Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales

Wielkość: px
Rozpocząć pokaz od strony:

Download "Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales"

Transkrypt

1

2 Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales

3 Rys Historyczny

4 Idealna(kiedyś) architektura Data Quality MDM

5 Enterprise Data Warehouse okazał się mitem Ma zawierać wszystkie istotne informacje Jedna wersja prawdy...cel (Niemal) nierealizowany Złożony i trudny w uzytkowaniu Powolny w modyfikacji Finalnie kolejny silos

6 Wciąż pozostają stare problemy Tempo rozszerzania hurtowni Systemy podbiurkowe Operational Data Store Wydajność!

7 Świat się skomplikował

8 Zalew danych 80% zettabytes ,000 petabytes

9 Nowe technologie Data Warehouse Appliance In-database analytics In-memory Real-time Hadoop

10 PureData Appliance Rewolucja w jakości pracy z hurtownią ü Dedykowane urządzenie ü Zintegrowana baza danych, serwer i macierz ü Standardowe interfejsy ü Niski koszt posiadania Prędkość: x szybsze niż tradycyjne systemy Prostota: Znikoma potrzeba administracji Skalowalność: Możliwość obsługi do Petabajtów Inteligencja: Superwydajna zaawansowana analityka 10

11 Architektura PureData System for Analytics AMPP Field Programmable Gate Array = procesor programowalny CPU FPGA Memory Złożona analityka CPU Memory FPGA Lekki Host (IBM xseries, Red Hat Linux) BI ETL CPU FPGA Dyski twarde Memory S-Blade Warstwa sieciowe PureData System for Analytics Appliance Ładowanie Aplikacje

12 Raczej niezwykła metoda akceleracji zapytań select DISTRICT, PRODUCTGRP, sum(nrx) from MTHLY_RX_TERR_DATA where MONTH = ' ' and MARKET = and SPECIALTY = 'GASTRO' FPGA CPU Slice of table MTHLY_RX_TERR_DATA (compressed) Dekompresja Projekcja kolumn Ograniczenie wierszy Złożone, Złączenia, Agregacje, itp. sum(nrx) select DISTRICT, PRODUCTGRP, sum(nrx) where MONTH = ' ' and MARKET = and SPECIALTY = 'GASTRO'

13 Zaawansowana analiza danych Analityka Data Warehouse Data Analytics Grid SQL ETL ETL Prognozy SQL ETL SQL C/C++, Java, Python, Fortran, Detekcje nadużyć

14 Zaawansowana analiza danych Analityka Data Warehouse Data Analytics Grid SQL ETL ETL Prognozy SQL ETL SQL SQL C/C++, Java, Python, Fortran, Detekcje nadużyć

15 NYSE Euronext usprawniła swoją hurtownię używając Netezzy Potrzeba Elastyczność Potrzeba skrócenia czasu dostępu do danych co zajmowało 26h Benefits Błyskawiczne przeszukiwanie 650TB danych; Łącznie ponad 1PB danych na Netezza Czas dostępu zredukowany z 26h do 2min Rozwiązanie działało w przeciągu kilku tygodni 15

16 In-memory In Memory Database Dojrzały produkt Architektura równoległa Ekstremalnie szybka Wydajna Kompresja Optymalizacja wykorzystania RAM Kolumnowy zapis wierszy Informix Warehouse Accelerator

17 Walmart analizuje sprzedaż towarów promocyjnych Potrzeba: Kierownicy sklepów potrzebowali analizować sprzedaż produktów promowanych Obecna baza nie nadążała z przetwarzaniem Zysk Zdolność reakcji na wahania sprzedaży produktów i skuteczność promocji Średnio mniej niż 10 sek. Na generacje raportu 500 współbieżnych użytkowników 1/10 ceny systemu konkurencyjnego 6-10 razy szybciej 17

18 NoSQL -> HiveQL + PIG -> SQL

19 Analiza w czasie rzeczywistym à Ciągły przypływ danych Filter / Sample à Ciągła analiza Transform Annotate Correlate Classify

20 Duży operator telefonii komórkowej z USA Środowisko do analizy CDR w czasie rzeczywistym Analizuje rozmowy, ruch data, smsy w celu wykrycia źle funkcjonujacych nadajników Wykorzystano Streams oraz IBM Netezza Zysk 90% oszczędności czasu ładowania i obróbki danych Ponad 90% oszczędności na dyskach Poprawa jakości sieci, zwiększone zadowolenie klientów, mniej rezygnacji

21 Dokąd zmierzamy

22 Wiele technologii w jednym rozwiązaniu IBM DB2 Analytics Accelerator OLTP Wynik OLAP Małe zapytanie Duże Trudne zapytanie

23 Logiczna hurtownia danych Real Time Scoring and Response Streaming Data IBM Streams Exploration/Discovery Unstructured Data Analytics Unstructured Data Shared Analytics Traditional and Non Traditional Sources, TBs to PBs Unstructured Data Queryable Archive IBM BigInsights Deep analytics and high scaleability reporting Structured Data Shared Analytics IBM Netezza TBs to PBs Structured Data 23

24 Problem dużych danych spowszednieje Logiczna hurtownia danych Hadoop jako samodzielna hurtownia danych Upowszechnienie metod używanych w big data Zaszywanie ich w nowo powstających produktach

25

Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej

Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej Tomasz Antonik Systems and Technology Group IBM Lab Services and Training Agenda Trendy w rozwoju systemów analitycznych

Bardziej szczegółowo

Rola infrastruktury w analityce

Rola infrastruktury w analityce Rola infrastruktury w analityce Agnieszka Borkowska Client Technical Architect Tomasz Antonik Consultant O czym będzie... Raport ze stanu świata ile mamy danych cyfrowych Infrastruktura i analityka co

Bardziej szczegółowo

Big Data MATERIAŁY DYDAKTYCZNE I SZKOLENIOWE NA STUDIA PODYPLOMOWE ORAZ NA SZKOLENIA DYSTRYBUOWANE SĄ BEZPŁATNIE. Agenda

Big Data MATERIAŁY DYDAKTYCZNE I SZKOLENIOWE NA STUDIA PODYPLOMOWE ORAZ NA SZKOLENIA DYSTRYBUOWANE SĄ BEZPŁATNIE. Agenda Big Data str. 1 Agenda 1. Co to jest Big Data? 2. Źródła Big Data 3. Model 3V 4. Typy Big Data 5. Big Data w biznesie 6. Platforma IBM Big Data 1 Co oznacza Big Data? Zbiór danych tak duży, że jego przetwarzanie

Bardziej szczegółowo

Jak wiedzieć więcej i szybciej - Analizy in-memory

Jak wiedzieć więcej i szybciej - Analizy in-memory Jak wiedzieć więcej i szybciej - Analizy in-memory Michał Grochowski Senior Consultant BI/DWH 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. 2 Copyright 2012, Oracle and/or its affiliates.

Bardziej szczegółowo

Baza danych in-memory. DB2 BLU od środka 2015-11-10. Artur Wrooski

Baza danych in-memory. DB2 BLU od środka 2015-11-10. Artur Wrooski TECHNOLOGIE ANALIZY DANYCH I CHMUROWE W ZASTOSOWANIACH BIZNESOWYCH Poznao, 30 września 2015 DB2 BLU od środka Artur Wrooski Baza danych in-memory Baza danych IN-MEMORY system zarządzania bazami danych,

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop. Piotr Borowik

SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop. Piotr Borowik SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop Piotr Borowik Wyzwania związane z Big Data Top Hurdles with Big data Source: Gartner (Sep 2014), Big Data Investment Grows

Bardziej szczegółowo

Rola analityki danych w transformacji cyfrowej firmy

Rola analityki danych w transformacji cyfrowej firmy Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych. Mariusz Rafało

Wprowadzenie do Hurtowni Danych. Mariusz Rafało Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data

Bardziej szczegółowo

BigData. Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015

BigData. Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015 BigData Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015 Platforma SAP HANA ETL ETL Cache SAP HANA (DRAM) Transact Analyze Accelerate Wybrane aspekty

Bardziej szczegółowo

Analityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017

Analityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017 Analityka danych w środowisku Hadoop Piotr Czarnas, 27 czerwca 2017 Hadoop i Business Intelligence - wyzwania 1 Ładowane danych do Hadoop-a jest trudne 2 Niewielu specjalistów dostępnych na rynku Dostęp

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Data Camp Architektura Data Lake Repozytorium służące składowaniu i przetwarzaniu danych o

Bardziej szczegółowo

Nowe podejście do składowania danych

Nowe podejście do składowania danych Nowe podejście do składowania danych Platforma dla danych transakcyjnych i analitycznych wykorzystująca składowanie kolumnowe w pamięci Hasso Plattner Oddzielne systemy transakcyjne + analityka + akceleracja

Bardziej szczegółowo

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna&

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& Artur Wroński" Priorytety rozwoju technologii Big Data& Analiza większych zbiorów danych, szybciej& Łatwość użycia& Wsparcie

Bardziej szczegółowo

Analityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017

Analityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017 Analityka danych w środowisku Hadoop Piotr Czarnas, 5 czerwca 2017 Pytania stawiane przez biznes 1 Jaka jest aktualnie sytuacja w firmie? 2 Na czym jeszcze możemy zarobić? Które procesy możemy usprawnić?

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych

Wprowadzenie do Hurtowni Danych Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia

Bardziej szczegółowo

BigData & Cloud Wprowadzenie

BigData & Cloud Wprowadzenie BigData & Cloud Wprowadzenie Poznań 29-30 wrzesień 2015 IBM Corporation Agenda Dane, dużo danych Przykłady Wyzwania i ogranicznia technologiczne Wbudowana ekspertyza Podsumowanie 2 Dane jako na nowo odkrywany

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Nowoczesne bazy danych, czyli przetwarzanie in-memory

Nowoczesne bazy danych, czyli przetwarzanie in-memory Nowoczesne bazy danych, czyli przetwarzanie in-memory 1. Dlaczego przetwarzanie w pamięci? 2. Komercyjne bazy danych in-memory 3. Zwykła baza danych, a baza w pamięci różnice 4. Wymiarowanie sprzętu 5.

Bardziej szczegółowo

BIG DATA DLA KAŻDEGO. Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard

BIG DATA DLA KAŻDEGO. Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard BIG DATA DLA KAŻDEGO Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard DANE, WSZĘDZIE DANE Masowy przyrost różnego typu danych Rodzaje danych Przyspieszenie Użytkownicy

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

Szkolenie: Jak mieć więcej czasu na wyciąganie wniosków

Szkolenie: Jak mieć więcej czasu na wyciąganie wniosków Szkolenie: Jak mieć więcej czasu na wyciąganie wniosków 14 listopada 2018 r 8:45-12:45 Warszawa https://alterdata.evenea.pl "Dzisiaj praca analityka składa się w 15% z analizowania. Cała reszta czynności

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect Samodzielny Business Intelligence in memory duże i małe Paweł Gajda Business Solution Architect Agenda 1. Zapytania biznesowe 2. SAP Visual Intelligence 3. Szybkość 4. Zaangażowanie 5. Samoobsługa 6. Kreatywność

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych

Wprowadzenie do Hurtowni Danych Wprowadzenie do Hurtowni Danych Organizacyjnie Prowadzący: mgr. Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło HD2) Literatura 1. Inmon, W., Linstedt, D. (2014). Data Architecture: A

Bardziej szczegółowo

Analityka danych & big data

Analityka danych & big data TomaszJangas.com Analityka danych & big data 15 października 2017 W tym artykule opiszę architekturę, jaka często wykorzystywana jest dzisiaj w środowiskach do analityki danych w wielu różnych organizacjach

Bardziej szczegółowo

BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej. Grzegorz Oleś Big Data Sales Executive

BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej. Grzegorz Oleś Big Data Sales Executive BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej Grzegorz Oleś Big Data Sales Executive Big Data??? wielu o tym pisze Big Data??? wielu o tym mówi Zasadnicze pytania O co chodzi

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

Digitize Your Business

Digitize Your Business Digitize Your Business Aspekty technologiczne migracji na SAP HANA Prelegenci Błażej Trojan Konsultant technologiczny SAP Basis SI-Consulting Jakub Roguski - Territory Sales Leader Enterprise Systems -

Bardziej szczegółowo

PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect

PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect Wbudowana wiedza specjalistyczna Dopasowane do zadania Optymalizacja do aplikacji transakcyjnych Inteligentne Wzorce

Bardziej szczegółowo

Szybkość instynktu i rozsądek rozumu$

Szybkość instynktu i rozsądek rozumu$ Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych. Mariusz Rafało

Wprowadzenie do Hurtowni Danych. Mariusz Rafało Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,

Bardziej szczegółowo

Hurtownie danych. 31 stycznia 2017

Hurtownie danych. 31 stycznia 2017 31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny

Bardziej szczegółowo

Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems. Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant

Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems. Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant Agenda Co z tymi danymi? Krótko o sposobach na efektywne gromadzenie, przechowywanie

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja

Bardziej szczegółowo

Przyszłość w rękach Big Data -wizje i technologie dziś. Artur Wroński Information Management Technical Team Leader

Przyszłość w rękach Big Data -wizje i technologie dziś. Artur Wroński Information Management Technical Team Leader Przyszłość w rękach Big Data -wizje i technologie dziś Artur Wroński Information Management Technical Team Leader 2 Co 3hinstalacja nowej turbiny 1 turbina to kilka milionów $ Dotychczas Vestas zainstalował

Bardziej szczegółowo

Architecture Best Practices for Big Data Deployments

Architecture Best Practices for Big Data Deployments GLOBAL SPONSORS Architecture Best Practices for Big Data Deployments Kajetan Mroczek Systems Engineer GLOBAL SPONSORS Rozwój analityki biznesowej EKSPLORACJA DANYCH UCZENIE MASZYNOWE SZTUCZNA INTELIGENCJA

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie

Bardziej szczegółowo

Konsolidacja wysokowydajnych systemów IT. Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia

Konsolidacja wysokowydajnych systemów IT. Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia Konsolidacja wysokowydajnych systemów IT Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia Mirosław Pura Sławomir Rysak Senior IT Specialist Client Technical Architect Agenda Współczesne wyzwania:

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Welcome to the waitless world. Inteligentna infrastruktura systemów Power S812LC i S822LC

Welcome to the waitless world. Inteligentna infrastruktura systemów Power S812LC i S822LC Inteligentna infrastruktura systemów Power S812LC i S822LC Przedstawiamy nową linię serwerów dla Linux Clouds & Clasters IBM Power Systems LC Kluczowa wartość dla klienta Specyfikacje S822LC Technical

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Tematy projektów Edycja 2014

Tematy projektów Edycja 2014 Tematy projektów Edycja 2014 Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Reguły Projekty zespołowe max. 4

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Bazy danych Dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2016 Plan wykładu Wstęp do baz danych Modele baz danych Relacyjne bazy danych Język SQL Rodzaje

Bardziej szczegółowo

Hbase, Hive i BigSQL

Hbase, Hive i BigSQL Hbase, Hive i BigSQL str. 1 Agenda 1. NOSQL a HBase 2. Architektura HBase 3. Demo HBase 4. Po co Hive? 5. Apache Hive 6. Demo hive 7. BigSQL 1 HBase Jest to rozproszona trwała posortowana wielowymiarowa

Bardziej szczegółowo

Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence

Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika

Bardziej szczegółowo

Informatyka I BAZY DANYCH. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2017

Informatyka I BAZY DANYCH. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2017 Informatyka I BAZY DANYCH dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2017 Plan wykładu Definicja systemu baz danych Modele danych Relacyjne bazy danych Język SQL Hurtownie danych

Bardziej szczegółowo

Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski. Poznań, 30.09.2015

Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski. Poznań, 30.09.2015 Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski Poznań, 30.09.2015 Plan Geneza Architektura Cechy Instalacja Standard SQL Transakcje i współbieżność Indeksy Administracja Splice Machince vs.

Bardziej szczegółowo

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Agenda Serp24 NoSQL Integracja z CMS Drupal Przetwarzanie danych Podsumowanie Serp24 Darmowe narzędzie Ułatwia planowanie

Bardziej szczegółowo

Modelowanie Data Mining na wielką skalę z SAS Factory Miner. Paweł Plewka, SAS

Modelowanie Data Mining na wielką skalę z SAS Factory Miner. Paweł Plewka, SAS Modelowanie Data Mining na wielką skalę z SAS Factory Miner Paweł Plewka, SAS Wstęp SAS Factory Miner Nowe narzędzie do data mining - dostępne od połowy 2015 r. Aktualna wersja - 14.1 Interfejs webowy

Bardziej szczegółowo

Szkolenia SAS Cennik i kalendarz 2017

Szkolenia SAS Cennik i kalendarz 2017 Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) DANE W CZASIE RZECZYWISTYM 3 Tryb analizowania danych 4 Okno analizowania 5 Real-time: Checkpointing

Bardziej szczegółowo

Rozwiązanie Compuware Data Center - Real User Monitoring

Rozwiązanie Compuware Data Center - Real User Monitoring Rozwiązanie Compuware Data Center - Real User Monitoring COMPUWARE DATA CENTER REAL USER MONITORING... 3 2 COMPUWARE DATA CENTER REAL USER MONITORING Sercem narzędzia Compuware Data Center Real User Monitoring

Bardziej szczegółowo

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL Instalacja, konfiguracja Dr inŝ. Dziwiński Piotr Katedra InŜynierii Komputerowej Kontakt: piotr.dziwinski@kik.pcz.pl 2 Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management

Bardziej szczegółowo

AUREA BPM Oracle. TECNA Sp. z o.o. Strona 1 z 7

AUREA BPM Oracle. TECNA Sp. z o.o. Strona 1 z 7 AUREA BPM Oracle TECNA Sp. z o.o. Strona 1 z 7 ORACLE DATABASE System zarządzania bazą danych firmy Oracle jest jednym z najlepszych i najpopularniejszych rozwiązań tego typu na rynku. Oracle Database

Bardziej szczegółowo

Zapytania z ograniczeniem czasowym w Oracle

Zapytania z ograniczeniem czasowym w Oracle 22 stycznia 2009 Tytuł oryginalny Supporting Time-Constrained Queries in Oracle Ying Hu, Seema Sundara, Jagannathan Srinivasan Oracle New England Development Center VLDB 2007 Materiały żródłowe: referat,

Bardziej szczegółowo

Integracja danych ubezpieczeniowych w czasie rzeczywistym. Łukasz Szewczyk Solution Architect

Integracja danych ubezpieczeniowych w czasie rzeczywistym. Łukasz Szewczyk Solution Architect Integracja danych ubezpieczeniowych w czasie rzeczywistym Łukasz Szewczyk Solution Architect Dlaczego integrować dane w czasie rzeczywistym? W dość krótkim czasie większość danych jakie posiadamy staje

Bardziej szczegółowo

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Kod szkolenia: Tytuł szkolenia: HADOOP Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Dni: 5 Opis: Adresaci szkolenia: Szkolenie jest adresowane do programistów, architektów oraz

Bardziej szczegółowo

Tuning SQL Server dla serwerów WWW

Tuning SQL Server dla serwerów WWW Tuning SQL Server dla serwerów WWW Prowadzący: Cezary Ołtuszyk Zapraszamy do współpracy! Plan szkolenia I. Wprowadzenie do tematu II. Nawiązywanie połączenia z SQL Server III. Parametryzacja i przygotowanie

Bardziej szczegółowo

Hurtownie Danych i Business Intelligence: przegląd technologii

Hurtownie Danych i Business Intelligence: przegląd technologii Hurtownie Danych i Business Intelligence: przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Tematyka Architektury

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

Analityka i BigData w służbie cyberbezpieczeństa

Analityka i BigData w służbie cyberbezpieczeństa Date Venue Next generation SOC Analityka i BigData w służbie cyberbezpieczeństa Tomasz Rostkowski Architekt - IBM Analytics Zagrożenia cyberprzestępczości...złe wieści Ewolucja centrów operacji bezpieczeństwa

Bardziej szczegółowo

Trendy BI z perspektywy. marketingu internetowego

Trendy BI z perspektywy. marketingu internetowego Trendy BI z perspektywy marketingu internetowego BI CECHUJE ORGANIZACJE DOJRZAŁE ANALITYCZNIE 2 ALE JAKA JEST TA DOJRZAŁOŚĆ ANALITYCZNA ORGANIZACJI? 3 Jaka jest dojrzałość analityczna organizacji? Zarządzanie

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

Co to jest Baza Danych

Co to jest Baza Danych Co to jest Baza Danych Wielki, zintegrowany, zbiór r informacji Stanowi model świata rzeczywistego jednostki Entities (e.g., studenci ci, kursy, wykładowcy adowcy) relacje Relationships (e.g., Sławski

Bardziej szczegółowo

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

QlikView Business Intelligence, a system ERP SAP Użytkownicy systemów ERP firmy SAP przez wiele lat poszukiwali skutecznych i łatwych sposobów dotarcia do swych danych. Używali arkuszy kalkulacyjnych,

Bardziej szczegółowo

Współczesne systemy baz danych

Współczesne systemy baz danych Współczesne systemy baz danych dr hab. inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu Zakład Systemów Informatycznych i Mechatronicznych (SIMT) 2019 Prowadzący Dr hab. inż. Andrzej

Bardziej szczegółowo

Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości (II zajęcia) Jakub Jurdziak

Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości (II zajęcia) Jakub Jurdziak Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości 2013-12-05 (II zajęcia) Jakub Jurdziak CEL ZAJĘĆ: Prezentacja nowoczesnego banku uniwersalnego jako organizacji opartej

Bardziej szczegółowo

Odkryj Sekrety Efektywnego Business Intelligence

Odkryj Sekrety Efektywnego Business Intelligence Odkryj Sekrety Efektywnego Business Intelligence Analizy zarządcze i szybkie raportowanie ad-hoc w Sybase IQ Marek Ryński Dyrektor Zarządzający, Dział Rozwoju Biznesu, Sybase Polska Warszawa, 3 października

Bardziej szczegółowo

Tematy prac dyplomowych inżynierskich

Tematy prac dyplomowych inżynierskich inżynierskich Oferujemy możliwość realizowania poniższych tematów w ramach projektu realizowanego ze środków Narodowego Centrum Badań i Rozwoju. Najlepszym umożliwimy realizację pracy dyplomowej w połączeniu

Bardziej szczegółowo

Wydajność hurtowni danych opartej o Oracle10g Database

Wydajność hurtowni danych opartej o Oracle10g Database Wydajność hurtowni danych opartej o Oracle10g Database 123 Plan rozdziału 124 Transformacja gwiaździsta Rozpraszanie przestrzeni tabel Buforowanie tabel Różnicowanie wielkości bloków bazy danych Zarządzanie

Bardziej szczegółowo

JDBC w LoXiMie. Interfejs Java Database Connectivity dla systemu LoXiM. Adam Michalik 2008

JDBC w LoXiMie. Interfejs Java Database Connectivity dla systemu LoXiM. Adam Michalik 2008 JDBC w LoXiMie Interfejs Java Database Connectivity dla systemu LoXiM Adam Michalik 2008 Sterownik JDBC co to jest? Sterownik JDBC to zbiór klas implementujących interfejsy opisane w specyfikacji JDBC

Bardziej szczegółowo

Spis treści. O autorach... 12

Spis treści. O autorach... 12 Księgarnia PWN: Rick Greenwald, Robert Stackowiak, Jonathan Stern - Oracle Database 11g. To co najważniejsze Spis treści O autorach... 12 Wstęp... 13 Cele książki... 14 Czytelnicy książki... 15 O czwartym

Bardziej szczegółowo

Pierwsze wdrożenie SAP BW w firmie

Pierwsze wdrożenie SAP BW w firmie Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

DOKUMENTACJA BI SOW PFRON. Powykonawcza. dla BI INSIGHT S.A. UL. WŁADYSŁAWA JAGIEŁŁY 4 / U3, WARSZAWA. Strona 1 z 23

DOKUMENTACJA BI SOW PFRON. Powykonawcza. dla BI INSIGHT S.A. UL. WŁADYSŁAWA JAGIEŁŁY 4 / U3, WARSZAWA. Strona 1 z 23 DOKUMENTACJA Powykonawcza BI SOW dla PFRON BI INSIGHT S.A. UL. WŁADYSŁAWA JAGIEŁŁY 4 / U3, 02-495 WARSZAWA Strona 1 z 23 Spis treści 1 METRYKA DOKUMENTU... 4 1.1 Podstawowe informacje... 4 1.2 Historia

Bardziej szczegółowo

COMARCH DATA WAREHOUSE MANAGER 6.2

COMARCH DATA WAREHOUSE MANAGER 6.2 COMARCH DATA WAREHOUSE MANAGER 6.2 WSTĘP DO ZAGADNIENIA HURTOWNI DANYCH Gromadzenie danych biznesowych z systemów rozproszonych, oraz doprowadzenie do ich uwspólnienia, w celu przeprowadzenia analiz oraz

Bardziej szczegółowo

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi II Zimowa Akademia dla Partnerów Handlowych IBM Białka Tatrzańska 5-7.03.2014 Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi Renata Bilecka renata.bilecka@pl.ibm.com

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Asseco HOME: obniżenie kosztów operacyjnych telekomów dzięki rozwiązaniu Big Data.

Asseco HOME: obniżenie kosztów operacyjnych telekomów dzięki rozwiązaniu Big Data. Asseco HOME: obniżenie kosztów operacyjnych telekomów dzięki rozwiązaniu Big Data. asseco.pl Klient. Klient jest jednym z wiodących w Polsce operatorów telekomunikacyjnych, obsługujących ponad 10 mln abonentów.

Bardziej szczegółowo

Chmura Krajowa milowy krok w cyfryzacji polskiej gospodarki

Chmura Krajowa milowy krok w cyfryzacji polskiej gospodarki Chmura Krajowa milowy krok w cyfryzacji polskiej gospodarki 2018 Krótka historia chmury 65 mld USD 2010 219 mld USD 2016 411 mld USD 2020 2006 2008 2010 2011-12 2020 2 Usługi chmurowe w Polsce 50% 10%

Bardziej szczegółowo

One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb

One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb X Kongres Business Intelligence Warszawa, 17.03.2016 Joanna Łuczak Multi-Partnerski

Bardziej szczegółowo

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS WARSZTATY Grupa warsztatowa nr 1 System bilingowy operator telekomunikacyjny od środka Uczestnikom warsztatów zostanie przedstawiona specyfika działalności operatora telekomunikacyjnego ze szczególnym

Bardziej szczegółowo

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi#

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi# Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi# Renata Bilecka renata.bilecka@pl.ibm.com! Certified IT Specialist, Storage Consultant! Agenda! Krótko o sposobach

Bardziej szczegółowo

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K. HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model

Bardziej szczegółowo

PRZESTRZENNE BAZY DANYCH WYKŁAD 2

PRZESTRZENNE BAZY DANYCH WYKŁAD 2 PRZESTRZENNE BAZY DANYCH WYKŁAD 2 Baza danych to zbiór plików, które fizycznie przechowują dane oraz system, który nimi zarządza (DBMS, ang. Database Management System). Zadaniem DBMS jest prawidłowe przechowywanie

Bardziej szczegółowo

Ekspert MS SQL Server Oferta nr 00/08

Ekspert MS SQL Server Oferta nr 00/08 Ekspert MS SQL Server NAZWA STANOWISKA Ekspert Lokalizacja/ Jednostka organ.: Pion Informatyki, Biuro Hurtowni Danych i Aplikacji Wspierających, Zespół Jakości Oprogramowania i Utrzymania Aplikacji Szczecin,

Bardziej szczegółowo

Hadoop i Spark. Mariusz Rafało

Hadoop i Spark. Mariusz Rafało Hadoop i Spark Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl WPROWADZENIE DO EKOSYSTEMU APACHE HADOOP Czym jest Hadoop Platforma służąca przetwarzaniu rozproszonemu dużych zbiorów danych. Jest

Bardziej szczegółowo

Wprowadzenie do systemów baz danych. Wykład 1

Wprowadzenie do systemów baz danych. Wykład 1 Wprowadzenie do systemów baz danych Wykład 1 Informacja to przyrost wiedzy, który może być uzyskany na podstawie danych Dane to opis faktów, zapisane są najczęściej w formie symboli reprezentujących coś

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

Rozwiązania kognitywne to nie tylko software...

Rozwiązania kognitywne to nie tylko software... Rozwiązania kognitywne to nie tylko software... Piotr Beńke Dyrektor działu Rozwiązań Sprzętowych IBM Polska Watson Warsaw Summit 2017 Dane transformują branże jak i zawody DANE SŁUŻBY ZDROWIA DANE RZĄDOWE

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla

Bardziej szczegółowo

Hurtownie danych w praktyce

Hurtownie danych w praktyce Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence

Bardziej szczegółowo