Algorytm Chaitin a. Problem kolorowania grafu. Krzysztof Lewandowski Mirosław Jedynak
|
|
- Roman Grzybowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algorytm Chaitin a Problem kolorowania grafu Krzysztof Lewandowski Mirosław Jedynak
2 Wstęp Szybkie zwiększenie prędkości procesorów wolniejszy rozwój prędkości dostępu do pamięci Kilkupoziomowy dostęp do pamięci (rejestry L1, L2, RAM, HD) Problem optymalnego wykorzystania poszczególnych rodzajów pamięci zadanie dla kompilatora
3 Przydział rejestrów Dostęp do rejestrów - najszybszy Zależne od architektury ilość i rodzaj rejestrów Z wymianą zawartości rejestrów związany jest dodatkowy koszt czas Najbardziej popularna metoda to k-kolorowanie grafu takie oznaczenie wszystkich wierzchołków grafu (korzystając z k kolorów), aby żadne sąsiadujące wierzchołki nie miały tego samego koloru G.J. Chaitin w publikacji pt. Register allocation via graph coloring zademonstrował, że problem przydziału rejestrów jest izomorficzny ze znanym problemem kolorowania grafu. k ilość rejestrów procesora Problem NP-zupełny dla k>2 algorytmy heurystyczne
4 Graf zależności W oparciu o kolejność instrukcji kompilator tworzy szereg grafów zależności (interference graph) Wierzchołek reprezentuje tymczasową wartość Krawędź (t 1,t 2 ) wskazuje że zmienne t 1 i t 2 nie mogą zostać przypisane do jednego rejestru (obie wartości są używane równocześnie)
5 Algorytm kolorowania 1. Build budowa grafów zależności na podstawie informacji o czasie życia zmiennych 2. Simplify Odkładanie na stos lokalnie kolorowalnych wierzchołków 3. Spill Jeśli nie jest możliwe k-kolorowanie grafu to wybranie wierzchołka przeznaczonego do przechowania w pamięci 4. Select Ściąganie ze stosu i kolorowanie wierzchołków
6 Algorytm kolorowania Dla grafu G i k kolorów: (1) Usuń z G wierzchołek v, którego ilość sąsiadów jest mniejsza niż k i odłóż go na stos (2) Usuń wszystkie krawędzie wychodzące v i powtarzaj (1) dopóki (a) v (b): (a) Graf G jest pusty (b) Nie ma wierzchołka z mniej niż k sąsiadami (3) Jeśli spełniony warunek (2a) to pokoloruj graf ściągając ze stosu wierzchołki v odtwarzając strukturę grafu, przypisując wierzchołkowi v kolor c, którym nie jest pokolorowany żaden z sąsiadów v (4) Jeśli spełniony (2b) wybierz wierzchołek v przeznaczony do przesłania do pamięci, usuń go z grafu i rozpocznij od początku
7 x = y++ + z
8 x = y++ + z #1: leaf y #2: operate #1 + 1 #3: assign y := #2 : leaf z : operate #2 + : assign x :=
9 x = y++ + z #1 #1: leaf y #2: operate #1 + 1 #3: assign y := #2 : leaf z : operate #2 + : assign x := #3 #2
10 x = y++ + z #1 #1: leaf y #2: operate #1 + 1 #3: assign y := #2 : leaf z : operate #2 + : assign x := #3 #2
11 x = y++ + z #1 #1: leaf y #2: operate #1 + 1 #3: assign y := #2 : leaf z : operate #2 + : assign x := #3 #2
12 #1 #2 #3 Problem przydziału 3 rejestrów 3-kolorowanie grafu #8 #0 #9
13 #1 #2 #3 #8 #9 #0 Wybieranie wierzchołków o ilości sąsiadów mniejszej niż 3
14 #1 #2 #3 #8 #9 #0 Wybieranie wierzchołków o ilości sąsiadów mniejszej niż 3
15 # #9 #0 Wybieranie wierzchołków o ilości sąsiadów mniejszej niż 3
16 # #9 #0 Brak wierzchołków o ilości sąsiadów mniejszej niż 3 rozpoczynanie od początku bez wierzchołka #8
17 #1 #2 #3 #9 #0 Wybieranie wierzchołków o ilości sąsiadów mniejszej niż 3
18 3 2 1 #9 #0 Wybieranie wierzchołków o ilości sąsiadów mniejszej niż 3
19 Wybieranie wierzchołków o ilości sąsiadów mniejszej niż 3
20 Wybieranie wierzchołków o ilości sąsiadów mniejszej niż 3
21 7 #1 #2 # # #9 Ściąganie ze stosu i kolorowanie wierzchołków
22 7 #1 #2 # # #9 Ściąganie ze stosu i kolorowanie wierzchołków
23 7 #1 #2 # # #9 Ściąganie ze stosu i kolorowanie wierzchołków
24 7 #1 #2 # # #9 Ściąganie ze stosu i kolorowanie wierzchołków
25 7 #1 #2 # # #9 Ściąganie ze stosu i kolorowanie wierzchołków
26 7 #1 #2 # # #9 Ściąganie ze stosu i kolorowanie wierzchołków
27 7 #1 #2 # #0 3 2 #9 3-kolorowanie zakończone 1
28 Niedoskonałości Nawet dla prostych grafów może nie znaleźć rozwiązania (niemożliwe 2-kolorowanie): Nie jest zorientowany na przepływ sterowania (np. pętle) Działa na etapie kompilacji bardziej wydajny byłby na etapie linkowania wywołania procedur; zmienne globalne
29 Podsumowanie Bardzo prosty algorytm dla grafów, które są k-kolorowalne działa w liniowym czasie w stosunku do liczby wierzchołków Inne bardziej wydajne algorytmy np. Chaitin-Briggs i Callahan-Koblenz Implementowany w większości kompilatorów
Algorytm Chaitin a. Mirosław Jedynak Krzysztof Lewandowski. Wstęp. Teoria grafów a teoria kompilacji
Mirosław Jedynak Krzysztof Lewandowski Algorytm Chaitin a Wstęp Po raz kolejny spotykamy się z problemem dysproporcji między szybkością pracy procesorów i pamięci. W ciągu kilku ostatnich dekad szybkość
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr : Kolorowanie grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: -8-9-, p./ Zakład Badań Operacyjnych i Wspomagania
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Kolorowanie wierzchołków
Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Matematyka od zaraz zatrudnię
Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
MATEMATYKA DYSKRETNA - KOLOKWIUM 2
1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera
Znajdowanie skojarzeń na maszynie równoległej
11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia
Wykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie
Analiza konstrukcji zawierających wskaźniki. Piotr Błaszyński
Analiza konstrukcji zawierających wskaźniki Piotr Błaszyński Wskaźniki podejście naiwne: while(ptr!=null){ a[i] = *ptr; i++; ptr++; } po zmianie: N=length(ptr); alias_ptr = ptr; for(j=0 ; j
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych
Systemy wbudowane Wykład 11: Metody kosyntezy systemów wbudowanych Uproszczone metody kosyntezy Założenia: Jeden procesor o znanych parametrach Znane parametry akceleratora sprzętowego Vulcan Początkowo
ALHE. prof. Jarosław Arabas semestr 15Z
ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem
Język programowania: Lista instrukcji (IL Instruction List)
Język programowania: Lista instrukcji (IL Instruction List) Wykład w ramach przedmiotu: Sterowniki programowalne Opracował dr inż. Jarosław Tarnawski 08.12.2009 Norma IEC 1131 Języki tekstowe Języki graficzne
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka
Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów
Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem
. Podstawy Programowania 2. Grafy i ich reprezentacje. Arkadiusz Chrobot. 9 czerwca 2016
Podstawy Programowania 2 Grafy i ich reprezentacje Arkadiusz Chrobot Zakład Informatyki 9 czerwca 2016 1 42 Plan 1 Wstęp 2 Teoria grafów 3 Grafy jako struktury danych 4 Zastosowania grafów 2 42 Wstęp Wstęp
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
10. Kolorowanie wierzchołków grafu
p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/
Kolorowanie wierzchołków grafu
Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,
Opracowanie prof. J. Domsta 1
Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu
Generacja kodu docelowego
Generacja kodu docelowego Zagadnienia związane z generacją kodu Język wejściowy i wynikowy Zarządzanie pamięcią (adresacja) Wybór rozkazów maszynowych (koszty rozkazów) Przydział i wyznaczanie rejestrów
Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Złożoność obliczeniowa
Złożoność obliczeniowa Jakub Michaliszyn 26 kwietnia 2017 Są problemy rozstrzygalne i nierozstrzygalne Są problemy rozstrzygalne i nierozstrzygalne Jak rozwiązywać te, które są rozstrzygalne? Są problemy
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1 Tablice wielowymiarowe C umożliwia definiowanie tablic wielowymiarowych najczęściej stosowane
Kompilator języka C na procesor 8051 RC51 implementacja
Kompilator języka C na procesor 8051 RC51 implementacja Implementowane typy danych bit 1 bit char lub char signed 8 bitów char unsigned 8 bitów int lub signed int 16 bitów unsigned int 16 bitów long lub
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń)
Carl Adam Petri (1926-2010) Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń) Problemy statyczne Kommunikation mit Automaten praca doktorska (1962) opis procesów współbieżnych
Analiza semantyczna. Gramatyka atrybutywna
Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji
Wykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe
I. Struktury sterujące.bezpośrednie następstwo (A,B-czynności) Wykład _2 Algorytmy sortowania tablic Sortowanie bąbelkowe Elementy języka stosowanego do opisu algorytmu Elementy Poziom koncepcji Poziom
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Analiza efektywności przetwarzania współbieżnego. Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015
Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015 Źródła kosztów przetwarzania współbieżnego interakcje między procesami
ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI
J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał
5c. Sieci i przepływy
5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Podczas dziedziczenia obiekt klasy pochodnej może być wskazywany przez wskaźnik typu klasy bazowej.
Polimorfizm jest filarem programowania obiektowego, nie tylko jeżeli chodzi o język C++. Daje on programiście dużą elastyczność podczas pisania programu. Polimorfizm jest ściśle związany z metodami wirtualnymi.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których
Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:
Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych
Przykład planowania sieci publicznego transportu zbiorowego
TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie
Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego
Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992
Blockly Kodowanie pomoc.
1 Blockly Kodowanie pomoc. Słowniczek: Zmienna posiada nazwę wywoływaną w programie oraz miejsce na przechowywanie wartości. Instrukcja warunkowa pozwala na wykonanie instrukcji w zależności od warunku
Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer
Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny
Programowanie współbieżne Wykład 2. Iwona Kochańska
Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas
2012 Bentley Systems, Incorporated. Bentley Pointools V8i Przegląd
2012 Bentley Systems, Incorporated Bentley Pointools V8i Przegląd Przegląd Dlaczego potrzebujesz Bentley Pointools V8i? Co to jest? Filozofia Funkcje Szczegóły Kto to wykorzystuje? Wykorzystanie w przemyśle
Podstawowe techniki segmentacji obszarów
Podstawowe techniki segmentacji obszarów lokalne punkty (pixels) sa w l aczane do regionu na podstawie w lasności ich najbliższego sasiedztwa; globalne punkty (pixels) sa grupowane na podstawie w lasności
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
1. Liczby i w zapisie zmiennoprzecinkowym przedstawia się następująco
1. Liczby 3456.0012 i 0.000076235 w zapisie zmiennoprzecinkowym przedstawia się następująco a) 0.34560012 10 4 i 0.76235 10 4 b) 3.4560012 10 3 i 7.6235 10 5 c) 3.4560012 10 3 i 7.6235 10 5 d) po prostu
Porządek dostępu do zasobu: procesory obszary pamięci cykle procesora pliki urządzenia we/wy
ZAKLESZCZENIA w SO brak środków zapobiegania zakleszczeniom Zamówienia na zasoby => przydział dowolnego egzemplarza danego typu Zasoby w systemie typy; identyczne egzemplarze procesory obszary pamięci
Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania
Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych
Zarządzanie pamięcią. Od programu źródłowego do procesu. Dołączanie dynamiczne. Powiązanie programu z adresami w pamięci
Zarządzanie pamięcią Przed wykonaniem program musi być pobrany z dysku i załadowany do pamięci. Tam działa jako proces. Podczas wykonywania, proces pobiera rozkazy i dane z pamięci. Większość systemów
Od programu źródłowego do procesu
Zarządzanie pamięcią Przed wykonaniem program musi być pobrany z dysku i załadowany do pamięci. Tam działa jako proces. Podczas wykonywania, proces pobiera rozkazy i dane z pamięci. Większość systemów
Budowa systemów komputerowych
Budowa systemów komputerowych Krzysztof Patan Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski k.patan@issi.uz.zgora.pl Współczesny system komputerowy System komputerowy składa
Sortowanie przez wstawianie Insertion Sort
Sortowanie przez wstawianie Insertion Sort Algorytm sortowania przez wstawianie można porównać do sposobu układania kart pobieranych z talii. Najpierw bierzemy pierwszą kartę. Następnie pobieramy kolejne,
Wykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
Przesyłania danych przez protokół TCP/IP
Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności
Inż. Kamil Kujawski Inż. Krzysztof Krefta. Wykład w ramach zajęć Akademia ETI
Inż. Kamil Kujawski Inż. Krzysztof Krefta Wykład w ramach zajęć Akademia ETI Metody programowania Assembler Język C BASCOM Assembler kod maszynowy Zalety: Najbardziej efektywny Intencje programisty są
ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,
Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,
Planowanie przedsięwzięć
K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania
1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:
Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
System operacyjny System operacyjny
System operacyjny System operacyjny (ang. operating system) jest programem (grupą programów), który pośredniczy między użytkownikiem komputera a sprzętem komputerowym. Jest on niezbędny do prawidłowej
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Wstęp do programowania
Wstęp do programowania Przemysław Gawroński D-10, p. 234 Wykład 1 8 października 2018 (Wykład 1) Wstęp do programowania 8 października 2018 1 / 12 Outline 1 Literatura 2 Programowanie? 3 Hello World (Wykład
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Szeregowanie zadań. Wykład nr 3. dr Hanna Furmańczyk
Wykład nr 3 27.10.2014 Procesory identyczne, zadania niezależne, podzielne: P pmtn C max Algorytm McNaughtona 1 Wylicz optymalną długość C max = max{ j=1,...,n p j/m, max j=1,...,n p j }, 2 Szereguj kolejno
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Matematyka Dyskretna - zadania
zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu
Programowanie w języku C++ Grażyna Koba
Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej