Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales
|
|
- Łukasz Czerwiński
- 10 lat temu
- Przeglądów:
Transkrypt
1
2 Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales
3 Rys Historyczny
4 Idealna(kiedyś) architektura Data Quality MDM
5 Enterprise Data Warehouse okazał się mitem Ma zawierać wszystkie istotne informacje Jedna wersja prawdy...cel (Niemal) nierealizowany Złożony i trudny w uzytkowaniu Powolny w modyfikacji Finalnie kolejny silos
6 Wciąż pozostają stare problemy Tempo rozszerzania hurtowni Systemy podbiurkowe Operational Data Store Wydajność!
7 Świat się skomplikował
8 Zalew danych 80% zettabytes ,000 petabytes
9 Nowe technologie Data Warehouse Appliance In-database analytics In-memory Real-time Hadoop
10 PureData Appliance Rewolucja w jakości pracy z hurtownią ü Dedykowane urządzenie ü Zintegrowana baza danych, serwer i macierz ü Standardowe interfejsy ü Niski koszt posiadania Prędkość: x szybsze niż tradycyjne systemy Prostota: Znikoma potrzeba administracji Skalowalność: Możliwość obsługi do Petabajtów Inteligencja: Superwydajna zaawansowana analityka 10
11 Architektura PureData System for Analytics AMPP Field Programmable Gate Array = procesor programowalny CPU FPGA Memory Złożona analityka CPU Memory FPGA Lekki Host (IBM xseries, Red Hat Linux) BI ETL CPU FPGA Dyski twarde Memory S-Blade Warstwa sieciowe PureData System for Analytics Appliance Ładowanie Aplikacje
12 Raczej niezwykła metoda akceleracji zapytań select DISTRICT, PRODUCTGRP, sum(nrx) from MTHLY_RX_TERR_DATA where MONTH = ' ' and MARKET = and SPECIALTY = 'GASTRO' FPGA CPU Slice of table MTHLY_RX_TERR_DATA (compressed) Dekompresja Projekcja kolumn Ograniczenie wierszy Złożone, Złączenia, Agregacje, itp. sum(nrx) select DISTRICT, PRODUCTGRP, sum(nrx) where MONTH = ' ' and MARKET = and SPECIALTY = 'GASTRO'
13 Zaawansowana analiza danych Analityka Data Warehouse Data Analytics Grid SQL ETL ETL Prognozy SQL ETL SQL C/C++, Java, Python, Fortran, Detekcje nadużyć
14 Zaawansowana analiza danych Analityka Data Warehouse Data Analytics Grid SQL ETL ETL Prognozy SQL ETL SQL SQL C/C++, Java, Python, Fortran, Detekcje nadużyć
15 NYSE Euronext usprawniła swoją hurtownię używając Netezzy Potrzeba Elastyczność Potrzeba skrócenia czasu dostępu do danych co zajmowało 26h Benefits Błyskawiczne przeszukiwanie 650TB danych; Łącznie ponad 1PB danych na Netezza Czas dostępu zredukowany z 26h do 2min Rozwiązanie działało w przeciągu kilku tygodni 15
16 In-memory In Memory Database Dojrzały produkt Architektura równoległa Ekstremalnie szybka Wydajna Kompresja Optymalizacja wykorzystania RAM Kolumnowy zapis wierszy Informix Warehouse Accelerator
17 Walmart analizuje sprzedaż towarów promocyjnych Potrzeba: Kierownicy sklepów potrzebowali analizować sprzedaż produktów promowanych Obecna baza nie nadążała z przetwarzaniem Zysk Zdolność reakcji na wahania sprzedaży produktów i skuteczność promocji Średnio mniej niż 10 sek. Na generacje raportu 500 współbieżnych użytkowników 1/10 ceny systemu konkurencyjnego 6-10 razy szybciej 17
18 NoSQL -> HiveQL + PIG -> SQL
19 Analiza w czasie rzeczywistym à Ciągły przypływ danych Filter / Sample à Ciągła analiza Transform Annotate Correlate Classify
20 Duży operator telefonii komórkowej z USA Środowisko do analizy CDR w czasie rzeczywistym Analizuje rozmowy, ruch data, smsy w celu wykrycia źle funkcjonujacych nadajników Wykorzystano Streams oraz IBM Netezza Zysk 90% oszczędności czasu ładowania i obróbki danych Ponad 90% oszczędności na dyskach Poprawa jakości sieci, zwiększone zadowolenie klientów, mniej rezygnacji
21 Dokąd zmierzamy
22 Wiele technologii w jednym rozwiązaniu IBM DB2 Analytics Accelerator OLTP Wynik OLAP Małe zapytanie Duże Trudne zapytanie
23 Logiczna hurtownia danych Real Time Scoring and Response Streaming Data IBM Streams Exploration/Discovery Unstructured Data Analytics Unstructured Data Shared Analytics Traditional and Non Traditional Sources, TBs to PBs Unstructured Data Queryable Archive IBM BigInsights Deep analytics and high scaleability reporting Structured Data Shared Analytics IBM Netezza TBs to PBs Structured Data 23
24 Problem dużych danych spowszednieje Logiczna hurtownia danych Hadoop jako samodzielna hurtownia danych Upowszechnienie metod używanych w big data Zaszywanie ich w nowo powstających produktach
25
Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej
Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej Tomasz Antonik Systems and Technology Group IBM Lab Services and Training Agenda Trendy w rozwoju systemów analitycznych
Rola infrastruktury w analityce
Rola infrastruktury w analityce Agnieszka Borkowska Client Technical Architect Tomasz Antonik Consultant O czym będzie... Raport ze stanu świata ile mamy danych cyfrowych Infrastruktura i analityka co
Big Data MATERIAŁY DYDAKTYCZNE I SZKOLENIOWE NA STUDIA PODYPLOMOWE ORAZ NA SZKOLENIA DYSTRYBUOWANE SĄ BEZPŁATNIE. Agenda
Big Data str. 1 Agenda 1. Co to jest Big Data? 2. Źródła Big Data 3. Model 3V 4. Typy Big Data 5. Big Data w biznesie 6. Platforma IBM Big Data 1 Co oznacza Big Data? Zbiór danych tak duży, że jego przetwarzanie
Jak wiedzieć więcej i szybciej - Analizy in-memory
Jak wiedzieć więcej i szybciej - Analizy in-memory Michał Grochowski Senior Consultant BI/DWH 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. 2 Copyright 2012, Oracle and/or its affiliates.
Baza danych in-memory. DB2 BLU od środka 2015-11-10. Artur Wrooski
TECHNOLOGIE ANALIZY DANYCH I CHMUROWE W ZASTOSOWANIACH BIZNESOWYCH Poznao, 30 września 2015 DB2 BLU od środka Artur Wrooski Baza danych in-memory Baza danych IN-MEMORY system zarządzania bazami danych,
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop. Piotr Borowik
SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop Piotr Borowik Wyzwania związane z Big Data Top Hurdles with Big data Source: Gartner (Sep 2014), Big Data Investment Grows
Rola analityki danych w transformacji cyfrowej firmy
Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
BigData. Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015
BigData Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015 Platforma SAP HANA ETL ETL Cache SAP HANA (DRAM) Transact Analyze Accelerate Wybrane aspekty
Analityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 27 czerwca 2017 Hadoop i Business Intelligence - wyzwania 1 Ładowane danych do Hadoop-a jest trudne 2 Niewielu specjalistów dostępnych na rynku Dostęp
Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Data Camp Architektura Data Lake Repozytorium służące składowaniu i przetwarzaniu danych o
Nowe podejście do składowania danych
Nowe podejście do składowania danych Platforma dla danych transakcyjnych i analitycznych wykorzystująca składowanie kolumnowe w pamięci Hasso Plattner Oddzielne systemy transakcyjne + analityka + akceleracja
DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna&
DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& Artur Wroński" Priorytety rozwoju technologii Big Data& Analiza większych zbiorów danych, szybciej& Łatwość użycia& Wsparcie
Analityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 5 czerwca 2017 Pytania stawiane przez biznes 1 Jaka jest aktualnie sytuacja w firmie? 2 Na czym jeszcze możemy zarobić? Które procesy możemy usprawnić?
Wprowadzenie do Hurtowni Danych
Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia
BigData & Cloud Wprowadzenie
BigData & Cloud Wprowadzenie Poznań 29-30 wrzesień 2015 IBM Corporation Agenda Dane, dużo danych Przykłady Wyzwania i ogranicznia technologiczne Wbudowana ekspertyza Podsumowanie 2 Dane jako na nowo odkrywany
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Nowoczesne bazy danych, czyli przetwarzanie in-memory
Nowoczesne bazy danych, czyli przetwarzanie in-memory 1. Dlaczego przetwarzanie w pamięci? 2. Komercyjne bazy danych in-memory 3. Zwykła baza danych, a baza w pamięci różnice 4. Wymiarowanie sprzętu 5.
BIG DATA DLA KAŻDEGO. Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard
BIG DATA DLA KAŻDEGO Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard DANE, WSZĘDZIE DANE Masowy przyrost różnego typu danych Rodzaje danych Przyspieszenie Użytkownicy
Wprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Szkolenie: Jak mieć więcej czasu na wyciąganie wniosków
Szkolenie: Jak mieć więcej czasu na wyciąganie wniosków 14 listopada 2018 r 8:45-12:45 Warszawa https://alterdata.evenea.pl "Dzisiaj praca analityka składa się w 15% z analizowania. Cała reszta czynności
Wstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Usługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect
Samodzielny Business Intelligence in memory duże i małe Paweł Gajda Business Solution Architect Agenda 1. Zapytania biznesowe 2. SAP Visual Intelligence 3. Szybkość 4. Zaangażowanie 5. Samoobsługa 6. Kreatywność
Co to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Wprowadzenie do Hurtowni Danych
Wprowadzenie do Hurtowni Danych Organizacyjnie Prowadzący: mgr. Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło HD2) Literatura 1. Inmon, W., Linstedt, D. (2014). Data Architecture: A
Analityka danych & big data
TomaszJangas.com Analityka danych & big data 15 października 2017 W tym artykule opiszę architekturę, jaka często wykorzystywana jest dzisiaj w środowiskach do analityki danych w wielu różnych organizacjach
BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej. Grzegorz Oleś Big Data Sales Executive
BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej Grzegorz Oleś Big Data Sales Executive Big Data??? wielu o tym pisze Big Data??? wielu o tym mówi Zasadnicze pytania O co chodzi
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia
Digitize Your Business
Digitize Your Business Aspekty technologiczne migracji na SAP HANA Prelegenci Błażej Trojan Konsultant technologiczny SAP Basis SI-Consulting Jakub Roguski - Territory Sales Leader Enterprise Systems -
PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect
PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect Wbudowana wiedza specjalistyczna Dopasowane do zadania Optymalizacja do aplikacji transakcyjnych Inteligentne Wzorce
Szybkość instynktu i rozsądek rozumu$
Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,
Hurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems. Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant
Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant Agenda Co z tymi danymi? Krótko o sposobach na efektywne gromadzenie, przechowywanie
Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja
Przyszłość w rękach Big Data -wizje i technologie dziś. Artur Wroński Information Management Technical Team Leader
Przyszłość w rękach Big Data -wizje i technologie dziś Artur Wroński Information Management Technical Team Leader 2 Co 3hinstalacja nowej turbiny 1 turbina to kilka milionów $ Dotychczas Vestas zainstalował
Architecture Best Practices for Big Data Deployments
GLOBAL SPONSORS Architecture Best Practices for Big Data Deployments Kajetan Mroczek Systems Engineer GLOBAL SPONSORS Rozwój analityki biznesowej EKSPLORACJA DANYCH UCZENIE MASZYNOWE SZTUCZNA INTELIGENCJA
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie
Konsolidacja wysokowydajnych systemów IT. Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia
Konsolidacja wysokowydajnych systemów IT Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia Mirosław Pura Sławomir Rysak Senior IT Specialist Client Technical Architect Agenda Współczesne wyzwania:
Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU
Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie
Welcome to the waitless world. Inteligentna infrastruktura systemów Power S812LC i S822LC
Inteligentna infrastruktura systemów Power S812LC i S822LC Przedstawiamy nową linię serwerów dla Linux Clouds & Clasters IBM Power Systems LC Kluczowa wartość dla klienta Specyfikacje S822LC Technical
Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
Tematy projektów Edycja 2014
Tematy projektów Edycja 2014 Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Reguły Projekty zespołowe max. 4
Technologia informacyjna
Technologia informacyjna Bazy danych Dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2016 Plan wykładu Wstęp do baz danych Modele baz danych Relacyjne bazy danych Język SQL Rodzaje
Hbase, Hive i BigSQL
Hbase, Hive i BigSQL str. 1 Agenda 1. NOSQL a HBase 2. Architektura HBase 3. Demo HBase 4. Po co Hive? 5. Apache Hive 6. Demo hive 7. BigSQL 1 HBase Jest to rozproszona trwała posortowana wielowymiarowa
Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Informatyka I BAZY DANYCH. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2017
Informatyka I BAZY DANYCH dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2017 Plan wykładu Definicja systemu baz danych Modele danych Relacyjne bazy danych Język SQL Hurtownie danych
Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski. Poznań, 30.09.2015
Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski Poznań, 30.09.2015 Plan Geneza Architektura Cechy Instalacja Standard SQL Transakcje i współbieżność Indeksy Administracja Splice Machince vs.
Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24
Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Agenda Serp24 NoSQL Integracja z CMS Drupal Przetwarzanie danych Podsumowanie Serp24 Darmowe narzędzie Ułatwia planowanie
Modelowanie Data Mining na wielką skalę z SAS Factory Miner. Paweł Plewka, SAS
Modelowanie Data Mining na wielką skalę z SAS Factory Miner Paweł Plewka, SAS Wstęp SAS Factory Miner Nowe narzędzie do data mining - dostępne od połowy 2015 r. Aktualna wersja - 14.1 Interfejs webowy
Szkolenia SAS Cennik i kalendarz 2017
Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS
Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) DANE W CZASIE RZECZYWISTYM 3 Tryb analizowania danych 4 Okno analizowania 5 Real-time: Checkpointing
Rozwiązanie Compuware Data Center - Real User Monitoring
Rozwiązanie Compuware Data Center - Real User Monitoring COMPUWARE DATA CENTER REAL USER MONITORING... 3 2 COMPUWARE DATA CENTER REAL USER MONITORING Sercem narzędzia Compuware Data Center Real User Monitoring
2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL
Instalacja, konfiguracja Dr inŝ. Dziwiński Piotr Katedra InŜynierii Komputerowej Kontakt: piotr.dziwinski@kik.pcz.pl 2 Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management
AUREA BPM Oracle. TECNA Sp. z o.o. Strona 1 z 7
AUREA BPM Oracle TECNA Sp. z o.o. Strona 1 z 7 ORACLE DATABASE System zarządzania bazą danych firmy Oracle jest jednym z najlepszych i najpopularniejszych rozwiązań tego typu na rynku. Oracle Database
Zapytania z ograniczeniem czasowym w Oracle
22 stycznia 2009 Tytuł oryginalny Supporting Time-Constrained Queries in Oracle Ying Hu, Seema Sundara, Jagannathan Srinivasan Oracle New England Development Center VLDB 2007 Materiały żródłowe: referat,
Integracja danych ubezpieczeniowych w czasie rzeczywistym. Łukasz Szewczyk Solution Architect
Integracja danych ubezpieczeniowych w czasie rzeczywistym Łukasz Szewczyk Solution Architect Dlaczego integrować dane w czasie rzeczywistym? W dość krótkim czasie większość danych jakie posiadamy staje
Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family
Kod szkolenia: Tytuł szkolenia: HADOOP Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Dni: 5 Opis: Adresaci szkolenia: Szkolenie jest adresowane do programistów, architektów oraz
Tuning SQL Server dla serwerów WWW
Tuning SQL Server dla serwerów WWW Prowadzący: Cezary Ołtuszyk Zapraszamy do współpracy! Plan szkolenia I. Wprowadzenie do tematu II. Nawiązywanie połączenia z SQL Server III. Parametryzacja i przygotowanie
Hurtownie Danych i Business Intelligence: przegląd technologii
