Elektroniczna aparatura medyczna V
|
|
- Miłosz Markowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Elektroniczna aparatura medyczna SEMESTR V Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektroniczna aparatura medyczna V 1
2 Narząd wzroku Narząd wzroku - budowa 2
3 Narząd wzroku - budowa Uproszczona struktura siatkówki oka Siatkówka jest stosem kilku warstw neuronalnych. Światło przechodzi przez te warstwy i trafia na fotoreceptory. To wywołuje reakcję chemiczną umożliwiającą propagację sygnału do komórek dwubiegunowych (bipolarnych) i poziomych (środkowa żółta warstwa). Sygnał jest następnie przewodzony do komórek amakrynowych i neuronów zwojowych. Te neurony dają potencjał czynnościowy rozchodzący się do aksonów. Narząd wzroku - budowa Uproszczona struktura siatkówki oka Podstawowe elementy siatkówki - ułożone w kilka warstw komórki nerwowe, które z mózgiem łączy nerw wzrokowy. Receptoryświatła - czopki i pręciki. Siatkówka ludzkiego oka - ok. 6 mln czopków i 100 mln pręcików. Pręciki są wrażliwe na natężenie światła, zapewniają widzenie czarno-białe. Zawierają światłowrażliwy barwnik rodopsynę, występują licznie w częściach peryferyjnych siatkówki. Czopki skupiają się w centralnej części siatkówki i zapewniają widzenie barwne oraz ostrość widzenia. Zawierają trzy barwniki wrażliwe na światło niebieskie, zielone i czerwone. Największa ilość receptorów znajduje się w plamce żółtej, brak w plamce ślepej. Do siatkówki przylega od tyłu warstwa komórek wypełnionych czarnym pigmentem, który absorbuje nadmiar światła wpadającego do oka, zapobiegając rozmyciu obrazu przezświatło odbite wewnątrz oka. 3
4 Ostrość widzenia tablice Snellena Pomiar pola widzenia (perymetria) Badanie polega na określeniu pola widzenia, czyli obszaru widzianego nieruchomym okiem. Badanie przeprowadza się rzutując czułość siatkówki na powierzchnię kulistą (perymetria) lub na powierzchnię płaską (kampimetria). 4
5 Pomiar pola widzenia (perymetria) Badanie pola widzenia wykazuje - dla każdego oka oddzielnie - ewentualne ubytki w polu widzenia. Najczęściej są to miejsca na siatkówce, w których na skutek zmian chorobowych samej siatkówki nie są odbierane bodźce świetlne. Inna możłiwość to przerwanie dróg doprowadzających bodźce do ośrodków wzrokowych w mózgowiu. Ciśnienie śródgałkowe (IOP Intra Ocular Preessure) tonometria podwyższone ciśnienie - jaskra ciśnienie prawidłowe - 16mmHg, górna granica normy - 22mmHg pomiary pośrednie, bezpośrednie, dotykowe, bezdotykowe 5
6 Tonometria (badanie ciśnienia śródgałkowego) Tonometr Goldmanna Równowaga sił: F + F = IOP A + F c np szt Fc siła odkształcająca Fnp siła napięcia powierzchniowego IOP ciśnienie śródgałkowe Fszt siła sztywności Tonometria (badanie ciśnienia śródgałkowego) Tonometr Goldmanna Tonometr Goldmann a prawo Imberta Fick a (pozostałe 2 siły równoważą się) IOP =Fc/A F + F = IOP A + F Fc siła, A powierzchnia, IOP ciśnienie wewnątrzgałkowe W świetle lampy szczelinowej widoczne da półkręgi, które przy podaniu właściwej siły schodzą się w sposób przedstawiony na slajdzie (między pryzmat uciskający a oko wprowadzony jest anestetyk i barwnik). Element uciskający ma średnicę 3.06mm i powierzchnię 7.35mm2. Przy takiej powierzchni uzyskanie wypłaszczenia przy 1G siły oznacza że ciśnienie IOP wynosi 10mmHg. c np szt 6
7 Tonometria (badanie ciśnienia śródgałkowego) Tonometria Dynamic Contour DCT Stosowane w praktyce metody pomiaru IOP wykorzystują pomiar pośredni, tj. określają siłę niezbędna do wywołania określonej deformacji (np. wypłaszczenia) rogówki. IOP jest wyznaczane na podstawie stałych materiałowych, wobec których zakłada się, że obowiązują dla wszystkich oczu. DCT bezpośredni pomiar ciśnienia, metoda kontaktowa firma Ziemer Ophtalmic Systems AG (Szwajcaria) Tonometria (badanie ciśnienia śródgałkowego) Tonometria Dynamic Contour Tonometria DCT zasada Gałka oczna zalana żywicą, w małym obszarze żywica jest usunięta i ulokowany jest tam czujnik ciśnienia mierzy IOP. Do gałki ocznej przykładany jest element o kształcie odpowiadającym gałce, zawierający czujnik ciśnienia. Dla cięciwy d zapewniamy przyleganie czujnika i oka. Siły zewnętrzne i wewnętrzne prostopadłe do rogówki są równe, pozostałe siły znikają pomiar ciśnienia IOP. 7
8 Tonometria (badanie ciśnienia śródgałkowego) Tonometria bezdotykowa aplanacyjna Air Pulse / Air puff Makoto KANEKO, Roland KEMPF, Yuichi KURITA, Yoshichika IIDA, Hiromu K MISHIMA, Hidetoshi TSUKAMOTO, and Eiichiro SUGIMOTO Measurement and Analysis of Human Eye Excited by an Air Pulse 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems September 3-6, 2006, Heidelberg, Germany Yuichi Kurita, Yoshichika Iida, Roland Kempf, and Makoto Kaneko Dynamic Sensing of Human Eye using a High Speed Camera Proceedings of the 2005 IEEE International Conference on Information Acquisition June 27 - July 3, 2005, Hong Kong/Macau, China Tonometria (badanie ciśnienia śródgałkowego) Tonometria bezdotykowa aplanacyjna Air Pulse / Air puff Tonometr bezdotykowy jest tonometrem aplanacyjnym. Mierzony jest czas, w którym strumień powietrza doprowadza do wypłaszczenia powierzchni rogówki. W przypadku miękkiego oka czas ten jest niższy niż w przypadku twardego oka, tj. mającego wyższe IOP. W przypadku komercyjnych tonometrów deformacja oka trwa ok. 20ms (np. Topcon CT-80A, Japonia). 8
9 Tonometria (badanie ciśnienia śródgałkowego) Tonometria bezdotykowa aplanacyjna Air Pulse / Air puff Rozkład ciśnienia powietrza w odległości 10mm od wylotu dyszy jest zmierzony i powtarzalny. Przebieg siły oddziaływującej na rogówkę (całka z rozkładu ciśnienia po kole o promieniu 4mm). Tonometria (badanie ciśnienia śródgałkowego) Tonometria bezdotykowa aplanacyjna Air Pulse / Air puff Wyniki wyznaczania profilu rogówki co 1ms, 10ms od początku badania 9
10 Tonometria (badanie ciśnienia śródgałkowego) Tonometria bezdotykowa aplanacyjna Air Pulse / Air puff Kalibracja ciśnienia poprzedzająca pomiar na oku pozwala stwierdzić, że ciśnienie zewnętrzne określone jest zależnością 2 r pext ( t, r) = p peak ( t)exp( ) 2 r gdzie p peak, r, and r 0 = 1.5 [mm] oznaczają zmienne w czasie ciśnienie szczytowe, odległość od osi oraz promień walca aproksymującego impuls powietrza. Zakładamy, że deformacja siatkówki zachodzi w obszarach, w których ciśnienie zewnętrzne przewyższa IOP. Na okręgu o promieniu r d ciśnienia te są równe: p int 0 2 rd = pext ( t, rd ) = ppeak ( t)exp( ) 2 r 0 Tonometria (badanie ciśnienia śródgałkowego) Tonometria bezdotykowa aplanacyjna Air Pulse / Air puff Na okręgu o promieniu r d ciśnienia te są równe: p int r d można estymować na podstawie widocznej granicy rogówki x. Z tw. Pitagorasa = p ext 2 rd ( t, rd ) = ppeak ( t)exp( ) 2 r 2 2 R = rd + R ( x) 2 0 dla x<< R r 2 d 2Rx Z poprzednich równań mamy dla p peak pint 2Rx ln( p peak ) ln( pint ) = r
11 Tonometria (badanie ciśnienia śródgałkowego) Tonometria bezdotykowa aplanacyjna Air Pulse / Air puff 2Rx ln( p peak ) ln( pint ) = r 2 0 Wynik można wykorzystać do : - estymacji x (znając IOP) - określenia IOP na podstawie przebiegów znajdujących się na rysunku IOP jest wyznaczane na podstawie wartości ciśnienia w punkcie przecięcia prostej aproksymowanej na podstawie wyników pomiarów z osią ciśnienia. Tonometria (badanie ciśnienia śródgałkowego) Tonometria impresyjna Yuichi Kurita, Yoshichika Iida, Roland Kempf, and Makoto Kaneko Contact Probe Based Stiffness Sensing of Human Eye Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida - May
12 ERG ERG Siatkówka i obszary powstawania fal elektroretinogramu ERG potencjał wypadkowy, powstający w wyniku pobudzenia całej siatkówki (pełne pole, Ganzfeld) Przebieg ERG 12
13 This image cannot currently be displayed. ERG ERG potencjał wypadkowy, powstający w wyniku pobudzenia całej siatkówki Sposób odbioru ERG, przebieg, podstawowe elementy sygnału Składowe ERG Fala a aktywność fotoreceptorów Fala b komórki bipolarne (ale trwa dyskusja), komórki Mullera i amakrynowe Fala c komórki pigmentowe, fotoreceptory, interakcja pomiędzy nimi Fala d wykrywanie defektów w komórkach ` bipolarnych hiperpolaryzujących ( OFF ) widoczna tylko przy długotrwałych bodźcach Potencjały oscylacyjne wykorzystywane w ocenie zaburzeń systemu naczyniowego siatkówki Inne potencjał wczesny ERP, fala M, odpowiedź progowa skotopowa - trudne do odseparowania, wykorzystanie badawcze 13
14 Składowe ERG ERG podstawowe parametry Amplituda ERG jest w następujący sposób związana z natężeniem oświetlenia: V/V max = I/(I + s) gdzie V potencjał zmierzony Vmax potencjał zmierzony przy silnym pobudzeniu (nasycającym) I natężenie oświetlenia s bodziec niezbędny do uzyskania połowy maksymalnej amplitudy 14
15 Flicker ERG Pobudzenie powtarzalnymi błyskami o pewnej częstotliwości. Okazuje się, że pręciki są w stanie odpowiadać na pobudzenia do 28Hz, natomiast czopki nawet do 50Hz. Rozdzielne badanie funkcji obu rodzajów fotoreceptorów wymaga zablokowania funkcji jednych z nich, pobudzania różnej długości światłem w odpowiednich warunkach tj. w warunkach widzenia fotopowego (dziennego) wystąpi głównie odpowiedź czopków, skotopowego (nocnego) pręcików. ERG błyskowe podstawowe parametry 15
16 Elektrody do odbioru ERG Wymagania stawiane wzmacniaczowi ERG Pasmo Hz Impedancja wejściowa - >10MOhm CMRR - potencjały elektrodowe Nie należy stosować filtrów sieciowych 50Hz/60Hz (pasmowozaporowych) 16
17 ERG wieloogniskowe- multifocal ERG Ograniczenie całopolowego ERG uzyskiwana informacja dotyczy całej siatkówki. W przypadku schorzeń/uszkodzeń dotykających mniej niż około 20% siatkówki uzyskuje się zazwyczaj prawidłowy wynik badania ERG. Rozwiązanie pobudzać selektywnie wybrane fragmenty siatkówki, odbierając potencjały powstające w wyniku reakcji części siatkówki. Zazwyczaj badanie obejmuje 61 lub 103 obszary, a sygnały są rejestrowane głównie w warunkach widzenia dziennego. Obszary pobudzane mają powierzchnię ok. 100um2, zbieranie danych trwa ok. 10s. ISCEV Guidelines for clinical multifocal electroretinography (2007 edition). International Society for Clinical Electrophysiology of Vision ERG wieloogniskowe- multifocal ERG Selektywne pobudzanie fragmentów siatkówki, odbierając potencjały powstające w wyniku reakcji części siatkówki. Zazwyczaj badanie obejmuje 61 lub 103 obszary, a sygnały są rejestrowane głownie w warunkach widzenia dziennego. Obszary pobudzane mają powierzchnię ok. 100um2, zbieranie danych trwa ok. 10s Selektywny bodziec ma postać jak poniżej (prezentowany na ekranie): pojedyncza odpowiedź mferg ISCEV Guidelines for clinical multifocal electroretinography (2007 edition). International Society for Clinical Electrophysiology of Vision 17
18 ERG wieloogniskowe- multifocal ERG wyniki uzyskiwane przy bodźcu 61 i 103-elementowym (500nV, 100ms) ISCEV Guidelines for clinical multifocal electroretinography (2007 edition). International Society for Clinical Electrophysiology of Vision ERG wieloogniskowe- multifocal ERG Widok dna oka mapa mferg 18
19 ERG wieloogniskowe- multifocal ERG Napięcia fal b osoby z AMD (Age-Related Macular Degeneration - starcza degeneracja plamki) ze 103 punktów pomiarowych przedstawione w 3D i kolorze rys. lewy. Po prawej stronie wynik osoby zdrowej. ERG wieloogniskowe- multifocal ERG Odpowiedzi rejestrowane są w takich samych warunkach (elektroda rogówkowa) jak w przypadku ERG całopolowego. Pobudzenie jest inne pozwala na pomiar mapy odpowiedzi fragmentów siatkówki. Fragmenty siatkówki są stymulowane z 50% prawdopodobieństwem podczas każdej stymulacji. Poszczególne fragmenty są stymulowane sekwencyjne (pseudolosowo). Skorelowanie fragmentów odebranego ERG z algorytmem pobudzania można odtworzyć lokalne odpowiedzi/sygnały ERG. Uwaga sygnały rejestrowane mogą zawierać pozostałości odpowiedzi na poprzednie pobudzenia, odpowiedzi na światło rozproszone na innych fragmentach siatkówki. Nie są to lokalnie rejestrowane potencjały. 19
20 ERG wieloogniskowe- multifocal ERG Uwaga sygnały te mogą zawierać skutki poprzednich pobudzeń, odpowiedzi na światło rozproszone na innych fragmentach siatkówki. Nie są to lokalnie rejestrowane potencjały. Wymagania stawiane wzmacniaczowi Dolna częstotliwość graniczna 3-10Hz Górna częstotliwość graniczna Hz, opadanie ch-ki 12db/oct Wzmocnienie rzędu dB Nie należy stosować filtrów sieciowych 50Hz/60Hz ERG wieloogniskowe- multifocal ERG Analiza sygnału Eliminacja artefaktów powodowanych przez ruchy czy błyski. Procedura badania powinna być podawana wraz z wynikiem badania. Uśrednianie przestrzenne w celu eliminacji szumu i filtracji uzyskiwanych sygnałów możliwe jest uśrednienie odpowiedzi danego obszaru z fragmentami odpowiedzi obszarów sąsiadujących (filtracja dolnoprzepustowa) może filtrować słabe zmiany na granicach obszarów o różnych właściwościach (dysfunkcja). 20
21 ERG wieloogniskowe- multifocal ERG Analiza sygnału Parametry lokalnego ERG Amplitudy N1, P1 i N2. Czasy latencji pików mierzone są od podania bodźca. ERG wieloogniskowe- multifocal ERG Połączenie badania pola widzenia i wieloogniskowego ERG 21
22 ERG wieloogniskowe- uśrednianie (grupowanie) odpowiedzi Wyznaczane są sumy odpowiedzi uzyskiwanych w koncentrycznych pierścieniach. Następnie sumy są normalizowane do powierzchni pierścieni uzyskuje się gęstość odpowiedzi. EOG Malcolm Brown, Michael Marmor, Vaegan, Eberhard Zrenner, Mitchell Brigell Michael Bach ISCEV Standard for Clinical Electro-oculography (EOG) 2006 Doc Ophthalmol (2006) 113:
23 EOG EOG potencjał powstający między błona Brucha (błona podstawna) a rogówką. Potencjał ten zależny jest od oświetlenia (niższy przy braku oświetlenia, wyższy w warunkach oświetlenia). Ruch oczu powoduje zmianę tego potencjału. Jeśli badany porusza gałkami naprzemiennie w lewo i w prawo, stosując odpowiednią konfigurację elektrod i bodźce można zarejestrować zmiany tego potencjału. Małe źródła czerwonego światła są usytuowane na skrajach kąta 30 stopni (w czaszy lub na ekranie). Elektroda odniesienia usytuowana jest na czole lub płatku ucha. Pomiar wykonywany jest w ciemności oraz przy natężeniu oświetlenia 100cd/m2. Potencjał ten świadczy o prawidłowości funkcjonowania siatkówki i warstwy pigmentowej. EOG Wymagania stawiane wzmacniaczowi Dolna częstotliwość graniczna 0 lub 0.1Hz Górna częstotliwość graniczna 30Hz Impedancja między dowolną parą elektrod poniżej 5kOhm 23
24 ENG Badanie narządu równowagi Elektronystagmogram - ENG ENG potencjał związany ze spontaniczną aktywnością ruchową (tzw. oczopląsem) oka. Szczególnie istotny jest oczopląs w płaszczyźnie poziomej. Analiza oczopląsu wywołanego określonymi bodźcami jest uważana za bardzo dobrą metodę badania narzadu równowagi (badanie narządu przedsionkowego błędnika - zmysł równowagi). Bodziec stanowi wlewanie w odstępach ok. 20s 10ml lub 100ml wody o temperaturze kolejno 20, 30 i 40C (próba Hollpike a), co na skutek wstrząsu termicznego wywołuje oczopląs. Sygnał ma pasmo 0-70Hz, powstaje między siatkówką a rogówką oka, różnica napięć między siatkówka (minus) a rogówką wynosi 10-30mV. Poziom sygnału na powierzchni skóry w okolicy oka wynosi ok. 7mv. 24
25 Badanie narządu równowagi ENG Wymagania stawiane wzmacniaczowi Dolna częstotliwość graniczna 0 lub 0.1Hz Górna częstotliwość graniczna 30Hz Impedancja między dowolną parą elektrod poniżej 5kOhm Wzrokowe potencjały wywołane VEP J. Vernon Odom, Michael Bach, Colin Barber, Mitchell Brigell, Michael F. Marmor, Alma Patrizia Tormene, Graham E. Holder & Vaegan Visual evoked potentials standard (2004) Documenta Ophthalmologica 108: ,
26 VEP Wzrokowe potencjały wywołane (ang. visual evoked potential- VEP)- potencjały wywołane rejestrowane z powierzchni głowy w trakcie stymulacji osoby badanej bodźcem wzrokowym. Może być nim błysk światła lub pojawiająca się w polu widzenia czarno-biała szachownica o zmieniających się polach (czarne zmieniają się na białe np. co sekundę). Badanie wzrokowych potencjałów wywołanych jest jedną z niewielu obiektywnych metod badania wzroku pacjenta poprzez rejestrację potencjałów elektrycznych powstających podczas przechodzenia sygnałów od siatkówki do mózgu. Z uwagi na stosunkowo niską amplitudę VEP względem tła, czyli spontanicznej czynności elektrycznej mózgu (rejestrowanej jako EEG) konieczne jest uśrednienie wielu odpowiedzi na bodziec. VEP VEP rejestruje się z powierzchni głowy położonej nad korą wzrokową, czyli w okolicy potylicznej. Podczas badania wzrokowego potencjału wywołanego dominujący załamek pojawia sie z latencją około 100 milisekund (czyli odległości czasowej od bodźca stymulującego); jego wartość najczęściej jest dodatnia. VEP: piki i czasy latencji: 26
27 VEP Wymagania stawiane wzmacniaczowi i systemowi akwizycji Dolna częstotliwość graniczna 1Hz lub poniżej, (filtr rzędu 2 lub niższego) Górna częstotliwość graniczna 100Hz lub powyżej (filtr rzędu 4 lub niższego) Wzmocnienie - 20*10^3 50*10^3 [V/V] CMRR - >120dB Impedancja wejściowa wzmacniacza > 100MOhm Nie zaleca się używania filtrów sieciowych (pasmowozaporowych) VEP Wymagania stawiane wzmacniaczowi i systemowi akwizycji cd Wymagane jest zastosowanie izolacji galwanicznej (bariery) (IEC typ BF) Automatyczna eliminacja artefaktów (sygnał o amplitudzie powyżej 50µV) Impedancja między dowolną parą elektrod poniżej 5kOhm, elektrody Ag-AgCl2 Próbkowanie min. 500Hz, Rozdzielczość konwersji A/C min. 12 bitów Zalecana liczba uśrednień 64, czas trwania uśrednianego sygnału 250ms (lub 500ms) 27
28 Kompatybilność elektromagnetyczna Kompatybilność elektromagnetyczna Kompatybilność elektromagnetyczna odporność/wrażliwość na zakłócenia elektromagnetyczne Źródła zakłóceń emisja (pole elektromagnetyczne), przewodzenie, ładunki elektrostatyczne (wyładowania) Emisje wynik funkcjonowania nadajników (zwłaszcza TV, ale także telefonów komórkowych, walkie-talkie, telefonów bezprzewodowych, radio CB) Ładunki elektrostatyczne gromadzą się w wyniku oddziaływań mechanicznych na ludziach, narzędziach etc. Układy mające małe napięcia przebicia mogą zostać uszkodzone. Stopień wpływania zakłóceń elektromagnetycznych na systemy i urządzenia medyczne zależy np. od długości nieekranowanych przewodów elektrodowych, od relacji długość przewodu długość fali (nieparzyste wielokrotności ¼ długości fali prowadzą do wzmocnienia indukowanej interferencji), zastosowanych technik uziemiania i ekranowania, organizacji układów elektronicznych urządzenia. 28
29 Kompatybilność elektromagnetyczna Sprzęt medyczny jest szczególnie wrażliwy na zakłócenia elektromagnetyczne z racji niskich poziomów sygnałów powstających w sensorach Możliwości przedostawania się zakłóceń do aparatury medycznej Wnikanie Przeciek fala dostaje się do obudowy przez otwory/szczeliny, istotne zwłaszcza przy dużych f i odkształconych (obecność składowych harmonicznych) przebiegach (otwór wpuszczający ma wymiar ok. pół długości fali dla 1GHz jest to szczelina 0.5mm). Przewodzenie indukowanie się prądów w przewodach Kompatybilność elektromagnetyczna Kompatybilność elektromagnetyczna odporność/wrażliwość na zakłócenia elektromagnetyczne Jeden z istotnych problemów stanowią intermodulacje i modulacje skrośne w wyniku których powstają produkty interferencji harmonicznych sygnałów mierzonych/odbieranych i zakłóceń. Medyczne systemy zakłócane systemy telemetryczne, stymulatory, systemy pomiarowe Zapobieganie ekranowanie, stosowanie pułapek/układów filtrów 29
30 Kompatybilność elektromagnetyczna Eliminacja zakłóceń kabel o długości równej λ/2 ze zwarciem impedancja wejściowa stanowi zwarcie dla częstotliwości f=c/λ. Z we Zobc + jztg( kl) Zobc + jztg(2πl / λ) = Z = Z = 0 Z + jz tg( kl) Z + jz tg(2πl / λ) obc obc!!!! Kompatybilność elektromagnetyczna Pułapki falowe/filtry Pułapki falowe lub filtry wstawiane w torze odbiorczym pasmowozaporowe, pasmowoprzepustowe, lub ich połączenia 30
31 Kompatybilność elektromagnetyczna Pułapki falowe/filtry Filtry górnoprzepustowe - asymetryczny - symetryczny Układ filtrów/pułapek tworzący filtr pasmowo-zaporowy Kompatybilność elektromagnetyczna Eliminacja zakłóceń elektromagnetycznych Filtracja zakłóceń (filtry dolno przepustowe typu pi na wszystkich liniach sygnału i zasilania; pasmo dobrane tak by zniekształcać widma sygnału; przyjmuje się, że fg<<300/2l, gdzie L długość odsłoniętego przewodu czujnika (dla 20cm fg~=50mhz) Podwójne ekranowanie + filtr 31
32 Kompatybilność elektromagnetyczna Eliminacja zakłóceń elektromagnetycznych Sprzęt medyczny jest szczególnie wrażliwy na zakłócenia elektromagnetyczne elektrokardiograf pacjent stanowi antenę, która odbiera zakłócenia elektromagnetyczne, podobnie jak przewody elektrodowe (odsłonięte na końcach) rozwiązanie zastosowanie filtrów dolnoprzepustowych na wejściu wzmacniacza (uwaga może wpływać na symetrię i CMRR układu). 32
Elektroniczna aparatura medyczna
Elektroniczna aparatura medyczna SEMESTR V Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektroniczna aparatura medyczna V Narząd
Elektroniczna aparatura medyczna
Elektroniczna aparatura medyczna SEMESTR V Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektroniczna aparatura medyczna V arząd
Wprowadzenie do technologii HDR
Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii
Temat: Budowa i działanie narządu wzroku.
Temat: Budowa i działanie narządu wzroku. Oko jest narządem wzroku. Umożliwia ono rozróżnianie barw i widzenie przedmiotów znajdujących się w różnych odległościach. Oko jest umiejscowione w kostnym oczodole.
Analizy Ilościowe EEG QEEG
Analizy Ilościowe EEG QEEG Piotr Walerjan PWSIM MEDISOFT 2006 Piotr Walerjan MEDISOFT Jakościowe vs. Ilościowe EEG Analizy EEG na papierze Szacunkowa ocena wartości częstotliwości i napięcia Komputerowy
METODY BADAŃ W OKULISTYCE
Dr med. Joanna Wąsiewicz-Rager Wywiad okulistyczny przyczyna zgłoszenia się do okulisty przebyte choroby narządu wzroku urazy gałki ocznej wywiad dotyczący wieku dziecięcego-zezy dotychczasowa korekcja
Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH
Grupa: Elektrotechnika, sem 3., wersja z dn. 03.10.2011 Podstawy Techniki Świetlnej Laboratorium Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH Opracowanie wykonano
Jaki kolor widzisz? Doświadczenie pokazuje zjawisko męczenia się receptorów w oku oraz istnienie barw dopełniających. Zastosowanie/Słowa kluczowe
1 Jaki kolor widzisz? Abstrakt Doświadczenie pokazuje zjawisko męczenia się receptorów w oku oraz istnienie barw Zastosowanie/Słowa kluczowe wzrok, zmysły, barwy, czopki, pręciki, barwy dopełniające, światło
8. Narządy zmysłów. 1. Budowa i działanie narządu wzroku. 2. Ucho narząd słuchu i równowagi. 3. Higiena oka i ucha
8. Narządy zmysłów 1. Budowa i działanie narządu wzroku 2. Ucho narząd słuchu i równowagi 3. Higiena oka i ucha 4. Zmysły powonienia, smaku i dotyku Senses the ability to perceive information from the
Fotometria i kolorymetria
9. (rodzaje receptorów; teoria Younga-Helmholtza i Heringa; kontrast chromatyczny i achromatyczny; dwu- i trzywariantowy system widzenia ssaków; kontrast równoczesny). http://www.if.pwr.wroc.pl/~wozniak/
ZESTAWIENIE WYMAGANYCH PARAMETRÓW TECHNICZNYCH Przedmiot zamówienia: System do badania EMG, przewodnictwa nerwowego i
ZESTAWIENIE WYMAGANYCH PARAMETRÓW TECHNICZNYCH Przedmiot zamówienia: System do badania EMG, przewodnictwa nerwowego i potencjałów wywołanych LP NAZWA PARAMETRU WARTOŚĆ OFEROWANE WYMAGANA PARAMETRY SKALA
Tajemnice świata zmysłów oko.
Tajemnice świata zmysłów oko. Spis treści Narządy zmysłów Zmysły u człowieka Oko Budowa oka Model budowy siatkówki Działanie oka Kolory oczu Choroby oczu Krótkowzroczność Dalekowzroczność Astygmatyzm Akomodacja
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
BIOLOGICZNE MECHANIZMY ZACHOWANIA I SYSTEMY PERCEPCYJNE UKŁAD WZROKOWY ŹRENICA ROGÓWKA KOMORA PRZEDNIA TĘCZÓWKA SOCZEWKI KOMORA TYLNA MIĘŚNIE SOCZEWKI
BIOLOGICZNE MECHANIZMY ZACHOWANIA I SYSTEMY PERCEPCYJNE UKŁAD WZROKOWY MIĘŚNIE SOCZEWKI TĘCZÓWKA ŹRENICA ROGÓWKA KOMORA PRZEDNIA KOMORA TYLNA SOCZEWKA MIĘŚNIE SOCZEWKI NACZYNIÓWKA TWARDÓWKA CIAŁKO SZKLISTE
WOJSKOWA AKADEMIA TECHNICZNA. im. Jarosława Dąbrowskiego WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA Analiza falkowa wzrokowych potencjałów wywołanych... (temat pracy) sierż. pchor. inż. Paweł Mieczysław STASIAKIEWICZ,
Elektromiograf NMA-4-01
Urządzenie przeznaczone do badań neurologicznych i neurofizjologicznych w dziedzinie sportu i medycyny. Elektroneuromiograf z możliwością badania potencjałów wywołanych mózgu 2, 4 lub 5-kanałowe urządzenie
Zmysł wzroku Narząd wzroku Zdolność układu nerwowego do odbierania bodźców świetlnych i przetwarzania ich w mózgu na wrażenia wzrokowe jest określana jako zmysł wzroku. Anatomiczną postacią tego zmysłu
Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK
Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK ODKRYWCA FAL RADIOWYCH Fale radiowe zostały doświadczalnie odkryte przez HEINRICHA HERTZA. Zalicza się do nich: fale radiowe krótkie, średnie i długie,
Fizjologia czlowieka seminarium + laboratorium. M.Eng. Michal Adam Michalowski
Fizjologia czlowieka seminarium + laboratorium M.Eng. Michal Adam Michalowski michal.michalowski@uwr.edu.pl michaladamichalowski@gmail.com michal.michalowski@uwr.edu.pl https://mmichalowskiuwr.wordpress.com/
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
ØYET - OKO ROGÓWKA (HORNHINNEN)
ØYET - OKO ROGÓWKA (HORNHINNEN) Błona (hinne) ta to okno oka na świat. Ma 5 mm grubości i składa się z 5 warstw. Warstwa zewnętrzna to nabłonek (epitelet). Chroni on oko przed uszkodzeniem i zapewnia gładką
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
Jeden z narządów zmysłów. Umożliwia rozpoznawanie kształtów, barw i ruchów. Odczytuje moc i kąt padania światła. Bardziej wyspecjalizowanie oczy
I CO MU ZAGRAŻA Jeden z narządów zmysłów. Umożliwia rozpoznawanie kształtów, barw i ruchów. Odczytuje moc i kąt padania światła. Bardziej wyspecjalizowanie oczy pozwalają np. widzieć w ciemności. Zewnętrzne
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku elektroradiologia w roku akademickim 2017/2018.
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku elektroradiologia w roku akademickim 2017/2018. w1. Platforma elearningowa stosowana na kursie. w2. Metodyka eksperymentu fizycznego - rachunek błędów.
NARZĄD WZROKU
NARZĄD WZROKU Oko można porównać do kamery cyfrowej, wyposażonej w: system soczewek (rogówka, soczewka, ciało szkliste) automatyczną regulację ostrości obrazu (akomodacja) automatyczną regulację przesłony
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
Akwizycja obrazów. Zagadnienia wstępne
Akwizycja obrazów. Zagadnienia wstępne Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 A. Przelaskowski, Techniki Multimedialne,
ĆWICZENIE NR 4 ZAKŁÓCENIA ELEKTRYCZNE W APARATURZE ELEKTROMEDYCZNEJ
Cel ćwiczenia ĆWICZENIE NR 4 ZAKŁÓCENIA ELEKTRYCZNE W APARATURZE ELEKTROMEDYCZNEJ Identyfikacja zakłóceń generowanych przez otoczenie i przez aparaturę elektryczną oraz elektromedyczną. Badanie wpływu
Zmysły. Wzrok 250 000 000. Węch 40 000 000. Dotyk 2 500 000. Smak 1 000 000. Słuch 25 000. Równowaga?
Zmysły Rodzaj zmysłu Liczba receptorów Wzrok 250 000 000 Węch 40 000 000 Dotyk 2 500 000 Smak 1 000 000 Słuch 25 000 Równowaga? Fale elektromagnetyczne Wzrok Informacje kształt zbliżony do podstawowych
LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA
LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA Instrukcja do ćwiczenia nr 4 Temat: Wyznaczanie współczynnika sprawności świetlnej źródła światła 1 I. Wymagania do ćwiczenia 1. Wielkości fotometryczne, jednostki..
WYMAGANIA TECHNICZNE. Producent / Firma: Typ: Rok produkcji: 2007
SYSTEM DO BADAŃ EMG, PRZEWODNICTWA NERWÓW (NCS) SOMATOSENSORYCZNYCH (SEP) I MOTORYCZNYCH (MEP)POTENCJAŁÓW WYWOŁANYCH ORAZ MONITOROWANIA ŚRÓDOPERACYJNEGO WRAZ ZE STYMULACJĄ MAGNETYCZNĄ WYMAGANIA TECHNICZNE
Metody analizy zapisu EEG. Piotr Walerjan
Metody analizy zapisu EEG Piotr Walerjan Metody automatyczne i semiautomatyczne w EEG automatyczna detekcja (i zliczanie) zdarzeń wykrywanie wyładowań, napadów tworzenie hipnogramów analizy widmowe, wykresy
Barbara Polaczek-Krupa. Ocena grubości warstwy komórek zwojowych siatkówki w okolicy plamki GCL w diagnostyce jaskry pierwotnej otwartego kąta
Barbara Polaczek-Krupa Ocena grubości warstwy komórek zwojowych siatkówki w okolicy plamki GCL w diagnostyce jaskry pierwotnej otwartego kąta 1 CEL PREZENTACJI Są 3 powody, żeby badać komórki zwojowe:
Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor
Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,
Laboratorium Kompatybilności Elektromagnetycznej i Jakości Energii Elektrycznej.
Laboratorium Kompatybilności Elektromagnetycznej i Jakości Energii. Opiekun: mgr inż. Piotr Leżyński Sala nr 9, budynek A-9 Laboratorium świadczy usługi pomiarowe w obszarze EMC i jakości energii elektrycznej.
Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.
6COACH 43 Fala na sprężynie Program: Coach 6 Cel ćwiczenia - Pokazanie fali podłużnej i obserwacja odbicia fali od końców sprężyny. (Pomiar prędkości i długości fali). - Rezonans. - Obserwacja fali stojącej
Filtry aktywne filtr środkowoprzepustowy
Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa
ZASADA DZIAŁANIA miernika V-640
ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,
UMO-2011/01/B/ST7/06234
Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Rejestracja i analiza sygnału EKG
Rejestracja i analiza sygnału EKG Aparat do rejestracji czynności elektrycznej serca skonstruowany przez W. Einthovena. Proszę zauważyć w jakich miejscach na ciele zbierana jest sygnał. Rozchodzenie się
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Dźwięk. Cechy dźwięku, natura światła
Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000
Problematyka wpływu pól p l magnetycznych pojazdów w trakcyjnych na urządzenia. srk. Seminarium IK- Warszawa r.
Problematyka wpływu pól p l magnetycznych pojazdów w trakcyjnych na urządzenia mgr inż.. Adamski Dominik, mgr inż. Furman Juliusz, dr inż.. Laskowski Mieczysław Seminarium IK- Warszawa 09.09.2014r. 1 1
PDF stworzony przez wersję demonstracyjną pdffactory
gdzie: vi prędkość fali w ośrodku i, n1- współczynnik załamania światła ośrodka 1, n2- współczynnik załamania światła ośrodka 2. Załamanie (połączone z częściowym odbiciem) promienia światła na płaskiej
Demodulator FM. o~ ~ I I I I I~ V
Zadaniem demodulatora FM jest wytworzenie sygnału wyjściowego, który będzie proporcjonalny do chwilowej wartości częstotliwości sygnału zmodulowanego częstotliwościowo. Na rysunku 12.13b przedstawiono
ZAKRES BADAŃ BEZPIECZEŃSTWO UŻYTKOWANIA I EMC CELAMED Centralne Laboratorium Aparatury Medycznej Aspel S.A.
Przedstawiony formularz umożliwia wybór badań będących przedmiotem zamówienia, sporządzenia planu badań. Dla ułatwienia wyboru przedstawiono krótką charakterystykę techniczną możliwości badawczych, oraz
Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 15/15
PL 226438 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226438 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 406862 (22) Data zgłoszenia: 16.01.2014 (51) Int.Cl.
voice to see with your ears
voice to see with your ears Łukasz Trzciałkowski gr00by@mat.umk.pl 2007-10-30 Zmysł słuchu to zmysł umożliwiający odbieranie (percepcję) fal dźwiękowych. Jest on wykorzystywany przez organizmy żywe do
1. OPIS PRZEDMIOTU ZAMÓWIENIA
Numer referencyjny: IK.PZ-380-06/PN/18 Załącznik nr 1 do SIWZ Postępowanie o udzielenie zamówienia publicznego, prowadzone w trybie przetargu nieograniczonego pn. Dostawa systemu pomiarowego do badań EMC,
Metody badań składu chemicznego
Wydział Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Metody badań składu chemicznego Ćwiczenie : Elektrochemiczna analiza śladów (woltamperometria) (Sprawozdanie drukować dwustronnie
KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim OKO I WIDZENIE Nazwa w języku angielskim EYE AND VISION. Kierunek studiów (jeśli dotyczy): OPTYKA Specjalność
Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi.
Parametry anten Polaryzacja anteny W polu dalekim jest przyjęte, że fala ma charakter fali płaskiej. Podstawową właściwością tego rodzaju fali jest to, że wektory natężenia pola elektrycznego i magnetycznego
Laboratorium Elektroniczna aparatura Medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura Medyczna Ćwiczenie REOMETR IMPEDANCYJY Opracował: dr inŝ. Piotr Tulik Zakład InŜynierii Biomedycznej Instytut Metrologii i InŜynierii Biomedycznej
1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu:
Załącznik do rozporządzenia Ministra Pracy i Polityki Społecznej z dnia 27 maja 2010 r. Wyznaczanie poziomu ekspozycji na promieniowanie optyczne 1. Promieniowanie nielaserowe 1.1. Skutki oddziaływania
Szkoła Główna Służby Pożarniczej Zakład Ratownictwa Technicznego i Medycznego. Laboratorium Bezpieczeństwa Ratownictwa.
Szkoła Główna Służby Pożarniczej Zakład Ratownictwa Technicznego i Medycznego Laboratorium Bezpieczeństwa Ratownictwa Ćwiczenie nr 3 Temat: Badanie indywidualnego pola widzenia w różnych typach masek Warszawa
PL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203822 (13) B1 (21) Numer zgłoszenia: 358564 (51) Int.Cl. G01N 19/04 (2006.01) G01N 29/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego
Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
3.5 Wyznaczanie stosunku e/m(e22)
Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.
PROFESJONALNY MULTIMETR CYFROWY ESCORT-99 DANE TECHNICZNE ELEKTRYCZNE
PROFESJONALNY MULTIMETR CYFROWY ESCORT-99 DANE TECHNICZNE ELEKTRYCZNE Format podanej dokładności: ±(% w.w. + liczba najmniej cyfr) przy 23 C ± 5 C, przy wilgotności względnej nie większej niż 80%. Napięcie
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Układy i Systemy Elektromedyczne
UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 2 Elektroniczny stetoskop - głowica i przewód akustyczny. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
DIPOLOWY MODEL SERCA
Ćwiczenie nr 14 DIPOLOWY MODEL SERCA Aparatura Generator sygnałów, woltomierz, plastikowa kuweta z dipolem elektrycznym oraz dwiema ruchomymi elektrodami pomiarowymi. Rys. 1 Schemat kuwety pomiarowej Rys.
Załącznik nr 3 WYMOGI TECHNICZNE APARATURY DO BADAŃ EMC ZADANIE 1: 1.1 Dostawa urządzeń do pomiaru emisji promieniowanej i przewodzonej: 1.1 Analizator widma umożliwiający, przy zastosowaniu wyposażenia
Mechanoreceptory (dotyk, słuch) termoreceptory i nocyceptory
Mechanoreceptory (dotyk, słuch) termoreceptory i nocyceptory Iinformacja o intensywności bodźca: 1. Kodowanie intensywności bodźca (we włóknie nerwowym czuciowym) odbywa się za pomocą zmian częstotliwość
PLAN KONSPEKT. do przeprowadzenia zajęć z przedmiotu. Wprowadzenie do pomiarów systemów transmisyjnych
PLAN KONSPEKT do przeprowadzenia zajęć z przedmiotu Wprowadzenie do pomiarów systemów transmisyjnych TEMAT: Pomiary systemów transmisyjnych CEL: Zapoznanie uczniów z podstawami pomiarów systemów transmisyjnych.
Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.
1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;
POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH
LŁ ELEKTRONIKI WAT POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH dr inż. Leszek Nowosielski Wojskowa Akademia Techniczna Wydział Elektroniki Laboratorium Kompatybilności Elektromagnetycznej LŁ
dr n. med. FEBO Wojciech Gosławski prof. dr hab. n. med., FEBO Wojciech Lubiński II Katedra i Klinika Okulistyki PUM w Szczecinie
dr n. med. FEBO Wojciech Gosławski prof. dr hab. n. med., FEBO Wojciech Lubiński II Katedra i Klinika Okulistyki PUM w Szczecinie Zastosowanie kliniczne badań elektrofizjologicznych narządu wzroku. zatwierdzone
Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.
Lekcja 19 Temat: Wzmacniacze pośrednich częstotliwości. Wzmacniacze pośrednich częstotliwości zazwyczaj są trzy- lub czterostopniowe, gdyż sygnał na ich wejściu musi być znacznie wzmocniony niż we wzmacniaczu
Wykład 8. Siatkówka i generacja sygnału nerwowego
Wykład 8 Siatkówka i generacja sygnału nerwowego Dno oka Dno oka Tętnice i żyły Plamka ślepa (dysk optyczny Dołek środkowy Siatkówka układ nerwowy wyższe obszary mózgu (jądro ciała kolankowatego bocznego
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
1. Wstęp. Elektrody. Montaże
1. Wstęp Elektroencefalogram (EEG) stanowi rejestrację elektrycznej aktywności kory mózgowej. Większość czynności elektrycznej, rejestrowanej przez elektrody umieszczone na skórze głowy, wynika z sumowania
BADANIE ZMYSŁU WZROKU
BADANIE ZMYSŁU WZROKU Badanie Ślepej Plamki Mariottea macula ceca Tarcza nerwu wzrokowego (discus nervi optici) ( Drugi nerw czaszkowy N.Opticus (II) Miejsce na siatkówce całkowicie niewrażliwe na bodźce
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
OPIS PRZEDMIOTU ZAMÓWIENIA ZESTAWIENIE PARAMETRÓW TECHNICZNO UŻYTKOWYCH ODCINAJĄCYCH ZESTAWIENIE WYMAGANYCH PARAMETRÓW TECHNICZNYCH
Nr sprawy ZP 25/2010 Załącznik nr 4 do SIWZ OPIS PRZEDMIOTU ZAMÓWIENIA Nazwa i typ aparatu: Autorefraktokeratometr... Rok produkcji: 2010r. Lp. 1 System pomiarowy oparty na czujniku Hartmanna- Shacka wykorzystujący
Zaburzenia ustawienia i ruchomości gałek ocznych, zez czyli strabismus
Zez Zaburzenia ustawienia i ruchomości gałek ocznych, zez czyli strabismus Wodzenie oczami we wszystkich możliwych kierunkach, warunkujące obser wację przedmiotów i obiektów ruchomych w szeroko rozumianym
Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych
Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310) Wydział/Kierunek Nazwa zajęć laboratoryjnych Nr zajęć
BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO
Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,
Zmysł słuchu i równowagi
Zmysł słuchu i równowagi Ucho Jest narządem słuchu i równowagi. Składa się zasadniczo z trzech części: ucha zewnętrznego (1), środkowego (2) i wewnętrznego (3). Ucho zewnętrzne Składa się z małżowiny usznej
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Oświetlenie oraz pole elektryczne i magnetyczne na stanowisku do pracy z komputerem.
Oświetlenie oraz pole elektryczne i magnetyczne na stanowisku do pracy z komputerem. I. Oświetlenie. 1. Przedmiot. Pomiar parametrów technicznych pracy wzrokowej na stanowiskach wyposażonych w monitory
WOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int
WOLOMIEZ CYFOWY Metoda czasowa prosta int o t gdzie: stała całkowania integratora o we stąd: o we Ponieważ z f z więc N w f z f z a stąd: N f o z we Wpływ zakłóceń na pracę woltomierza cyfrowego realizującego
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze
MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.
MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.
Promieniowanie elektromagnetyczne w środowisku pracy. Ocena możliwości wykonywania pracy w warunkach oddziaływania pól elektromagnetycznych
Promieniowanie elektromagnetyczne w środowisku pracy Ocena możliwości wykonywania pracy w warunkach oddziaływania pól elektromagnetycznych Charakterystyka zjawiska Promieniowanie elektromagnetyczne jest
Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII
Pomiary przemysłowe Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII Efekty kształcenia: Ma uporządkowaną i pogłębioną wiedzę z zakresu metod pomiarów wielkości fizycznych w przemyśle. Zna
Grupa: Elektrotechnika, sem 3, wersja z dn. 03.11.2015 Technika Świetlna Laboratorium
6-965 Poznań tel. (-61) 6652688 fax (-61) 6652389 Grupa: Elektrotechnika, sem 3, wersja z dn. 3.11.2 Technika Świetlna Laboratorium Ćwiczenie nr 3 Temat: BADANIE POLA WIDZENIA Opracowanie wykonano na podstawie:
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
PODSTAWY BARWY, PIGMENTY CERAMICZNE
PODSTAWY BARWY, PIGMENTY CERAMICZNE Barwa Barwą nazywamy rodzaj określonego ilościowo i jakościowo (długość fali, energia) promieniowania świetlnego. Głównym i podstawowym źródłem doznań barwnych jest
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control 1. Wstęp 2.Próbkowanie i odtwarzanie sygnałów 3. Charakterystyka sygnałów analogowych 4. Aliasing 5. Filtry antyaliasingowe 6.
Instrukcja do ćwiczenia nr 23. Pomiary charakterystyk przejściowych i zniekształceń nieliniowych wzmacniaczy mikrofalowych.
Instrukcja do ćwiczenia nr 23. Pomiary charakterystyk przejściowych i zniekształceń nieliniowych wzmacniaczy mikrofalowych. I. Wstęp teoretyczny. Analizator widma jest przyrządem powszechnie stosowanym
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne