ac3pkos2k6bksurnvlxqffhk8dn6v6nmvtrdtgpu/3adootp1jufgs6m1sm2lgrhrs+xzcbeouuankax6dy5z9ijzw7sfcwvbikuxbrewintcym1z5omu8cbfvad5bbokpjxk5v0ic+1twxxztzbnssxorgzhw40wexylvsuzqzsyy8dkkycl9xl0hr3vboro9mbf9c5ibinoedixg7ydn2h/chtga3qdsafamvfw/3f1vewejarta4wmscbvvhymgcnyglktusaks2xzgzrgzkbo2bkk7bpzi9ti+tjtsn7pgbktrs4bn4y6ido8larugz/muynbviwqw6q68sxgqo9qepwo/cipjj/gxltdllb3/xe20fe6tlhpv1/ayq2areeamagldocxpf2rk/afw7whtkmpgvohffkrvs7lxijstpncifajcozilxwn2no1m7pxk9kanfjjbsn2frdcpqsesdqurqvtl/l4tbeyx7lph0f5qkialjhmrkpmco9503auexhuqd18vgsgcz118unwph69o6zkcaoxi+rjbuke0wzylm4zisctsyxnozo6/4yjctjva50lpuyfjcbwzws7desbsbqmllhipuyfmomsk8mgl6vvalzpilvhzkbedg9dycv1egfjffexf0iohimfglygkj0j8jgilsgmajkpawuxftxuylx4pmc0qzqo6/rvkdxt47w0crs0nvujzlkfuoywfyljolqkrypkq4ttvgsnjxktpw01fqytmkcr2ra3kncynvnpi+gok4n1kvna8bib8bjpop6ww4ba6pz0qhleua7phv2zurfodymlcaumwwj2ruke+vk0hpsbnpcdkgdqprpmnvqqxkehkbuczzwj4w95jlqntrgeabpdmw+i0k1w11zixayrms34lrfkmydb1ze0yac68aguzxg7usq0u8nnmsifjzhlwb0qvd9q1zz8+ngskfiz+zkmzs9xvqvreouzu0afsxlknfwwiyyfxikanuxyo6wewdhqmgeqmoezntdire2opgfh8enxkmgjeoggvgnxjto0wsjh8y5vwazw6ay4ztcz0rl6lkwivzzuqpwksgguguzt/z1rztkbskst6ku4py4zgyz1ckp9mbowsfjkhrz1wmr/jzksedyt5vcl5lo5czpauwc8otmp1xpdm7xbrdbhbzraoyjm4islmlh/m6oaslb3swz6ckknusfsgy3xboko7yjpirg9xft+1zpgrl2xsobso/mm+xuemlov91br/n4ga8msbna1vr7ssbuuhg89jexfydq1rrxklqqsy6wmmq+xhh8ufjtwav7qjqjz6yigxyh04escqeceddupouixm4ulrnanez6ppjctter2ucf40aobbeouqvtm63z14fd4pvqdr5hou87sedivpfqbw+w4rvlpghi1ovam2jrvcmfxhrx6tbbhisjbg51i7aeycfellk8rcc33i/zf3zdv9gtrafegvg0eywnykg54dy1qsf+3x73zfzrv906+y91og1uz+lcvhur8pgkbflr5zzwy9tbilyvj1qyaeqvpoyzrhldsnnzdhat98x3obusgj2nz2ycehkzciguj7omvy9bbxlo0mz5e/0ger+2cwcdlwwgh6x53hbwd68drrva54lxnemxma1eegoe9ioryyndgbexusrkoz6hyfv5tws1ti1vmx0civtkeub+xxu4d2loa0mlhajmf2yucjvmacvlqwjkud83ewlvghkodzj0xqmowx9c5ov+j6y8eppbzphjvdriimqehcxp2lqgkllpljknyln1zmgsfnqoi1zdnc/wdd4zbjq7ethxs+bcgpaa6wo2zqhu+nrsbrzyl8chfizrjvkikrqv93eppuxojaaynpoudr9pvj+w79v6gpk1n2kla65jxts7h0sc8zpvrk50tsx+fmbda71hmtd1wyrspxkg4gyv/xslbxtxvna40c8yivs34jvojiog1myhqxnsvpgm8hlyzv4mvd2w9chskguw9vpjlthxr8broo/3pgrt2oofle9wxkdhommwvm8j0arppvxcvdz1p/1utzlvm2hkfrz2tamaxcebc5ukvdr9knt36qefebv/e558bi2nv8uevtxfqu0zukwnnavuh9vhgyzi9g/cuzov5c3pzhzkfri7b19rk4gu8vbwkxodoptmyvhzzg/36oz0mjjyoedqxk/rc+vrz9qvrumxdmza4nhowc6ghhtjtzqxsoxjia7ivazqma+q1vf1iq63x7b7oxj66lda9dudmo5h7lqufv+vjbwbezqharvq0h8/supnemuh10t5jzmpjesw0upy9axfex+czyubftuyqqgf0hba6fcwhv8x6fg57olcsnqdi2wlsonytrllfqtkg9gvksuhjmqtffmh3eqpiwmapculeuoq/blu+ox9efolbde1yld9tjlxp4x1xemaxhmhxhdnv+5d0ijm6igywuwd5mmle13gekiwkl0pd5p/ospckilgmlbn77o6at5obvxvam56silnrs7uklafnpvn1xgntgcpc56dtfnfb/xgvdedjhsvnvrye1xuqtaj55cdzfnd0qo1a24h+lctxhfn2wcyzmpii+qq+x0vdinh8xv/agzk/omm/fht3b3r/t7om3sbn3/s/pnm22t/wnt/bxtttpaptc/xhq8drz1fc9f+d+u9w3++9zd77997fo/re99o6fu3gpr31no/9178h/jgm6y=</latexit> how do we compute the probability of an English sentence? language modeling is an important part of MT
14 Noisy Channel
15 Noisy Channel predicted transladon source sentence
16 Noisy Channel assumes we have the right model, and that we esdmate it perfectly
17 Noisy Channel assumes we have the right model, and that we esdmate it perfectly
18 Noisy Channel assumes we have the right model, and that we esdmate it perfectly extra parameters to tune, can tune to opdmize BLEU
19 Noisy Channel assumes we have the right model, and that we esdmate it perfectly extra parameters to tune, can tune to opdmize BLEU tuning
20 Noisy Channel à Linear Model? since we re not using idealized decoding rule anymore, why not add more feature funcdons? word count feature :
21 Noisy Channel à Linear Model? since we re not using idealized decoding rule anymore, why not add more feature funcdons? word count feature :
22 Noisy Channel à Linear Model? since we re not using idealized decoding rule anymore, why not add more feature funcdons? word count feature : reverse transladon model feature :
23 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦
24 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe
25 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score model score
26 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score African NaDonal Congress opposidon sancdons against Zimbabwe African sancdoning to Zimbabwe s opposing predicted transladon opposidon to sancdons against Zimbabwe African NaDonal Congress model score
27 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 BLEU score Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe learning moves transla1ons leb or right in this plot model score
28 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score ideal model model score
29 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score Where s the gold standard transla1on? model score
30 African National Congress opposition sanction Zimbabwe 非国大反对制裁津巴布韦 Gold standard: African NaDonal Congress opposes sancdons against Zimbabwe BLEU score Issue: gold standard transla1on is oben unreachable by the model Why? limited transla1on rules, free transla1ons, noisy data model score
31 Free TranslaDons Machine transla1on: Sharon's office said, leader of the main opposidon Labor Party has admifed defeat and congratulatory telephone calls to Sharon. Human- generated transla1on: According to a representadve of Sharon's office, the leader of the main opposidon Labor Party has admifed defeat and made the obligatory congratuladng telephone call to Sharon.
32 Free TranslaDons Even if gold standard transla1on was Machine reachable transla1on: by model, we might not Sharon's office said, leader of the main opposidon Labor Party has want admifed to defeat learn and from congratulatory it directly telephone calls to Sharon. Human- generated Applicable transla1on: to other tasks: According to a representadve of Sharon's office, the leader of the main opposidon summariza1on Labor Party has admifed defeat and made the obligatory congratuladng telephone call to Sharon. image cap1on genera1on
33 Loss FuncDons name loss where used cost ( 0-1 ) issue: gold standard transla1on is oben unreachable by the model intractable, but underlies direct error minimizadon perceptron hinge log perceptron algorithm (Rosenblaf, 1958) support vector machines, other large- margin algorithms logisdc regression, condidonal random fields, maximum entropy models 33
34 Loss FuncDons name loss where used cost ( 0-1 ) intractable, but it doesn t need to compute model score of gold standard! intractable, but underlies direct error minimizadon perceptron hinge log perceptron algorithm (Rosenblaf, 1958) support vector machines, other large- margin algorithms logisdc regression, condidonal random fields, maximum entropy models 34
35 MERT, Och (2003)
36 Minimum Error Rate Training (MERT) minimize the cost of the decoder output how bad are these transladons? e.g., negadve BLEU intractable in general how can we solve it? set of source sentences references decoder outputs
37 Minimum Error Rate Training (MERT) minimize the cost of the decoder output how bad are these transladons? e.g., negadve BLEU intractable in general how can we solve it? set of source sentences generate k- best lists of transladons, approximately references minimize cost decoder on k- best lists, outputs repeat with new parameters (pool k- best lists across iterates)
38 BLEU model score
39 BLEU each point is a transla1on for the same sentence Arabic- English, phrase- based model score
40 BLEU 10,000- best list, default Moses weights 1- best: 28 BLEU model score
41 BLEU same sentence, 10,000- best list aber MERT 1- best: 34 BLEU model score
42 BLEU another sentence, default Moses weights 1- best: 46 BLEU model score
43 BLEU same sentence, aber MERT 1- best: 62 BLEU model score
44 Why are there horizontal bands? BLEU model score
45 Why are there horizontal bands? BLEU latent deriva1ons, different transla1ons with same BLEU model score
46 Minimum Error Rate Training (MERT) What are some issues with this loss funcdon? DisconDnuous & non- convex opdmizadon relies on randomized search No regularizadon leads to overfinng As a result, MERT is only effecdve for very small models (<40 parameters)
47 Many researchers tried to improve MERT: Regulariza+on and Search for MERT (Cer et al., 2008) Random Restarts in MERT for MT (Moore & Quirk, 2008) Stabilizing MERT (Foster & Kuhn, 2009) Issues remain: Be;er Hypothesis Tes+ng for Sta+s+cal MT: Controlling for Op+mizer Instability (Clark et al., 2011) They suggest running MERT 3-5 Dmes due to its instability
48
49
50 Perceptron Loss BLEU score reference model score
51 Perceptron Loss BLEU score reference model predicdon model score
52 Perceptron Loss for MT? (Collins, 2002) BLEU score reference model predicdon model score
53 k- Best Perceptron for MT (Liang et al., 2006) BLEU score model predicdon model score
54 k- Best Perceptron for MT (Liang et al., 2006) BLEU score model predicdon model score
55 k- Best Perceptron for MT (Liang et al., 2006) BLEU score BLEU oracle on k- best list model predicdon model score
56 Ramp Loss MinimizaDon BLEU score model score
57 Ramp Loss MinimizaDon BLEU score model predicdon model score
58 Ramp Loss MinimizaDon BLEU score model predicdon fear transladon model score
59 Fear Ramp Loss (Do et al., 2008) BLEU score model predicdon fear transladon model score
60 Fear Ramp Loss (Do et al., 2008) BLEU score model predicdon gold standard fear transladon model score
61 Hope Ramp Loss (McAllester & Keshet, 2011; Liang et al., 2006) BLEU score model predicdon model score
62 Hope Ramp Loss (McAllester & Keshet, 2011; Liang et al., 2006) BLEU score hope transladon model predicdon model score
63 Hope- Fear Ramp Loss (Chiang et al., 2008; 2009; Cherry & Foster, 2012; Chiang, 2012) BLEU score hope transladon fear transladon model score
64 Hope- Fear Ramp Loss (Chiang et al., 2008; 2009; Cherry & Foster, 2012; Chiang, 2012) BLEU score hope transladon fear transladon model score
65 Experiments (Gimpel, 2012) averages over 8 test sets across 3 language pairs Moses Hiero (%BLEU) (%BLEU) MERT Fear Ramp (away from bad) Hope Ramp (toward good) Hope- Fear Ramp (toward good + away from bad)
66 Pairwise Ranking OpDmizaDon (Hopkins & May, 2011) BLEU score model score
67 Roadmap words, morphology, lexical semandcs text classificadon simple neural methods for NLP language modeling and word embeddings recurrent/recursive/convoludonal networks in NLP sequence labeling, HMMs, dynamic programming syntax and syntacdc parsing machine transladon semandcs 67
68 SemanDcs we talked a lot about lexical semandcs: word sense, WordNet, word embeddings/clusters how about semandcs beyond the word level?
69 ComposiDonal SemanDcs how should the meanings of words combine to create the meaning of something larger? there s currently a lot of work in producing vector representadons of sentences and documents simplest case: how should two word vectors be combined to create a vector for a bigram? lots of work in this area in the neural era, but earlier work began ~
70 EvaluaDng ComposiDonal SemanDcs compute similarity of two bigrams under your model, then compute correladon with human judgments: BigramSim BigramPara television programme tv set training programme educadon course bedroom window educadon officer (Mitchell and Lapata, 2010) 70
71 71
72 Bigram ComposiDon FuncDons 72
73 Bigram Similarity Results 73
74 Why does muldplicadon work? these vectors are built from co- occurrence counts (like in the first part of Assignment 1) so element- wise muldplicadon is like performing an AND operadon on context counts when using skip- gram word vectors (or other neural network- derived vectors), addidon oven works befer 74
75 75
76 Results SDS = simple distribudonal semandc NLM = neural language model 76
77 currently there is a lot of work on designing funcdonal architectures for bigram, phrase, and sentence similarity e.g., word averaging, recurrent neural networks, LSTMs, recursive neural networks, etc. our recent results find that, for sentence similarity, word averaging is a surprisingly strong baseline 77
78 on similar data to training data, LSTM does best 78
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
13. Statistical Alignment and Machine Translation
13. Statistical Alignment and Machine Translation MT najważniejsze zastosowanie NLP. Obecnie nie m dobrych systemów MT poza bardzo specyficznymi, np. tłumaczącymi prognozy pogody. Różne podejścia do MT:
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 7: Structured Prediction 1
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 7: Structured Prediction 1 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction (4 lectures)
Auditorium classes. Lectures
Faculty of: Mechanical and Robotics Field of study: Mechatronic with English as instruction language Study level: First-cycle studies Form and type of study: Full-time studies Annual: 2016/2017 Lecture
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Course type* German I BA C 90/120 WS/SS 8/9. German I BA C 30 WS 2. English I BA C 60/90 WS/SS 5/6. English I BA C 30 WS 2. German I BA L 30 WS 4
Department/ Institute: Department of Modern Languages/Institute of Applied Linguistics Applied linguistics assistant first cycle degree full time programme for students with prior knowledge of German Course
ń ę ń ę ń ę ń ę ę ę ę ę ź ń ź Ś ę Ł ń ę ę ń ę ń ę ę ę ę ę ę ź ę ę Ż ę ŚĆ ę Ż ń ń ę ń ę ę ę ę ę ź ę ę Ś Ś Ś Ś ź ę ń ę ę Ź ń Ś Ś ę ń ę ę ę ę ę ź ń ŚĆ Ś ń ń ń Ą ń ę ę ŚĆ ę Ż ę ń ę ę ę ę ę ź ń Ś Ś ź Ś Ł ę
OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 OSI Network Layer Network Fundamentals Rozdział 5 Version 4.0 2 Objectives Identify the role of the Network Layer, as it describes communication
Robotic Arm Assembly Manual
Robotic Arm Assembly Manual 1. List of materials 3D printed Parts: Part Quantity Arm 1 gear.stl 1 Arm 1 lower.stl 1 Arm 1 upper.stl 1 Arm 2.STL 1 Arm 3.STL 1 Base gear.stl 1 Base.STL 1 Grasper 1.STL 1
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN
Wstęp do głębokich sieci neuronowych Paweł Morawiecki IPI PAN Liczba projektów z głębokim uczeniem rośnie bardzo szybko liczba projektów w firmie Google 4000 3000 2000 1000 2012 2013 2014 2015 2016 2017
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Projekt: Mikro zaprogramowane na sukces!
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt: Mikro zaprogramowane na sukces! Opis autoryzowanych szkoleń Oracle planowanych do realizacji w ramach
Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader
2017-01-24 Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader Program CS27 Reader należy uruchomić przez wybór opcji CS27 i naciśnięcie przycisku START. Programme
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Mixed-integer Convex Representability
Mixed-integer Convex Representability Juan Pablo Vielma Massachuse=s Ins?tute of Technology Joint work with Miles Lubin and Ilias Zadik INFORMS Annual Mee?ng, Phoenix, AZ, November, 2018. Mixed-Integer
ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA
Przedszkole Nr 1 w Zabrzu ANKIETA ul. Reymonta 52 41-800 Zabrze tel./fax. 0048 32 271-27-34 p1zabrze@poczta.onet.pl http://jedyneczka.bnet.pl ŚWIAT BAJEK MOJEGO DZIECKA Drodzy Rodzice. W związku z realizacją
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller
MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,
NOTES ABOUT AUTHORS Walter Rothholz Remigiusz Król Michał Wendland Wojciech Torzewski Krzysztof Przybyszewski Piotr Urbański Wojciech Majka
NOTES ABOUT AUTHORS Walter Rothholz Professor of Szczecin University, Szczecin, Remigiusz Król Professor of Theology, parist-priest in Ciosaniec, Michał Wendland Doctor of Philosophy Adam Mickiewicz University
A DIFFERENT APPROACH WHERE YOU NEED TO NAVIGATE IN THE CURRENT STREAMS AND MOVEMENTS WHICH ARE EMBEDDED IN THE CULTURE AND THE SOCIETY
A DIFFERENT APPROACH WHERE YOU NEED TO NAVIGATE IN THE CURRENT STREAMS AND MOVEMENTS WHICH ARE EMBEDDED IN THE CULTURE AND THE SOCIETY ODMIENNE PODEJŚCIE JAK NAWIGOWAĆ W OBECNYCH NURTACH I RUCHACH, KTÓRE
Wymagania bezpieczeństwa dotyczące elektrycznych przyrządów pomiarowych, automatyki i urządzeń laboratoryjnych Część 1: Wymagania ogólne
POPRAWKA do POLSKIEJ NORMY ICS 19.080; 71.040.10 PN-EN 61010-1:2011/AC Wprowadza EN 61010-1:2010/A1:2019/AC:2019-04, IDT IEC 61010-1:2010/A1:2016/AC1:2019, IDT Wymagania bezpieczeństwa dotyczące elektrycznych
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO Internet Rzeczy w wyobraźni gracza komputerowego NAUKA PRZEZ ZABAWĘ Strategia nauczania: Planowe, Zorganizowane Lub zainicjowane przez nauczyciela
Planning and Cabling Networks
Planning and Cabling Networks Network Fundamentals Chapter 10 Version 4.0 1 Projektowanie okablowania i sieci Podstawy sieci Rozdział 10 Version 4.0 2 Objectives Identify the basic network media required
OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 OSI Transport Layer Network Fundamentals Rozdział 4 Version 4.0 2 Objectives Explain the role of Transport Layer protocols and services
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.
OSI Network Layer Network Fundamentals Chapter 5 1 Network Layer Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most common
Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech
Logistic Regression Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech Outline Review conditional probability and classification Linear parameterization and logistic function Gradient descent Other
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Cel szkolenia. Konspekt
Cel szkolenia About this CourseThis 5-day course provides administrators with the knowledge and skills needed to deploy and ma Windows 10 desktops, devices, and applications in an enterprise environment.
First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language
First-order logic. Usage Tautologies, using rst-order logic, relations to natural language A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
UMOWY WYPOŻYCZENIA KOMENTARZ
UMOWY WYPOŻYCZENIA KOMENTARZ Zaproponowany dla krajów Unii Europejskiej oraz dla wszystkich zainteresowanych stron wzór Umowy wypożyczenia między muzeami i instytucjami kultury opracowany został przez
g]bbvd`cyw>[ealyb^vwvvzo]^vwp`[[ab]cfwxyzy[v\]^]bvwvazovf
WXYZ[\X] TUVWXYZY[V\]^W_`ab\Yc]`bWUYdWeVVbW^`bcZY^cV\WefWcUVWg]bbVd`cYWhViYZc[VbcW`jWkVYlcUWc`W^ZVYcVWY c``lm]cw\vd]nbv\wc`wydd]dcwg]bbvd`cywy[ealyb^vwdvzo]^vdw]bwy\`ic]bnwcuvwp`[[ab]cfwxyzy[v\]^]bv g`
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)
Dolny Slask 1:300 000, mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition) Click here if your download doesn"t start automatically Dolny Slask 1:300 000, mapa turystyczno-samochodowa: Plan Wroclawia
Kształtując przyszłość, jakiej chcemy. refleksje z raportu podsumowującego Dekadę Edukacji dla Zrównoważonego Rozwoju ( ).
Kształtując przyszłość, jakiej chcemy refleksje z raportu podsumowującego Dekadę Edukacji dla Zrównoważonego Rozwoju (2005-2014). W jaki sposób pomóc ludziom wydobyć się z ubóstwa i znaleźć dobrą pracę,
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY!
Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY! Wszelkie prawa należą do: Wydawnictwo Zielona Sowa Sp. z o.o. Warszawa 2015 www.zielonasowa.pl Czasownik:
Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University
Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University Chunting Zhou Junxian He Di Wang, Xuezhe Ma, Daniel Spokoyny, Taylor Berg-Kirkpatrick
Programming with Invariants through Targeted Synthesis. John Sarracino
Programming with Invariants through Targeted Synthesis John Sarracino 1 Programming is Hard Programming is Hard Therac 25 1982 Programming is Hard Ariane 5 1996 Programming is Hard Maersk 2017 Programming
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
Model zaszumionego kanału
W X kanal Y W^ koder dekoder p(y x) Oryginalna praca Shannona polegała na poszukiwaniu takiego kodowania, które umożliwiało ustalenie nadmiarowości informacji w taki sposób, żeby na wyjściu można było
MONAA: a Tool for Timed Pattern Matching with Automata-Based Acceleration
https://github.com/maswag/monaa MONAA: a Tool for Timed Pattern Matching with Automata-Based Acceleration Masaki Waga 1, Ichiro Hasuo 1, and Kohei Suenaga 2 National Institute of Informatics 1 and Kyoto
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes.
Faculty of: Computer Science, Electronics and Telecommunications Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies Annual: 2014/2015 Lecture language:
Krok po kroku... (czyli jak stworzyć i wydrukować krzyżówkę)
- Program do tworzenia krzyżówek. - Krzyżówki mogą być przygotowywane w formie drukowanej lub elektronicznej. - Program jest bezpłatny, jeśli ćwiczenia przygotowywane za jego pomocą są udostępniane odbiorcą
Adult Education and Lifelong Learning
Adult Education and Lifelong Learning Adult Education Centers can provide a number of courses many of which are free to the learner. For information on the courses they provide visit www.lincolnshire.gov.uk/
What kind of. Data Scientist do you need?
What kind of Data Scientist do you need? About Me Agnieszka Zdebiak @AZdebiak Agnieszka.Zdebiak.com 15 years experience software designer data scientist Prokom Software Asseco Poland Unizeto Technologies
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
ALA MA KOTA PRESCHOOL URSYNÓW WARSAW POLAND
ALA MA KOTA PRESCHOOL URSYNÓW WARSAW POLAND Ala ma kota is a network of non-public education preschools which are entered into the register of non-public schools and institutions of the Capital City of
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
. Natural Language Processing. Jan Daciuk Department of Intelligent Interactive Systems ETI Faculty, Gdańsk University of Technology.
.. Natural Language Processing Jan Daciuk Department of Intelligent Interactive Systems ETI Faculty, Gdańsk University of Technology May 5, 2014 Jan Daciuk, DIIS, ETI, GUT Natural Language Processing 0.
Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav
Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum At train time, learn A :2 X! Y Supervised Clustering aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=
Compressing the information contained in the different indexes is crucial for performance when implementing an IR system
4.2 Compression Compressing the information contained in the different indexes is crucial for performance when implementing an IR system on current hardware it is typically much faster to read compressed
3. AT THE HOTEL W HOTELU. Adam is at the Garden Inn Hotel reception desk. He is checking-in.
3. AT THE HOTEL W HOTELU Adam is at the Garden Inn Hotel reception desk. He is checking-in. Let me see Can you spell It s Is that right? Actually, it was for a week! Let me check I m sorry. Here is the
KENDO. catalogue : FURNITURE : MARIDEX. Biały, połyskujący kolor frontów nadaje nowoczesny charakter wnętrzu.
KOLORYSTYKA: korpus: kasztan wenge COLOURING: carcass: chestnut venge Biały, połyskujący kolor frontów nadaje nowoczesny charakter wnętrzu. Glossy white fronts give modern character to your interior. kasztan
Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski)
Oxford PWN Polish English Dictionary (Wielki Slownik Polsko-angielski) PWN- Oxford Wielki s ownik polsko> angielski - PWN-Oxford Wielki s ownik polsko>angielski (Great Polish>English) The most comprehensive
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska
- Wstęp Dear Mr. President, Dear Mr. President, Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska Dear Sir, Dear Sir, Formalny, odbiorcą jest mężczyzna, którego nazwiska
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
Asistenční technologie pro podporu jedinců s dyslexií
Asistenční technologie pro podporu jedinců s dyslexií Kdo je Dr. Ian Smythe? www.dyslang.eu Dyslang Kdo je Dr. Ian Smythe? Visual Sound discrimination Phonological awareness Phonological memory Phonological
Procedure 2(b) (obvious errors in a number of language versions)
099469/EU XXIV. GP Eingelangt am 28/11/12 COUNCIL OF THE EUROPEAN UNION Brussels, 28 November 2012 Interinstitutional File: 2007/0098 (COD) 13038/1/12 REV 1 JUR 442 TRANS 264 CODEC 2005 LEGISLATIVE ACTS
Kierunek: Informatyka rev rev jrn Stacjonarny EN 1 / 6
Wydział Informatyki i Komunikacji Wizualnej Kierunek: Informatyka w języku angielskim studia pierwszego stopnia - inżynierskie tryb: stacjonarny rok rozpoczęcia 2018/2019 A. Moduły międzykierunkowe obligatoryjne
Admission to the first and only in the swietokrzyskie province Bilingual High School and European high School for the school year 2019/2020
Rekrutacja do pierwszego i jedynego w województwie świętokrzyskim Dwujęzycznego Liceum Ogólnokształcącego oraz Europejskiego Liceum Ogólnokształcącego na rok szkolny 2019/2020 Admission to the first and
No matter how much you have, it matters how much you need
CSR STRATEGY KANCELARIA FINANSOWA TRITUM GROUP SP. Z O.O. No matter how much you have, it matters how much you need Kancelaria Finansowa Tritum Group Sp. z o.o. was established in 2007 we build trust among
KLASA III MODUŁ 1. Unit 1
KLASA III MODUŁ 1 Unit 1 1. Znam nazwy kolorów i imiona bohaterów podręcznika. 2. Potrafię liczyć od 1 do 10. 3. Potrafię przeliterować swoje imię. 4. Potrafię zapisać poznane słownictwo. 5. Potrafię zadawać
Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk
Klaps za karę Wyniki badania dotyczącego postaw i stosowania kar fizycznych Joanna Włodarczyk joanna.wlodarczyk@fdds.pl Warszawa, 1.12.2017 Fundacja Dajemy Dzieciom Siłę, 2017 Informacje o badaniu Badanie
Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji
Systemy wbudowane Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Poziomy abstrakcji projektowania systemów HW/SW 12/17/2011 S.Deniziak:Systemy wbudowane 2 1 Model czasu 12/17/2011 S.Deniziak:Systemy
Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature
A Surname _ Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish Unit 1 PLSH1 General Certificate of Education Advanced Subsidiary Examination June 2014 Reading and
Lab. Efekt 1 - kolokwium wykładowe. Efekt 2, 3 i 4 - samodzielnie rozwiązywane ćwiczenia laboratoryjne.
Kod: 2 51 575 Liczba punktów ECTS: 2 Nazwa przedmiotu Technologie XML Nazwa w języku angielskim Język prowadzenia zajęć Poziom studiów Profil studiów Jednostka prowadząca Kierownik i realizatorzy polski
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
Wydział Informtyki i Nauki o Materiałach Kierunek Informatyka
Wydział Informtyki i Nauki o Materiałach Kierunek Informatyka studia drugiego stopnia studia stacjonarne od roku akademickiego 2015/2016 Załącznik 3 A GRUPA TREŚCI PODSTAWOWYCH - BASIC MODULES 1 0 0 RAZEM
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Zajęcia z języka angielskiego TELC Gimnazjum Scenariusz lekcji Prowadzący: Jarosław Gołębiewski Temat: Czas Present Perfect - wprowadzenie
Zajęcia z języka angielskiego TELC Gimnazjum Scenariusz lekcji Prowadzący: Jarosław Gołębiewski Temat: Czas Present Perfect - wprowadzenie I. Cele lekcji 1) Wiadomości Uczeń: wie, że czas present perfect
PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Section Mark Polish Unit 1 Reading and Writing General Certificate of Education Advanced Subsidiary
MODELOWANIE STANÓW CZYNNOŚCIOWYCH W JĘZYKU SIECI BAYESOWSKICH
Inżynieria Rolnicza 7(105)/2008 MODELOWANIE STANÓW CZYNNOŚCIOWYCH W JĘZYKU SIECI BAYESOWSKICH Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. Zastosowanie sieci bayesowskiej
Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Asking whether there are commission fees when you withdraw money in a certain country
- General Can I withdraw money in [country] without paying fees? Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Asking whether there are commission fees when you withdraw money in a certain
MATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Asking whether there are commission fees when you withdraw money in a certain country
- General Czy mogę podjąć gotówkę w [nazwa kraju] bez dodatkowych opłat? Can I withdraw money in [country] without paying fees? Asking whether there are commission fees when you withdraw money in a certain