Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
|
|
- Iwona Kowalewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie
2 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) I II
3 Plan wykładu 1 Systemy OLAP 2 Podsumowanie
4 Plan wykładu 1 Systemy OLAP 2 Podsumowanie
5 Serwery OLAP sa narzędziem do efektywnego wielowymiarowego przetwarzanie ogromnych wolumenów danych.
6 W systemach OLAP razem z danymi wielowymiarowymi oprócz szczegółowych wartości miar składowane sa również miary zagregowane.
7 Możliwe agregacje w modelu wielowymiarowym przedstawiane sa często jako krata kuboidów (ang. Cuboid). Przykład dla czterech wymiarów: czas, produkt, lokalizacja, dostawca. Łatwo pokazać operację Roll up i Drill down.
8 Liczba kuboidów: l = i=1,...,n (L i + 1), gdzie n to liczba wymiarów, a L i jest liczba poziomów hierarchii dla i-tego wymiaru, Przykładowo dla 10 wymiarów i 4 poziomów dla każdego wymiaru: l = 5 10 = 9,
9 Rodzaje operatorów agregacji: rozproszone: count(), sum(), max(), min() algebraiczne: ave(), std_dev() holistyczne: median(), mode(), rank()
10 Serwery OLAP: ROLAP (Relacyjne), MOLAP (Wielowymiarowe), HOLAP (Hybrydowe).
11 Serwery ROLAP bazuja na relacyjnym modelu danych. Powinny zapewniać optymalizację: denormalizacji relacji (denormalization), tworzenia podsumowań (summarization), tworzenie podziału (partitioning).
12 SQL3 Rozszerzenia języka SQL GROUP BY ROLLUP, GROUP BY CUBE.
13 GROUP BY CUBE SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY CUBE (Czas, Produkt, Lokalizacja, Dostawca);
14 GROUP BY CUBE SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja, Dostawca UNION ALL SELECT Czas, Produkt, Lokalizacja, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja UNION ALL SELECT Czas, Produkt, *, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Dostawca UNION ALL... UNION ALL SELECT *, *, *, *, SUM(Zysk) FROM Sprzedaż;
15 GROUP BY CUBE SELECT Academic_year, Name, AVG(Grade) FROM Students_grades GROUP BY CUBE(Academic_year, Name); Academic_year Name AVG(Grade) 2001/2 Stefanowski /2 Słowiński /3 Stefanowski /3 Słowiński /4 Stefanowski /4 Słowiński /4 Dembczyński /2 NULL /3 NULL /4 NULL 3.8 NULL Stefanowski 3.9 NULL Słowiński 3.6 NULL Dembczyński 4.8 NULL NULL 3.95
16 GROUP BY ROLLUP SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY ROLLUP (Czas, Produkt, Lokalizacja, Dostawca);
17 GROUP BY CUBE SELECT Czas, Produkt, Lokalizacja, Dostawca, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja, Dostawca UNION ALL SELECT Czas, Produkt, Lokalizacja, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt, Lokalizacja UNION ALL SELECT Czas, Produkt, *, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas, Produkt UNION ALL SELECT Czas, *, *, *, SUM(Zysk) FROM Sprzedaż GROUP BY Czas UNION ALL SELECT *, *, *, *, SUM(Zysk) FROM Sprzedaż;
18 GROUP BY ROLLUP SELECT Academic_year, Name, AVG(Grade) FROM Students_grades G GROUP BY ROLLUP(Academic_year, Name); Academic_year Name AVG(Grade) 2001/2 Stefanowski /2 Słowiński /3 Stefanowski /3 Słowiński /4 Stefanowski /4 Słowiński /4 Dembczyński /2 NULL /3 NULL /4 NULL 3.8 NULL NULL 3.95
19 Zalety serwerów ROLAP: Skalowalność ze względu na liczbę wymiarów, Skalowalność ze względu na rozmiar danych, Rzadkość danych nie stanowi problemu, Dobrze rozpoznana i dojrzała technologia. Wady: Gorsza wydajność w porównaniu z systemami MOLAP, Potrzeba tworzenia indeksów oraz wykorzystania innych technik optymalizacji.
20 Serwery MOLAP bazuja na wielowymiarowym modelu danych. Technologia macierzy gęstych i rzadkich: zapamiętywanie macierzy gęstych wprost, z macierzy rzadkich usuwane sa puste komórek i dokonywana jest kompresja pozostałej informacji. Zapamiętywanie zagregowanych podkostek. Brak standardów modelu wielowymiarowego.
21 Zalety serwerów OLAP: Bardzo wydajny dostęp do danych poprzez bezpośrednie adresowanie, Szybkie odpowiedzi na zapytania, Bardzo często zawieraja obliczone agregaty pośrednie. Wady: Problemy ze skalowalnościa przy dużej liczbie wymiarów, Wymagaja specyficznego systemu zapisu (młoda technologia), Nie sa wydajne w przechowywaniu rzadkich danych.
22 Przykład Model składa się z wymiarów: klient, produkt, sklep oraz dzień; w przypadku klientów, produktów, sklepów oraz dni kostka danych zawiera komórek! Wiele komórek jest pustych: nie istnieja wszystkie kombinacje klientów, produktów, sklepów oraz dnia.
23 Język MDX (Multidimensional Expressions): Podstawowe terminy: Wymiar, Hierarchia, Poziom, Członek, Miara, Krotka, Zbiór. MDX SELECT {[CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford]} ON ROWS, {[DATE].[All DATE].[March], [DATE].[All DATE].[April]} ON COLUMNS FROM MDDBCARS;
24 Język MDX (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]} ON COLUMNS, {[DATE].[ALL DATE].[MARCH], [DATE].[ALL DATE].[APRIL]} ON ROWS FROM MDDBCARS WHERE ([MEASURES].[SALES_N])
25 Język MDX (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]} ON COLUMNS, {[DATE].[ALL DATE].[JANUARY]:[DATE].[ALL DATE].[APRIL]} ON ROWS FROM MDDBCARS
26 Język MDX (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]} ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
27 Język MDX (Multidimensional Expressions): MDX SELECT {[CARS].[ALL CARS].[FORD].CHILDREN} ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
28 Język MDX (Multidimensional Expressions): MDX SELECT {([CARS].[ALL CARS].[CHEVY], [MEASURES].[SALES_SUM]), ([CARS].[ALL CARS].[CHEVY], [MEASURES].[SALES_N]), ([CARS].[ALL CARS].[FORD], [MEASURES].[SALES_SUM]), ([CARS].[ALL CARS].[FORD], [MEASURES].[SALES_N]) } ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
29 Język MDX (Multidimensional Expressions): MDX SELECT {CROSSJOIN({[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]}, {[MEASURES].[SALES_SUM], [MEASURES].[SALES_N]}) } ON COLUMNS, {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
30 Język MDX (Multidimensional Expressions): MDX SELECT {CROSSJOIN ({[CARS].[ALL CARS].[CHEVY], [CARS].[ALL CARS].[FORD]}, {[MEASURES].[SALES_SUM], [MEASURES].[SALES_N]}) } ON COLUMNS, NON EMPTY {[DATE].MEMBERS} ON ROWS FROM MDDBCARS
31 Serwery HOLAP Systemy hybrydowe wspierajace dwa modele danych. Serwer parametryzowany przez użytkownika/administratora systemu.
32 OLAP w Excelu Excel wspiera zewnętrzne serwery OLAP. Wtyczki do Excela dostraczane przez IBM a, Oracle i SAS. Dobrze znany interfejs tabel przestawnych w Excelu:
33 OLAP w Excelu
34 Plan wykładu 1 Systemy OLAP 2 Podsumowanie
35 Podsumowanie Systemy OLAP służa do efektywnego wielowymiarowego przetwarzania ogromnym wolumenów danych, Podstawowe modele to ROLAP, MOLAP i HOLAP, Z podejściem ROLAP zwiazany jest język SQL3; z podejściem wielowymiarowym język MDX, ROLAP, MOLAP, czy HOLAP?
36 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) I II
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia
Bardziej szczegółowoKrzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni
Bardziej szczegółowoSystemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz
Bardziej szczegółowoSystemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Bardziej szczegółowoModele danych - wykład V
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie
Bardziej szczegółowoModele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne
Bardziej szczegółowoSAS OLAP Cube Studio Wprowadzenie
SAS OLAP Cube Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoHurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Bardziej szczegółowoOLAP i hurtownie danych c.d.
OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoprzygotował: pawel@kasprowski.pl Podstawy języka MDX Tworzenie zbiorów
Podstawy języka MDX Tworzenie zbiorów Używanie zbiorów Zbiór to: wynik działania funkcji (np. funkcji members) lista elementów otoczona {...} {[Store Sales], [Unit Sales]} on columns, [Product].[Prod].[Category].members
Bardziej szczegółowoSystemy baz danych i hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Bardziej szczegółowoWielowymiarowy model danych
Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:
Bardziej szczegółowoHurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Izabela Szczęch Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie
Bardziej szczegółowoSpis tre±ci. Przedmowa... Cz ± I
Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja
Bardziej szczegółowoBUSINESS INTELLIGENCE DEVELOPMENT Tego Cię nauczymy:
BUSINESS INTELLIGENCE DEVELOPMENT Tego Cię nauczymy: Cały kurs został podzielony na moduły skupiające się na istotnych z punktu widzenia specjalisty Microsoft Business Intelligence zagadnieniach. Moduły
Bardziej szczegółowoHurtownie danych wykład 3
Hurtownie danych wykład 3 dr Sebastian Zając SGH Warszawa 7 lutego 2017 Architektura relacyjna i wielowymiarowa Ze względu na przechowywanie danych na serwerze możemy zdecydować się na relacyjną bazę danych
Bardziej szczegółowoHurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.
Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą
Bardziej szczegółowoWstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Bardziej szczegółowoIntegracja i Eksploracja Danych
Integracja i Eksploracja Danych Laboratorium nr 4 Wprowadzenie do języka MDX. Zadania: 1) Analogicznie do przykładu zawartego na poprzednich zajęciach, korzystając z SQL Server Business Intelligence Development
Bardziej szczegółowoSpis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services
Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...
Bardziej szczegółowoHurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)
Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni
Bardziej szczegółowoSQL w 24 godziny / Ryan Stephens, Arie D. Jones, Ron Plew. Warszawa, cop Spis treści
SQL w 24 godziny / Ryan Stephens, Arie D. Jones, Ron Plew. Warszawa, cop. 2016 Spis treści O autorach 11 Podziękowania 12 Część I Wprowadzenie do języka SQL 13 Godzina 1. Witamy w świecie języka SQL 15
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
Bardziej szczegółowoBusiness Intelligence
Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania
Bardziej szczegółowoHurtownie danych a transakcyjne bazy danych
Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,
Bardziej szczegółowoRozszerzenia grupowania
Rozszerzenia grupowania 226 Plan rozdziału 227 Wprowadzenie ROLLUP CUBE GROUPING SETS GROUPING Rozszerzenia grupowania danych 228 W złożonych magazynach danych oprócz tabel faktów i wymiarów istnieje dodatkowo
Bardziej szczegółowoPlan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych
1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni
Bardziej szczegółowoWprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
Bardziej szczegółowoCel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Bardziej szczegółowoHurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoWykład XII. optymalizacja w relacyjnych bazach danych
Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych
Bardziej szczegółowoBD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego
BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne
Bardziej szczegółowoJPivot & Mondrian. 16 maja Krukar, Lewandowska (BiHD) JPivot & Mondrian 16 maja / 42
JPivot & Mondrian Urszula Krukar Agnieszka Lewandowska 16 maja 2007 Krukar, Lewandowska (BiHD) JPivot & Mondrian 16 maja 2007 1 / 42 1 Wprowadzenie 2 Pentaho BI Suite 3 Mondrian 4 Schemat kostki 5 JPivot
Bardziej szczegółowoProjektowanie hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2004/05 Plan wykładu Ewolucja
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl PROJEKTOWANIE WARSTWY DANYCH DETALICZNYCH - ZAGADNIENIA Partycjonowanie Partycja jest wydzielonym miejscem na dysku, w którym przechowywane
Bardziej szczegółowoORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL
ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Raportowanie z wykorzystaniem fraz rollup, cube Frazy cube, rollup, grouping sets umożliwiają rozszerzoną
Bardziej szczegółowoCzęść I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Bardziej szczegółowoHurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
Bardziej szczegółowoHURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Bardziej szczegółowoSchematy logiczne dla hurtowni danych
Schematy logiczne dla hurtowni danych 26 Plan rozdziału 27 Model biznesowy, logiczny i fizyczny hurtowni danych Podstawowe pojęcia w modelu logicznym, logiczny model wielowymiarowy Implementacje ROLAP/MOLAP
Bardziej szczegółowoJPivot & Mondrian. inż. Urszula Krukar, inż. Agnieszka Lewandowska,
inż. Urszula Krukar, ukrukar@gmail.com inż. Agnieszka Lewandowska, agnieszkalewandowska@gmail.com Bazy i Hurtownie Danych 12 marca 2007 Cel projektu przygotowanie instalacji webowej aplikacji JPivot i
Bardziej szczegółowoKostki OLAP i język MDX
Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,
Bardziej szczegółowoMicrosoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot
Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Alberto Ferrari i Marco Russo Przekład: Marek Włodarz APN Promise Warszawa 2014 Spis treści Wprowadzenie............................................................
Bardziej szczegółowoInformatyzacja przedsiębiorstw
Informatyzacja przedsiębiorstw Izabela Szczęch Politechnika Poznańska Plan wykładu Elementy Business Intelligence Model wielowymiarowy Modelowanie hurtowni danych podstawowe schematy logiczne Operacje
Bardziej szczegółowoHURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 204/5 Nazwa Bazy danych Nazwa jednostki prowadzącej przedmiot Wydział Matematyczno - Przyrodniczy Kod Studia Kierunek studiów Poziom
Bardziej szczegółowoOpracowanie: Izabela Czepil i Andrzej Solski
Opracowanie: Izabela Czepil i Andrzej Solski Wykorzystanie serwisów do wykonywania operacji na serwerze Generowanie nowych struktur budżetowych na podstawie istniejących zbiorcze kopiowanie struktur Mechanizm
Bardziej szczegółowoRamowy plan kursu. Lp. Moduły Wyk. Lab. Przekazywane treści
Ramowy plan kursu Lp. Moduły Wyk. Lab. Przekazywane treści 1 3 4 Technologia MS SQL Server 2008 R2. Podstawy relacyjnego modelu i projektowanie baz. Zaawansowane elementy języka SQL. Programowanie w języku
Bardziej szczegółowoUsługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Bardziej szczegółowo- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji
6. Język SQL Język SQL (Structured Query Language): - język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji - stworzony w IBM w latach 70-tych DML (Data Manipulation
Bardziej szczegółowoZaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1)
Hurtownie danych 1 Problematyka hurtowni danych Wykład przygotował: Robert Wrembel ZSBD wykład 12 (1) 1 Plan wykładu Problematyka integracji danych Integracja danych za pomocą hurtowni danych Przetwarzanie
Bardziej szczegółowoSpecjalizacja magisterska Bazy danych
Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka
Bardziej szczegółowoBazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI
Bazy danych Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Wszechnica Poranna Trzy tematy: 1. Bazy danych - jak je ugryźć? 2. Język SQL podstawy zapytań. 3. Mechanizmy wewnętrzne baz danych czyli co
Bardziej szczegółowoHurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU
Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie
Bardziej szczegółowoAnaliza i eksploracja danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni
Bardziej szczegółowoCzęść 1: OLAP. Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych
Łukasz Przywarty 171018 Wrocław, 05.12.2012 r. Grupa: CZW/N 10:00-13:00 Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Część 1: OLAP Prowadzący: dr inż. Henryk Maciejewski
Bardziej szczegółowoHurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoOPIS PRZEDMIOTU ZAMÓWIENIA
Załącznik nr 1 OPIS PRZEDMIOTU ZAMÓWIENIA Licencja Microsoft Windows SQL Server Standard 2012 (nie OEM) lub w pełni równoważny oraz licencja umożliwiająca dostęp do Microsoft Windows SQL Server Standard
Bardziej szczegółowoBazy analityczne (hurtownie danych, bazy OLAP)
Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,
Bardziej szczegółowoSQL do zaawansowanych analiz danych część 1.
SQL do zaawansowanych analiz danych część 1. Mechanizmy języka SQL dla agregacji danych Rozszerzenia PIVOT i UNPIVOT Materiały wykładowe Bartosz Bębel Politechnika Poznańska, Instytut Informatyki Plan
Bardziej szczegółowoTechnologie baz danych
Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD
Bardziej szczegółowoSystemy GIS Tworzenie zapytań w bazach danych
Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE
Bardziej szczegółowoBazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
Bardziej szczegółowoOnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX
OnLine Analytical Processing (OLAP) Kostki OLAP i zapytania MDX 24 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą
Bardziej szczegółowoIndeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Bardziej szczegółowoOptymalizacja w relacyjnych bazach danych - wybór wydajnej strategii obliczania wyrażenia relacyjnego.
Plan wykładu Spis treści 1 Optymalizacja 1 1.1 Etapy optymalizacji............................... 3 1.2 Transformacja zapytania............................ 3 1.3 Przepisywanie zapytań.............................
Bardziej szczegółowoProces ETL. Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris,
Proces ETL Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris, tegra}@eti.pg.gda.pl - 1 - Proces ETL - 2 -
Bardziej szczegółowoHURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.
HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model
Bardziej szczegółowoBazy danych 8. Podzapytania i grupowanie. P. F. Góra
Bazy danych 8. Podzapytania i grupowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2009 Podzapytania Podzapytania pozwalaja na tworzenie strukturalnych podzapytań, co umożliwia izolowanie poszczególnych
Bardziej szczegółowoMatematyka kodem nowoczesności. Zaproszenie do składania ofert
Uniwersytet Śląski Dział Logistyki ul. Bankowa 12 40-007 Katowice tel. (32) 359 19 07 mail: joanna.kozbial@us.edu.pl; Katowice 7.02.2014 r Zaproszenie do składania ofert Niniejsze postępowanie jest prowadzone
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoRady i porady użytkowe
Rady i porady użytkowe Dział Eksploatacji CONTROLLING SYSTEMS sp. z o.o. Rady i porady - źródło prezentacji: Najczęstsze problemy zgłaszane przez Klientów na etapie eksploatacji systemu Spostrzeżenia konsultantów
Bardziej szczegółowoBudowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa
Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla
Bardziej szczegółowo4. Znaczenie czasu w modelowaniu i strukturalizacji danych
Temat1- Geneza 1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały
Bardziej szczegółowo"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie. Krzysztof Jankiewicz
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie Krzysztof Jankiewicz Plan Opis schematu dla "kilku słów" Postać polecenia SQL Sposoby dostępu do tabel Indeksy B*-drzewo Indeksy
Bardziej szczegółowoProjektowanie baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Bardziej szczegółowoRelacyjne bazy danych a XML
Relacyjne bazy danych a XML Anna Pankowska aniap@amu.edu.pl Internet, SQLiXMLwbiznesie Internet nieoceniony sposób komunikacji z klientami, pracownikami i partnerami handlowymi przyspiesza transakcje finansowe
Bardziej szczegółowoĆwiczenia z Zaawansowanych Systemów Baz Danych
Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku
Bardziej szczegółowoProcesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com
Media Partners Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Adrian Chodkowski Konsultant Business Intelligence w Jcommerce S.A Certyfikowany
Bardziej szczegółowoZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Bardziej szczegółowoPROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Rozproszone Systemy Baz Danych
OPIS PRZEDMIOTU Nazwa przedmiotu Rozproszone Systemy Baz Danych Kod przedmiotu Wydział Instytut/Katedra Kierunek Specjalizacja/specjalność Wydział Matematyki, Fizyki i Techniki Instytut Mechaniki i Informatyki
Bardziej szczegółowoLITERATURA. Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000
LITERATURA Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000 Systemy baz danych. Pełny wykład H. Garcia Molina, Jeffrey D. Ullman, Jennifer Widom;WNT Warszawa 2006 Wprowadzenie do systemów
Bardziej szczegółowoPierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Bardziej szczegółowoSQL (ang. Structured Query Language)
SQL (ang. Structured Query Language) SELECT pobranie danych z bazy, INSERT umieszczenie danych w bazie, UPDATE zmiana danych, DELETE usunięcie danych z bazy. Rozkaz INSERT Rozkaz insert dodaje nowe wiersze
Bardziej szczegółowoWykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania.
Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Przykładowa RBD o schematach relacji (tzw. płaska postać RBD): N(PRACOWNICY) = {ID_P, IMIĘ,
Bardziej szczegółowoIntegracja systemów transakcyjnych
Integracja systemów transakcyjnych Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Problematyka i architektury integracji danych
Bardziej szczegółowoUsługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o.
Usługa archiwizacji danych w systemie Eureca Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Na czym polega usługa archiwizacji danych w systemie Eureca? 2012 2013 2014 2015 Przed archiwizacją SQL OLAP BAZA
Bardziej szczegółowoCo to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Bardziej szczegółowoPROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER
PROJEKT HURTOWNI DANYCH DLA PRZEDSIĘBIORSTWA PRODUKCYJNO-HANDLOWEGO W ŚRODOWISKU MS SQL SERVER Katarzyna BŁASZCZYK, Ryszard KNOSALA Streszczenie: Artykuł opisuje podstawową tematykę związaną z systemami
Bardziej szczegółowoT-SQL dla każdego / Alison Balter. Gliwice, cop Spis treści. O autorce 11. Dedykacja 12. Podziękowania 12. Wstęp 15
T-SQL dla każdego / Alison Balter. Gliwice, cop. 2016 Spis treści O autorce 11 Dedykacja 12 Podziękowania 12 Wstęp 15 Godzina 1. Bazy danych podstawowe informacje 17 Czym jest baza danych? 17 Czym jest
Bardziej szczegółowoEwolucja systemów baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2004/05 Plan wykładu Relacyjne
Bardziej szczegółowoKARTA PRZEDMIOTU. Hurtownie i eksploracja danych D1_5
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Bardziej szczegółowoMicrosoft SQL Server Podstawy T-SQL
Itzik Ben-Gan Microsoft SQL Server Podstawy T-SQL 2012 przełożył Leszek Biolik APN Promise, Warszawa 2012 Spis treści Przedmowa.... xiii Wprowadzenie... xv Podziękowania... xix 1 Podstawy zapytań i programowania
Bardziej szczegółowo