Hurtownie Danych i Business Intelligence: przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Tematyka Architektury
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
Analityka i BigData w służbie cyberbezpieczeństa
Date Venue Next generation SOC Analityka i BigData w służbie cyberbezpieczeństa Tomasz Rostkowski Architekt - IBM Analytics Zagrożenia cyberprzestępczości...złe wieści Ewolucja centrów operacji bezpieczeństwa
Trendy BI z perspektywy. marketingu internetowego
Trendy BI z perspektywy marketingu internetowego BI CECHUJE ORGANIZACJE DOJRZAŁE ANALITYCZNIE 2 ALE JAKA JEST TA DOJRZAŁOŚĆ ANALITYCZNA ORGANIZACJI? 3 Jaka jest dojrzałość analityczna organizacji? Zarządzanie
OLAP i hurtownie danych c.d.
OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji
Co to jest Baza Danych
Co to jest Baza Danych Wielki, zintegrowany, zbiór r informacji Stanowi model świata rzeczywistego jednostki Entities (e.g., studenci ci, kursy, wykładowcy adowcy) relacje Relationships (e.g., Sławski
Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Oracle11g: Wprowadzenie do SQL
Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom
QlikView Business Intelligence, a system ERP SAP Użytkownicy systemów ERP firmy SAP przez wiele lat poszukiwali skutecznych i łatwych sposobów dotarcia do swych danych. Używali arkuszy kalkulacyjnych,
Współczesne systemy baz danych
Współczesne systemy baz danych dr hab. inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu Zakład Systemów Informatycznych i Mechatronicznych (SIMT) 2019 Prowadzący Dr hab. inż. Andrzej
Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości (II zajęcia) Jakub Jurdziak
Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości 2013-12-05 (II zajęcia) Jakub Jurdziak CEL ZAJĘĆ: Prezentacja nowoczesnego banku uniwersalnego jako organizacji opartej
Odkryj Sekrety Efektywnego Business Intelligence
Odkryj Sekrety Efektywnego Business Intelligence Analizy zarządcze i szybkie raportowanie ad-hoc w Sybase IQ Marek Ryński Dyrektor Zarządzający, Dział Rozwoju Biznesu, Sybase Polska Warszawa, 3 października
Tematy prac dyplomowych inżynierskich
inżynierskich Oferujemy możliwość realizowania poniższych tematów w ramach projektu realizowanego ze środków Narodowego Centrum Badań i Rozwoju. Najlepszym umożliwimy realizację pracy dyplomowej w połączeniu
Wydajność hurtowni danych opartej o Oracle10g Database
Wydajność hurtowni danych opartej o Oracle10g Database 123 Plan rozdziału 124 Transformacja gwiaździsta Rozpraszanie przestrzeni tabel Buforowanie tabel Różnicowanie wielkości bloków bazy danych Zarządzanie
JDBC w LoXiMie. Interfejs Java Database Connectivity dla systemu LoXiM. Adam Michalik 2008
JDBC w LoXiMie Interfejs Java Database Connectivity dla systemu LoXiM Adam Michalik 2008 Sterownik JDBC co to jest? Sterownik JDBC to zbiór klas implementujących interfejsy opisane w specyfikacji JDBC
Spis treści. O autorach... 12
Księgarnia PWN: Rick Greenwald, Robert Stackowiak, Jonathan Stern - Oracle Database 11g. To co najważniejsze Spis treści O autorach... 12 Wstęp... 13 Cele książki... 14 Czytelnicy książki... 15 O czwartym
Pierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Systemy GIS Tworzenie zapytań w bazach danych
Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE
DOKUMENTACJA BI SOW PFRON. Powykonawcza. dla BI INSIGHT S.A. UL. WŁADYSŁAWA JAGIEŁŁY 4 / U3, WARSZAWA. Strona 1 z 23
DOKUMENTACJA Powykonawcza BI SOW dla PFRON BI INSIGHT S.A. UL. WŁADYSŁAWA JAGIEŁŁY 4 / U3, 02-495 WARSZAWA Strona 1 z 23 Spis treści 1 METRYKA DOKUMENTU... 4 1.1 Podstawowe informacje... 4 1.2 Historia
COMARCH DATA WAREHOUSE MANAGER 6.2
COMARCH DATA WAREHOUSE MANAGER 6.2 WSTĘP DO ZAGADNIENIA HURTOWNI DANYCH Gromadzenie danych biznesowych z systemów rozproszonych, oraz doprowadzenie do ich uwspólnienia, w celu przeprowadzenia analiz oraz
Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi
II Zimowa Akademia dla Partnerów Handlowych IBM Białka Tatrzańska 5-7.03.2014 Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi Renata Bilecka renata.bilecka@pl.ibm.com
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/
Asseco HOME: obniżenie kosztów operacyjnych telekomów dzięki rozwiązaniu Big Data.
Asseco HOME: obniżenie kosztów operacyjnych telekomów dzięki rozwiązaniu Big Data. asseco.pl Klient. Klient jest jednym z wiodących w Polsce operatorów telekomunikacyjnych, obsługujących ponad 10 mln abonentów.
Chmura Krajowa milowy krok w cyfryzacji polskiej gospodarki
Chmura Krajowa milowy krok w cyfryzacji polskiej gospodarki 2018 Krótka historia chmury 65 mld USD 2010 219 mld USD 2016 411 mld USD 2020 2006 2008 2010 2011-12 2020 2 Usługi chmurowe w Polsce 50% 10%
One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb
One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb X Kongres Business Intelligence Warszawa, 17.03.2016 Joanna Łuczak Multi-Partnerski
HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS
WARSZTATY Grupa warsztatowa nr 1 System bilingowy operator telekomunikacyjny od środka Uczestnikom warsztatów zostanie przedstawiona specyfika działalności operatora telekomunikacyjnego ze szczególnym
Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi#
Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi# Renata Bilecka renata.bilecka@pl.ibm.com! Certified IT Specialist, Storage Consultant! Agenda! Krótko o sposobach
HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.
HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model
PRZESTRZENNE BAZY DANYCH WYKŁAD 2
PRZESTRZENNE BAZY DANYCH WYKŁAD 2 Baza danych to zbiór plików, które fizycznie przechowują dane oraz system, który nimi zarządza (DBMS, ang. Database Management System). Zadaniem DBMS jest prawidłowe przechowywanie
Ekspert MS SQL Server Oferta nr 00/08
Ekspert MS SQL Server NAZWA STANOWISKA Ekspert Lokalizacja/ Jednostka organ.: Pion Informatyki, Biuro Hurtowni Danych i Aplikacji Wspierających, Zespół Jakości Oprogramowania i Utrzymania Aplikacji Szczecin,
Hadoop i Spark. Mariusz Rafało
Hadoop i Spark Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl WPROWADZENIE DO EKOSYSTEMU APACHE HADOOP Czym jest Hadoop Platforma służąca przetwarzaniu rozproszonemu dużych zbiorów danych. Jest
Wprowadzenie do systemów baz danych. Wykład 1
Wprowadzenie do systemów baz danych Wykład 1 Informacja to przyrost wiedzy, który może być uzyskany na podstawie danych Dane to opis faktów, zapisane są najczęściej w formie symboli reprezentujących coś
Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
Rozwiązania kognitywne to nie tylko software...
Rozwiązania kognitywne to nie tylko software... Piotr Beńke Dyrektor działu Rozwiązań Sprzętowych IBM Polska Watson Warsaw Summit 2017 Dane transformują branże jak i zawody DANE SŁUŻBY ZDROWIA DANE RZĄDOWE
Część I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa
Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla
Hurtownie danych w praktyce
Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence