Spis treści. 1 Modelowanie logiczne. Plan wykładu. 1 Modelowanie logiczne 1
|
|
- Sylwester Zawadzki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Plan wykładu Spis treści 1 Modelowanie logiczne 1 2 Transformacja modelu pojęciowego do logicznego Transformacja własności Transformacja związków Transformacja hierarchii Dodatkowe obiekty i techniki Dostęp do danych Denormalizacja Podsumowanie 14 4 Źródła 14 1 Modelowanie logiczne Projektowanie systemu informatycznego Modelowanie logiczne Modelowanie logiczne jest realizowane przez projektantów na bazie specyfikacji wymagań i modelu pojęciowego. Powiązany ze ściśle określonym modelem bazy danych, a często z konkretną jej implementacją. Określa struktury modelu danych, nie zaś struktury fizyczne. 1
2 Efekty modelowania logicznego Efektem modelowania logicznego będzie szczegółowa dokumentacja zawierająca: tabele, ograniczenia integralności, dodatkowe obiekty (perspektywy, indeksy,sekwencje itp.), określenie użytkowników i ich uprawnień, niektóre parametry fizyczne bazy danych. Terminologia Model relacyjny Model związków Relacyjna baza encji danych relacja encja tabela krotka instancja wiersz atrybut własność kolumna dziedzina dziedzina/typ dziedzina/typ schemat relacji struktura tabeli schemat Zalecenia Efektem modelowania logicznego powinno być szczegółowe określenie struktur danych i obiektów pomocniczych. Należy zdecydować się na pełne wykorzystanie cech danego SZBD, lub tworzyć projekt łatwy do przeniesienia pomiędzy poszczególnymi SZBD. Należy stosować jednolite nazewnictwo, ułatwiajace ewentualne przenoszenie bazy: nazwy zawierają wyłącznie litery, cyfry i znaki podkreślenia, brak znaków diakrytycznych, nazwy nie mogą różnić się jedynie wielkością liter, nazwy nie powinny być zbyt długie, należy unikać skrótów, jeżeli są konieczne stosuje się jedynie te powszechnie znane, tabele nazywane są w liczbie mnogiej, kolumny w pojedynczej, stosuje się nazwy dla ograniczeń integralnościowych (np. dla kluczy głównych skrót od nazwy tabeli i angielskiego PRIMARY KEY - tab pk, dla kluczy obcych skróty nazw obu tabel i angielskiego FOREIGN KEY - tab1 tab2 fk ). 2 Transformacja modelu pojęciowego do logicznego Transformacja modelu pojęciowego do logicznego (relacyjnej bazy danych) encje tabele 2
3 własności kolumny związki klucze obce lub tabele hierarchia encji jedna lub dwie lub trzy tabele 2.1 Transformacja własności Transformacja własność - kolumna Własność kolumna: typ własności typ występujący w wybranym SZBD obowiązkowość własności ograniczenie NOT NULL własność kluczowa klucz główny tabeli ograniczenia własności ograniczenia integralnościowe kolumn Transformacja własność - kolumna - zalecenia Zasady poprawnej transformacji: kolejność kolumn w tabelach oszczędzająca pamięć i ograniczająca fragmentację, np.: atrybuty obowiązkowe przed opcjonalnymi kolumny o stałej długości przed tymi o zmiennej długości dobór typów zapewniający poprawność i efektywność prezentacji, np.: typ CHAR stosowany wyłącznie dla łańcuchów o stałej długości wartości pieniężne wyrażane przez typy z możliwym określeniem skali (NUMBER, NUMERIC, DE jeżeli nie przewidziano własności kluczowej lub istniejąca nie spełnia wymagań, należy wprowadzić sztuczny klucz główny. jeżeli wiemy, że własnośc posiada niepowtarzalne wartości należy na jej bazie utworzyć klucz kandydujący - kolumnę o ograniczeniu UNIQUE 3
4 2.2 Transformacja związków Transformacja związków I związki klucze obce utworzenie kolumn nadanie ograniczeń czy wartość ma być obowiązkowa zgodne typy kluczy obcych i kluczy, na które wskazują pożądana zgodność nazw kluczy obcych i kluczy, na które wskazują związki tabele klucz główny stanowiący złożenie kluczy głównych tabeli powiązanych kolumny klucza głównego są jednocześnie dowiązaniami (kluczami obcymi) obligatoryjne uczestnictwo w związku NOT NULL dla klucza obcego Transformacja związków II Związek unarny 1:1 klucz obcy w tej samej tabeli. Związek unarny 1:M klucz obcy w tej samej tabeli. Związek unarny M:N tabela. Związek binarny 1:1 klucz obcy w jednej z tabel. Związek binarny 1:M klucz obcy w tabeli po stronie wiele. Związek binarny M:N tabela. Związek ternarny tabela. Związek unarny 1:1 Związek unarny 1:1 klucz obcy w tej samej tabeli. 4
5 Związek unarny 1:N Związek unarny 1:N klucz obcy w tej samej tabeli. Związek unarny N:M Związek unarny N:M tabela. Związek binarny 1:1 Związek binarny 1:1 klucz obcy w jednej z tabel (po stronie obligatoryjnego udziału w związku lub po stronie tabeli o mniejszym rozmiarze dla związków dwustronnie opcjonalnych). 5
6 Związek binarny 1:N Związek binarny 1:M klucz obcy w tabeli po stronie wiele, NOT NULL dla obligatoryjnego udziału. Opcjonalność lub obowiązkowość związku po stronie jeden nie jest odwzorowywana w modelu relacyjnym. Związek binarny N:M Związek binarny N:M tabela (jej nazwa jest złączeniem nazw tabel pozostających w związku, klucze obce tworzą klucz główny). 6
7 Związek ternarny Związek ternarny tabela (klucze obce tworzą klucz główny). 2.3 Transformacja hierarchii Transformacja hierarchii Trzy metody modelowania logicznego hierarchii: utworzenie jednej tabeli o dodatkowej kolumnie opisującej typ, kolumny odróżniające podtypy są opcjonalne utworzenie oddzielnych tabel dla każdego podtypu utworzenie tabeli nadtypu z kolumnami wspólnymi dla wszystkich podtypów i dowiązaniami do podtypów, oraz tabel podtypów ze specyficznymi dla nich kolumnami 7
8 Dla związków wzajemnie wykluczających się - w zależności od ww. wyboru: dla każdego podtypu odrębny klucz obcy przyjmujący opcjonalne wartości lub jeden klucz obcy i dodatkowy warunek wykluczenia (nałożony więzami CHECK) Transformacja hierarchii 1 Transformacja hierarchii 2 Transformacja hierarchii 3 8
9 Transformacja dla związków wzajemnie wykluczających się 1 Transformacja dla związków wzajemnie wykluczających się 2 9
10 2.4 Dodatkowe obiekty i techniki Indeksy Indeks bazy danych struktura (plik) kojarząca wartości klucza indeksowego (atrybutu, na który nałożono indeks) z fizycznym położeniem danych, służąca do przyśpieszania przeszukiwania bazy danych. Wady: Zastosowanie: szybkie przeszukiwanie danych, szybkie sortowanie danych, optymalizacja zapytań, efektywne wykonywanie złączeń. spowolnienie aktualizacji. Rodzaje indeksów Wyróżniamy indeksy: proste (dla jednej kolumny) i złożone (dla wielu kolumn), drzewiaste, bitmapowe, unikatowe, dopuszczające powtórzenia. 10
11 Indeksy - zalecenia Indeksy drzewiaste tworzy się dla: kluczy głównych (często domyślnie), kolumn o unikatowych lub rzadko powtarzających się wartościach, kolumn często występujących w warunkach zapytań i złączeń, kolumn rzadko aktualizowanych, kluczy obcych. Indeksy bitmapowe tworzy się dla: dużych tabel (najczęściej w systemach analitycznych), kolumn o często powtarzających się wartościach (o niskiej kardynalności). Klastry Klaster struktura umożliwiająca przechowywanie danych logicznie ze sobą powiązanych w fizycznej bliskości, nie widoczna dla użytkowników i aplikacji. Wady: Zastosowanie: przyśpiesza czas dostępu do danych, zmniejsza liczbę odczytanych bloków, ogranicza zapotrzebowanie na przestrzeń dyskową, poprawia efektywność niektórych zapytań. spowolnienie aktualizacji, spowolnienie pełnego przeglądania tabeli. Klastry - rodzaje i zalecenia Rodzaje: indeksowe, haszowe. Klastry są stosowane dla tabel: często łączonych, rzadko aktualizowanych, o stosunkowo stałych rozmiarach, rzadko przeglądanych w całości. 11
12 Partycje Partycjonowanie tabel technika dzielenia bardzo dużych tabel na mniejsze fragmenty. Typy: zakresowe, haszowe. Zastosowanie: ułatwienie zarządzania danymi, efektywniejszy dostęp. Perspektywy Perspektywa - (ang. view - widok, tabela wirtualna) jest to zapamiętane pod określoną nazwą zapytanie, którego wynik nie jest przechowywany fizycznie, używana w zapytaniach jak zwykłe tabele. Zastosowanie: ograniczenie dostępu do całości danych (dodatkowy poziom bezpieczeństwa), ułatwienie wykonywania często stosowanych lub skomplikowanych zapytań, odizolowanie aplikacji i użytkowników od definicji tabel. Perspektywy - cechy Typy: perspektywy proste i złożone. Modyfikowalność: niemodyfikowalne jeżeli brak jednoznaczności, gdzie dane mają być wstawione, niemodyfikowalne dla użytkowników o ograniczonych uprawnieniach, możliwość wymuszenia modyfikacji poprzez stosowanie odpowiednich wyzwalaczy. Perspektywy materializowane Perspektywa materializowana - (ang. materialised view) to perspektywa, której zawartość jest fizycznie składowana w bazie danych - implementowana jako: tabela + indeks. Cechy: Zastosowanie: hurtownie danych, rozproszone bazy danych, systemy mobilne. alokacja pamięci jak dla tabel, możliwość indeksowania, nakładania więzów, zazwyczaj niemodyfikowalne, odświeżane w sposób pełny lub szybki. 12
13 Sekwencje Sekwencja obiekt bazodanowy używany do generowania unikalnych wartości. Zastosowanie: generowanie sztucznych kluczy głównych. Synonimy Synonim umożliwia nadanie alternatywnych nazw dla niektórych obiektów bazy danych (tabel, sekwencji, procedur, pakietów itp.). Stosowane dla odległych lub znajdujących się w innych schematach obiektów. Korzyści: uproszczenie nazw, odizolowanie użytkowników i aplikacji od zmian zachodzących w schemacie pojęciowym, czy wewnętrznym bazy danych, uniezależnienie od rzeczywistej lokalizacji obiektów, uniezależnienie od rzeczywistej natury obiektu. Rodzaje: publiczne i prywatne. 2.5 Dostęp do danych Dostęp do danych Organizacja dostępu do danych: minimum praw dostępu, które są odpowiednio zróżnicowane, zapewnienie odporności na zmiany struktury, dane umieszczone w wydzielonym schemacie aplikacje i użytkownicy korzystają z kont nie mając bezpośredniego dostępu do schematu, a jedynie dostęp poprzez odpowiedni system uprawnień, synonimów i perspektyw. 2.6 Denormalizacja Denormalizacja Celowe wprowadzenie redundancji: dla poprawienia wydajności, dla przechowywania wyników złożonych obliczeń, dla przechowywania danych w celach kontrolnych, dla przechowywania danych w celach zapewnienia bezpieczeństwa. Czasem zastępowana przez perspektywy materializowane. 13
14 3 Podsumowanie Podsumowanie Zasady i kroki obowiązujące w trakcie modelowania logicznego: zamiana obiektów pojęciowych na logiczne - powiązane z określonym SZBD, stosowanie jednolitego i czytelnego schematu nazewnictwa dla tworzonych obiektów, ustalenie kolejności kolumn tak by zaoszczędzić pamięć, dobranie typów danych zapewniających poprawność i efektywność, każda tabela bezwzględnie musi posiadać klucz główny, na klucze alternatywne należy nałożyć ograniczenie UNIQUE, nałożenie więzów kluczy obcych na powiązane tabele, ze stosowaniem ujednoliconych nazw i typów dla odpowiadających sobie kluczy, utworzenie dodatkowych tabel dla związków wiele do wielu, realizacja podtypów i związków wzajemnie wykluczających się, utworzenie dodatkowych obiektów optymalizujących korzystanie z bazy, ustalenie pewnych cech fizycznych optymalizujących korzystanie z bazy, określenie organizacji dostępu do bazy, ewentulana denormalizacja. 4 Źródła Źródła W wykładzie wykorzystano materiały: M. Lentner, Oracle 9i Kompletny podręcznik użytkownika, PJWSTK - W-wa, 2003 Stephens, Plew: Relacyjne bazy danych - projektowanie, Robomatic 2003 Garcia-Molina, Ullman, Widom: Implementacja systemów baz danych, WNT
Transformacja modelu pojęciowego. do logicznego
Transformacja modelu pojęciowego do logicznego Plan wykładu 1. Modelowanie logiczne 2. Transformacja modelu pojęciowego do logicznego Transformacja własności Transformacja związków Transformacja hierarchii
PODSTAWY BAZ DANYCH. 5. Modelowanie danych. 2009/ Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 5. Modelowanie danych 1 Etapy tworzenia systemu informatycznego Etapy tworzenia systemu informatycznego - (według CASE*Method) (CASE Computer Aided Systems Engineering ) Analiza wymagań
Dane wejściowe. Oracle Designer Generowanie bazy danych. Wynik. Przebieg procesu
Dane wejściowe Oracle Designer Generowanie bazy danych Diagramy związków encji, a w szczególności: definicje encji wraz z atrybutami definicje związków między encjami definicje dziedzin atrybutów encji
Wykład 2. Relacyjny model danych
Wykład 2 Relacyjny model danych Wymagania stawiane modelowi danych Unikanie nadmiarowości danych (redundancji) jedna informacja powinna być wpisana do bazy danych tylko jeden raz Problem powtarzających
Modelowanie danych, projektowanie systemu informatycznego
Modelowanie danych, projektowanie systemu informatycznego Modelowanie odwzorowanie rzeczywistych obiektów świata rzeczywistego w systemie informatycznym Modele - konceptualne reprezentacja obiektów w uniwersalnym
Transformacja modelu ER do modelu relacyjnego
Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) 1 Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2)
Zasady transformacji modelu DOZ do projektu tabel bazy danych
Zasady transformacji modelu DOZ do projektu tabel bazy danych A. Obiekty proste B. Obiekty z podtypami C. Związki rozłączne GHJ 1 A. Projektowanie - obiekty proste TRASA # * numer POZYCJA o planowana godzina
PLAN WYKŁADU BAZY DANYCH GŁÓWNE ETAPY PROJEKTOWANIA BAZY MODELOWANIE LOGICZNE
PLAN WYKŁADU Modelowanie logiczne Transformacja ERD w model relacyjny Odwzorowanie encji Odwzorowanie związków Odwzorowanie specjalizacji i generalizacji BAZY DANYCH Wykład 7 dr inż. Agnieszka Bołtuć GŁÓWNE
Systemy baz danych. mgr inż. Sylwia Glińska
Systemy baz danych Wykład 1 mgr inż. Sylwia Glińska Baza danych Baza danych to uporządkowany zbiór danych z określonej dziedziny tematycznej, zorganizowany w sposób ułatwiający do nich dostęp. System zarządzania
1 Wstęp do modelu relacyjnego
Plan wykładu Model relacyjny Obiekty relacyjne Integralność danych relacyjnych Algebra relacyjna 1 Wstęp do modelu relacyjnego Od tego się zaczęło... E. F. Codd, A Relational Model of Data for Large Shared
1 Projektowanie systemu informatycznego
Plan wykładu Spis treści 1 Projektowanie systemu informatycznego 1 2 Modelowanie pojęciowe 4 2.1 Encja....................................... 5 2.2 Własności.................................... 6 2.3 Związki.....................................
2010-10-21 PLAN WYKŁADU BAZY DANYCH MODEL DANYCH. Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna HISTORIA
PLAN WYKŁADU Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna BAZY DANYCH Wykład 2 dr inż. Agnieszka Bołtuć MODEL DANYCH Model danych jest zbiorem ogólnych zasad posługiwania
Model relacyjny. Wykład II
Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji
TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO
TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO Biologiczne Aplikacje Baz Danych dr inż. Anna Leśniewska alesniewska@cs.put.poznan.pl REPETYTORIUM Schemat bazy danych zbiór schematów relacji Relacja (tabela)
Bazy danych Wykład zerowy. P. F. Góra
Bazy danych Wykład zerowy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Patron? Św. Izydor z Sewilli (VI wiek), biskup, patron Internetu (sic!), stworzył pierwszy katalog Copyright c 2011-12 P.
030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła
030 PROJEKTOWANIE BAZ DANYCH Prof. dr hab. Marek Wisła Elementy procesu projektowania bazy danych Badanie zależności funkcyjnych Normalizacja Projektowanie bazy danych Model ER, diagramy ERD Encje, atrybuty,
Krzysztof Kadowski. PL-E3579, PL-EA0312,
Krzysztof Kadowski PL-E3579, PL-EA0312, kadowski@jkk.edu.pl Bazą danych nazywamy zbiór informacji w postaci tabel oraz narzędzi stosowanych do gromadzenia, przekształcania oraz wyszukiwania danych. Baza
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium BAZY DANYCH Databases Forma studiów: Stacjonarne
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele
mail: strona: konsultacje: na stronie (po wcześniejszym umówieniu drogą mailową)
1 Organizacyjne Kwestie organizacyjne Kontakt: mail: olga.siedlecka@icis.pcz.pl strona: http://icis.pcz.pl/~olga konsultacje: na stronie (po wcześniejszym umówieniu drogą mailową) Zaliczenie wykładu -
Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne)
Bazy danych 1 Wykład 5 Metodologia projektowania baz danych (projektowanie logiczne) Projektowanie logiczne przegląd krok po kroku 1. Usuń własności niekompatybilne z modelem relacyjnym 2. Wyznacz relacje
Utwórz klucz podstawowy relacji na podstawie unikalnego identyfikatora encji. podstawie kluczy podstawowych wiązanych relacji.
TRANSFORMACJA DO SCHEMATU RELACYJNEGO pojęcia podstawowe Repetytorium pojęcia podstawowe relacyjnego modelu danych Schemat implementacyjny (logiczny) bazy danych: schemat, na którym działają aplikacje.
Program wykładu. zastosowanie w aplikacjach i PL/SQL;
Program wykładu 1 Model relacyjny (10 godz.): podstawowe pojęcia, języki zapytań (algebra relacji, relacyjny rachunek krotek, relacyjny rachunek dziedzin), zależności funkcyjne i postaci normalne (BCNF,
Transformacja modelu ER do modelu relacyjnego
Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2) Pojęcia
Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko
Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych
SQL w 24 godziny / Ryan Stephens, Arie D. Jones, Ron Plew. Warszawa, cop Spis treści
SQL w 24 godziny / Ryan Stephens, Arie D. Jones, Ron Plew. Warszawa, cop. 2016 Spis treści O autorach 11 Podziękowania 12 Część I Wprowadzenie do języka SQL 13 Godzina 1. Witamy w świecie języka SQL 15
K1A_W11, K1A_W18. Egzamin. wykonanie ćwiczenia lab., sprawdzian po zakończeniu ćwiczeń, egzamin, K1A_W11, K1A_W18 KARTA PRZEDMIOTU
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego: 2014/2015 4. Forma kształcenia: studia pierwszego stopnia 5. Forma
Transformacja modelu EER do postaci relacyjnego modelu danych. Zbyszko Królikowski
Transformacja modelu EER do postaci relacyjnego modelu danych Zbyszko Królikowski 1 Repetytorium pojęcia podstawowe relacyjnego modelu danych Schemat implementacyjny (logiczny) bazy danych: schemat, na
Wykład I. Wprowadzenie do baz danych
Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles
Tworzenie tabel. Bazy danych - laboratorium, Hanna Kleban 1
Tworzenie tabel Tabela podstawowa struktura, na której zbudowana jest relacyjna baza danych. Jest to zbiór kolumn (atrybutów) o ustalonych właściwościach, w których przechowuje się dane. Dane te są reprezentowane
SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, Spis treści
SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, 2017 Spis treści O autorze 9 Wprowadzenie 11 Lekcja 1. Zrozumieć SQL 15 Podstawy baz danych 15 Język SQL
Model relacyjny bazy danych
Bazy Danych Model relacyjny bazy danych Przygotował: mgr inż. Maciej Lasota Bazy Danych 1 1) Model relacyjny bazy danych Relacyjny model bazy danych pojawił się po raz pierwszy w artykule naukowym Edgara
Autor: Joanna Karwowska
Autor: Joanna Karwowska Klucz podstawowy PRIMARY KEY Klucz kandydujący UNIQUE Klucz alternatywny - klucze kandydujące, które nie zostały wybrane na klucz podstawowy Klucz obcy - REFERENCES Tworząc tabelę,
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2011/2012 Instytut Techniczny Kierunek studiów: Informatyka Kod kierunku: 11.3 Specjalność: Informatyka Stosowana
WPROWADZENIE DO BAZ DANYCH
WPROWADZENIE DO BAZ DANYCH Pojęcie danych i baz danych Dane to wszystkie informacje jakie przechowujemy, aby w każdej chwili mieć do nich dostęp. Baza danych (data base) to uporządkowany zbiór danych z
Wykład IV Modelowanie danych, projektowanie systemu informatycznego Modelowanie konceptualne implementacyjne Modelowanie pojęciowe na encjach
Modelowanie danych, projektowanie systemu informatycznego Modelowanie odwzorowanie rzeczywistych obiektów świata rzeczywistego w systemie informatycznym. Modele - konceptualne reprezentacja obiektów w
Oracle11g: Wprowadzenie do SQL
Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom
WYKŁAD 1. Wprowadzenie do problematyki baz danych
WYKŁAD 1 Wprowadzenie do problematyki baz danych WYKŁAD 2 Relacyjny i obiektowy model danych JĘZYK UML (UNIFIED MODELING LANGUAGE) Zunifikowany język modelowania SAMOCHÓD
Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym
Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM
Model relacyjny. Wykład II
Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji
PRZESTRZENNE BAZY DANYCH WYKŁAD 2
PRZESTRZENNE BAZY DANYCH WYKŁAD 2 Baza danych to zbiór plików, które fizycznie przechowują dane oraz system, który nimi zarządza (DBMS, ang. Database Management System). Zadaniem DBMS jest prawidłowe przechowywanie
INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA. Modelowanie danych. Model związków-encji
Modelowanie danych. Model związków-encji Plan wykładu Wprowadzenie do modelowania i projektowania kartograficznych systemów informatycznych Model związków-encji encje atrybuty encji związki pomiędzy encjami
Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Literatura i inne pomoce Silberschatz A., Korth H., S. Sudarshan: Database
1 Instalowanie i uaktualnianie serwera SQL Server 2005... 1
Spis treści Przedmowa... ix Podziękowania... x Wstęp... xiii Historia serii Inside Microsoft SQL Server... xiii 1 Instalowanie i uaktualnianie serwera SQL Server 2005... 1 Wymagania SQL Server 2005...
INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA Relacyjny model danych. Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe
Relacyjny model danych Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe Charakterystyka baz danych Model danych definiuje struktury danych operacje ograniczenia integralnościowe
Bazy danych TERMINOLOGIA
Bazy danych TERMINOLOGIA Dane Dane są wartościami przechowywanymi w bazie danych. Dane są statyczne w tym sensie, że zachowują swój stan aż do zmodyfikowania ich ręcznie lub przez jakiś automatyczny proces.
Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38
Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych
Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy.
Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy. Przejście od modelu związków encji do modelu relacyjnego: odwzorowanie zbiorów encji, odwzorowanie związków encji
Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.
TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.
Ogólny plan przedmiotu. Strony WWW. Literatura BAZY DANYCH. Materiały do wykładu: http://aragorn.pb.bialystok.pl/~gkret
Ogólny plan przedmiotu BAZY DANYCH Wykład 1: Wprowadzenie do baz danych Małgorzata Krętowska Politechnika Białostocka Wydział Informatyki Wykład : Wprowadzenie do baz danych Normalizacja Diagramy związków
Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4
Utrwalanie danych zastosowanie obiektowego modelu danych warstwy biznesowej do generowania schematu relacyjnej bazy danych Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4 1. Relacyjne
Baza danych. Modele danych
Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych
Alicja Marszałek Różne rodzaje baz danych
Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy
Bazy danych 2. Wykład 1
Bazy danych 2 Wykład 1 Sprawy organizacyjne Materiały i listy zadań zamieszczane będą na stronie www.math.uni.opole.pl/~ajasi E-mail: standardowy ajasi@math.uni.opole.pl Sprawy organizacyjne Program wykładu
Spis treści. Przedmowa
Spis treści Przedmowa V 1 SQL - podstawowe konstrukcje 1 Streszczenie 1 1.1 Bazy danych 1 1.2 Relacyjny model danych 2 1.3 Historia języka SQL 5 1.4 Definiowanie danych 7 1.5 Wprowadzanie zmian w tabelach
KARTA PRZEDMIOTU 1,5 1,5
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim BAZY DANYCH Nazwa w języku angielskim DATABASE SYSTEMS Kierunek studiów (jeśli dotyczy): INŻYNIERIA
Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL
Podstawy baz danych: Rysunek 1. Tradycyjne systemy danych 1- Obsługa wejścia 2- Przechowywanie danych 3- Funkcje użytkowe 4- Obsługa wyjścia Ewolucja baz danych: Fragment świata rzeczywistego System przetwarzania
Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?
Bazy danych - wykład wstępny
Bazy danych - wykład wstępny Wykład: baza danych, modele, hierarchiczny, sieciowy, relacyjny, obiektowy, schemat logiczny, tabela, kwerenda, SQL, rekord, krotka, pole, atrybut, klucz podstawowy, relacja,
Technologie baz danych
Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów
Bazy danych i usługi sieciowe
Bazy danych i usługi sieciowe Modelowanie związków encji Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. II Jesień 2014 1 / 28 Modelowanie Modelowanie polega na odwzorowaniu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Bazy danych Database Kierunek: Rodzaj przedmiotu: obieralny Rodzaj zajęć: wykład, laboratorium Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień: 2W, 2L Semestr: III Liczba
Technologia informacyjna
Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,
< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
ang. file) Pojęcie pliku (ang( Typy plików Atrybuty pliku Fragmentacja wewnętrzna w systemie plików Struktura pliku
System plików 1. Pojęcie pliku 2. Typy i struktury plików 3. etody dostępu do plików 4. Katalogi 5. Budowa systemu plików Pojęcie pliku (ang( ang. file)! Plik jest abstrakcyjnym obrazem informacji gromadzonej
2017/2018 WGGiOS AGH. LibreOffice Base
1. Baza danych LibreOffice Base Jest to zbiór danych zapisanych zgodnie z określonymi regułami. W węższym znaczeniu obejmuje dane cyfrowe gromadzone zgodnie z zasadami przyjętymi dla danego programu komputerowego,
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt. Zasady przygotowania i oceny projektów
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt Zasady przygotowania i oceny projektów 1 Cel projektu Celem niniejszego projektu jest zaprojektowanie i implementacja
Zaawansowane Modelowanie I Analiza Systemów Informatycznych
Zaawansowane Modelowanie I Analiza Systemów Informatycznych ORM mapowanie do schematu relacyjnego mgr. inż. Tomasz Pieciukiewicz tomasz.pieciukiewicz@gmail.com Zasady mapowania Predykaty mające role funkcjonalne
Haszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Integralność danych Wersje języka SQL Klauzula SELECT i JOIN
Integralność danych Wersje języka SQL Klauzula SELECT i JOIN Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Integralność danych Aspekty integralności
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: Bda 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka Stosowana
Baza danych. Baza danych to:
Baza danych Baza danych to: zbiór danych o określonej strukturze, zapisany na zewnętrznym nośniku (najczęściej dysku twardym komputera), mogący zaspokoić potrzeby wielu użytkowników korzystających z niego
FUNKCJE SZBD. ZSE - Systemy baz danych 1
FUNKCJE SZBD ZSE - Systemy baz danych 1 System zarządzania bazami danych System zarządzania bazami danych (SZBD, ang. DBMS) jest zbiorem narzędzi stanowiących warstwę pośredniczącą pomiędzy bazą danych
Technologia informacyjna (IT - Information Technology) dziedzina wiedzy obejmująca:
1.1. Podstawowe pojęcia Technologia informacyjna (IT - Information Technology) dziedzina wiedzy obejmująca: informatykę (włącznie ze sprzętem komputerowym oraz oprogramowaniem używanym do tworzenia, przesyłania,
Wykład 4. SQL praca z tabelami 1
Wykład 4 SQL praca z tabelami 1 Typy danych Typy liczbowe Typy całkowitoliczbowe Integer types - Typ INTEGER; 32-bitowa liczba ze znakiem z zakresu -2 31 do 2 31 1 - Typ SMALLINT; typ całkowity mniejszy
Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników
Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników Słowo wstępne (13) Przedmowa i podziękowania (drugie wydanie) (15) Podziękowania (15) Przedmowa i podziękowania (pierwsze wydanie)
Bazy Danych. Model Relacyjny. Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408
Bazy Danych Model Relacyjny Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Relacyjny model danych Relacyjny model danych jest obecnie najbardziej popularnym modelem używanym w systemach
Normalizacja baz danych
Wrocławska Wyższa Szkoła Informatyki Stosowanej Normalizacja baz danych Dr hab. inż. Krzysztof Pieczarka Email: krzysztof.pieczarka@gmail.com Normalizacja relacji ma na celu takie jej przekształcenie,
Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych
Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy
UPDATE Studenci SET Rok = Rok + 1 WHERE Rodzaj_studiow =' INŻ_ST'; UPDATE Studenci SET Rok = Rok 1 WHERE Nr_albumu IN ( '111345','100678');
polecenie UPDATE służy do aktualizacji zawartości wierszy tabel lub perspektyw składnia: UPDATE { } SET { { = DEFAULT NULL}, {
Bazy danych. Algebra relacji
azy danych lgebra relacji Model danych Model danych to spójny zestaw pojęć służący do opisywania danych i związków między nimi oraz do manipulowania danymi i ich związkami, a także do wyrażania więzów
Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski
Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 6 Model relacyjny danych projektowanie relacyjnych baz danych, model logiczny i relacyjny, zastosowanie Oracle SQL Developer Data
Związki pomiędzy tabelami
Związki pomiędzy tabelami bazy danych. Stosowanie relacji jako nazwy połączenia miedzy tabelami jest tylko grą słów, którą można znaleźć w wielu podręcznikach ( fachowo powinno się używać związku). Związki
Cel normalizacji. Tadeusz Pankowski
Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia
Projektowanie bazy danych
Projektowanie bazy danych Cel wykładu Umiejętność zamodelowania bazy danych na diagramie Plan wykładu Cel modelowania konceptualnego i modelu ER Etapy modelowania konceptualnego Model ER (związków encji)
Pawel@Kasprowski.pl Bazy danych. Bazy danych. Zapytania SELECT. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl
Bazy danych Zapytania SELECT Dr inż. Paweł Kasprowski pawel@kasprowski.pl Przykład HAVING Podaj liczebność zespołów dla których najstarszy pracownik urodził się po 1940 select idz, count(*) from prac p
Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz
Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji.
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Bazy danych Wykład 3: Model związków encji. dr inż. Magdalena Krakowiak makrakowiak@wi.zut.edu.pl Co to jest model związków encji? Model związków
Normalizacja. Pojęcie klucza. Cel normalizacji
Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia
Jarosław Kuchta Projektowanie Aplikacji Internetowych. Projektowanie warstwy danych
Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie warstwy danych Zagadnienia Sposoby zapisu danych zewnętrznych Odwzorowanie dziedziny problemu w dziedzinę danych Normalizacja relacyjnej
Laboratorium Technologii Informacyjnych. Projektowanie Baz Danych
Laboratorium Technologii Informacyjnych Projektowanie Baz Danych Komputerowe bazy danych są obecne podstawowym narzędziem służącym przechowywaniu, przetwarzaniu i analizie danych. Gromadzone są dane w
D D L S Q L. Co to jest DDL SQL i jakie s jego ą podstawowe polecenia?
D D L S Q L Co to jest DDL SQL i jakie s jego ą podstawowe polecenia? D D L S Q L - p o d s t a w y DDL SQL (Data Definition Language) Jest to zbiór instrukcji i definicji danych, którym posługujemy się
System plików warstwa fizyczna
System plików warstwa fizyczna Dariusz Wawrzyniak Przydział miejsca na dysku Przydział ciągły (ang. contiguous allocation) cały plik zajmuje ciąg kolejnych bloków Przydział listowy (łańcuchowy, ang. linked
System plików warstwa fizyczna
System plików warstwa fizyczna Dariusz Wawrzyniak Plan wykładu Przydział miejsca na dysku Zarządzanie wolną przestrzenią Implementacja katalogu Przechowywanie podręczne Integralność systemu plików Semantyka
System plików warstwa fizyczna
System plików warstwa fizyczna Dariusz Wawrzyniak Przydział miejsca na dysku Zarządzanie wolną przestrzenią Implementacja katalogu Przechowywanie podręczne Integralność systemu plików Semantyka spójności
- Przedmiot kończy się egzaminem - Egzamin ma formę testu teoretycznego
Dr inż. Ludmiła Rekuć p. 58 B4 www.ioz.pwr.wroc.pl, ludmila.rekuc@pwr.wroc.pl Dr inż. Witold Rekuć p. 57 B4 www.ioz.pwr.wroc.pl, witold.rekuc@pwr.wroc.pl - Przedmiot kończy się egzaminem - Egzamin ma formę
Pojęcie bazy danych funkcje i możliwości Charakterystyka baz danych:
Pojęcie bazy danych funkcje i możliwości Baza danych to zbiór informacji zapisanych w ściśle określony sposób w strukturach odpowiadających założonemu modelowi danych. W potocznym ujęciu obejmuje dane
Bazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:
SZKOLENIE: Administrator baz danych. Cel szkolenia
SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.
Bazy danych. Dr inż. Paweł Kasprowski
Plan wykładu Bazy danych Podstawy relacyjnego modelu danych Dr inż. Paweł Kasprowski pawel@kasprowski.pl Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność