Projektowanie hurtowni danych
|
|
- Mariusz Lewicki
- 5 lat temu
- Przeglądów:
Transkrypt
1 Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2004/05
2 Plan wykładu Ewolucja systemów baz danych Modele danych i ich ewolucja Systemy OLAP Proces ekstrakcji, transformacji i ładowania (ETL) Internet jako baza danych (Dawid Weiss) Rozszerzenia systemów OLAP Eksploracja hurtowni danych Rozmyte zapytania do baz danych
3 Plan wykładu 1 Logiczne projetkowanie hurtowni danych 2 Schematy logiczne hurtowni danych 3 Modelowanie koncepcyjne hurtowni danych 4 Dodatkowe aspekty modelowania
4 Plan wykładu 1 Logiczne projetkowanie hurtowni danych 2 Schematy logiczne hurtowni danych 3 Modelowanie koncepcyjne hurtowni danych 4 Dodatkowe aspekty modelowania
5 Logiczne projetkowanie hurtowni danych Trzy cele logicznego projektu hurtowni danych: Prostota, Wyrazistość, Wydajność.
6 Cele projetkowania hurtowni danych Prostota: Użytkownik powinien rozumieć projekt, Stworzony model powinien odpowiadać modelowi konceptualnemu, który jest prezentowany przez użytkownika, Zapytania powinny być formułowane prosto i intuicyjnie.
7 Cele projetkowania hurtowni danych Wyrazistość: Zawierać wszystkie potrzebne informacje, aby umożliwić odpowiedź na wszystkie ważne zapytania, Zawiarać odpowiednie dane.
8 Cele projetkowania hurtowni danych Wydajność: Efektywne rozwiazanie fizyczne powinno być możliwe do zastosowania.
9 Plan wykładu 1 Logiczne projetkowanie hurtowni danych 2 Schematy logiczne hurtowni danych 3 Modelowanie koncepcyjne hurtowni danych 4 Dodatkowe aspekty modelowania
10 Schematy logiczne hurtowni danych Trzy podstawowe schematy logiczne hurtowni danych: schemat gwieździsty, schemat płatka śniegu, schemat wielokrotnych tabel faktów.
11 Schematy gwiazdy Schemat gwiazdy: pojedyncza tablica w centrum połaczona z wieloma tablicami wymiarów.
12 Schemat gwiazdy Podstawowe terminy: Miary, na przykład stopnie, cena, ilość, Miary musza być agregowane, Miary zależa od zbioru wymiarów, np. ocena studenta zależy od studenta, przedmiotu, prowadzacego, wydziału, roku akademickiego itp., Relacja, która odwołuje wymiary do miar nazywana jest relacja faktów (np. Students grades) Informacje na temat wymiarów znajduja w zbiorze relacji wymiarów (student, rok akademicki, itd.), Każdy wymiar posiada wiele opisujacych atrybutów.
13 Schemat gwiazdy Tablica faktów: waska, długa (bardzo dużo krotek), krotki opisane sa za pomoca atrybutów numerycznych (miar), dynamiczna (rośnie z czasem). Tablica wymiaru: szeroka, raczej krótka, opisowa, statyczna.
14 Schemat gwiazdy
15 Hierarchie wymiarów Dla każdego wymiaru można określić hierarchię atrybutów
16 Schemat płatka śniegu Schemat płatka śniegu: rozwinięcie schematu gwiazdy poprzez normalizację relacji wymiarów.
17 Denormalizacja Denormalizacja - proces odwrotny do normalizacji Polega na tworzeniu danych nadmiarowych przechowywanych w relacjach, co pozwala - podczas wykonywania zapytań - zmniejszyć liczbę kosztowych czasowo operacji złaczenia.
18 Schemat wielokrotnych tablic faktów Schemat wielokrotnych tablic faktów: wiele tablic faktów dzieli relacje wymiarów. Takie schematy pojawiaja się przy projektowaniu hurtowni danych dla dużych i złożonych problemów. Z punktu widzenia sukcesu projektu, dobrze jest zaczać od prostego modelu logicznego hurtowni danych
19 Plan wykładu 1 Logiczne projetkowanie hurtowni danych 2 Schematy logiczne hurtowni danych 3 Modelowanie koncepcyjne hurtowni danych 4 Dodatkowe aspekty modelowania
20 Modelowanie koncepcyjne hurtowni danych Cztery kroki modelowania koncepcyjnego hurtowni danych: Wybór procesu biznesowego do zamodelowania Zdefiniowanie ziarna (rozdzielczości) procesu biznesowego Wybór wymiarów znajdujacych się w każdej krotce tablicy faktów Identyfikacja miar, które wypełnia każda krotkę tablicy faktów
21 Modelowanie koncepcyjne hurtowni danych Wybór procesu biznesowego do zamodelowania: powinna to być naturalna aktywność przedsiębiorstwa, wspomagana przez operacyjne system źródłowe, moga to być: zakup surowców, zamówienia, dystrybucja, sprzedaż, proces nie może być mylony z działem lub funkcja administracyjna, wybór procesu powinien być zależny od jego złożoności, czasu i budżetu przeznaczonego na projekt.
22 Modelowanie koncepcyjne hurtowni danych Zdefiniowanie ziarna (rozdzielczości) procesu biznesowego: należy dokładnie określić znaczenie pojedynczej krotki tabeli faktów, określa jak bardzo szczegółowe dane chcemy przechowywać w hurtowni danych, przykłady: transakcja w sklepie identyfikowana przez skaner przy kasie, codzienna migawka poziomu inwentarza dla każdego produktu w hurtowni, miesięczna migawka dla każdego konta bankowego. im większa rozdzielczość, tym większy rozmiar i szybsze powiększanie się hurtowni danych, im mniejsza rozdzielczość, tym mniej dokładny proces wspomagania decyzji.
23 Modelowanie koncepcyjne hurtowni danych Wybór wymiarów znajdujacych się w każdej krotce tablicy faktów: zdefiniowanie opisu danych będacych wynikiem procesu biznesowego, szczegółowy opis ziarna zdefiniowanego w poprzednim kroku, przykład: dla transakcji w sklepie może to być wymiar lokalizacji, produktu, daty, pory dnia, rodzaj promocji, itp., rozdzielczość tabeli faktów determinuje rozdzielczość tabel wymiarów, jeżeli dowolny wymiar występuje w dwóch tabelach faktów, musza to być dokładnie takie same wymiary, lub jeden z wymiarów jest podzbiorem drugiego.
24 Modelowanie koncepcyjne hurtowni danych Identyfikacja miar, które wypełnia każda krotkę tablicy faktów: zdefiniowanie tego co chcemy zmierzyć, hurtownia danych ma nam dać odpowiedź na temat wydajności procesu biznesowego, każda miara (jak również krotka i wymiar) w tabeli faktów musza być na tym samym poziomie szczegółowości, miary powinny być numeryczne, najlepiej addytywne, cześć miar może być częściowo-addytywna (liczba jabłek i pomarańczy),
25 Modelowanie koncepcyjne hurtowni danych Dodatkowe aspekty modelowania: Zapisywanie w tabeli faktów atrybutów wyliczonych, Opisywanie tabeli wymiarów, Wybór przedziału czasu dla hurtowni danych, Wymiar czasu, Sztuczne klucze główne, Zdegenerowane wymiary, Pozbawiona faktów relacja faktów :), Uwzględnienie wolno zmieniajacych się wymiarów, Planowanie hurtowni danych dla całego przedsiębiorstwa, Fizyczna organizacja hurtowni danych pod względem wydajności.
26 Plan wykładu 1 Logiczne projetkowanie hurtowni danych 2 Schematy logiczne hurtowni danych 3 Modelowanie koncepcyjne hurtowni danych 4 Dodatkowe aspekty modelowania
27 Wymiar czasu Wymiar czasu jest specyficzna i nieodłacznym wymiarem w projekcie logicznym hurtowni danych. Hurtownia danych może (powinna) być traktowana jako temporalna baza danych. Wymiar czasu pozwala na porównania ze względu na historię przechowywanych danych.
28 Wymiar czasu Typowe atrybuty w wymiarze czasu: Konkretny czas (klucz główny), dzień miesiaca, dzień tygodnia, weekend, 24-godzinny dzień pracy święto publiczne, dzień wolny od pracy, tydzień roku, miesiac, nazwa miesiaca, kwartał, rok, miesiac finansowy, rok finansowy.
29 Wymiar czasu W przypadku potrzeby zapisywania daty oraz dokładnego czasu w ciagu dnia warto zamodolować wymiar czasu za pomoca dwóch tabel: Data i Czas_dnia.
30 Wymiar czasu Zalety wymiaru czasu: Można zawrzeć ciekawe informacje zwiazane z czasem: wakacje, dni robocze, rano, południe, święto, Brak konieczności wykorzystywania funkcji czasowych (mniejszy koszt obliczeń), Możliwość stosowania indeksów do wymiaru czasu.
31 Sztuczne klucze główne Sztuczne klucze główne (ang. Surrogate Keys) warto stosować zamiast kluczy naturalnych (takich jak np. PESEL): klucz sztuczny może być krótszy, co może poprawić wydajność, łatwiejsza obsługa wyjatkowych przypadków (np. brak konkretnych danych - w takim przypadku lepiej jest dodać specyficzny wiersz w relacji wymiaru: wartość nieznana ), brak nadinterpretacji wartości klucza.
32 Zdegenerowane wymiary Niektóre wymiary maja raczej znaczenie identyfikatora niż wielu interesujacych atrybutów: rozważmy hurtownię danych dla sklepu detalicznego, typowa transakcja może zostać opisana następujaco: (ID, Produkt,...), ID jest jedynie unikalnym identyfikatorem, ID pozwala na połaczenie produktów zakupionych w jednym koszyku (pozwala na analizę wielkości koszyka).
33 Zdegenerowane wymiary Wymiary takie jak ID moga być potraktowane w następujacy sposób: nie sa brane pod uwagę podczas tworzenia hurtowni danych, tworzony jest zdegenerowany wymiar (ang. Degenerate Dimension).
34 Zdegenerowane wymiary Zdegenerowany wymiar: Nie jest tworzona osobna tablica wymiaru (taka tablica zmieniałaby się dynamicznie i rozmiarami byłaby podobna do tablicy faktów!!!), Identyfikator jest bezpośrednio wprowadzany do tabeli faktów, Możliwa jest analiza np. wielkości koszyka.
35 Pozbawiona faktów relacja faktów :) Relacja faktów nie zawiera krotek przy braku zdarzeń: np. brak krotek dla niekupionych produktów. Zaleta tego podejścia jest oszczędność pamięci jeżeli wydarzenia występuja rzadko. Wada tego podejścia jest brak możliwości sprawdzenia np. niepowodzeń promocji.
36 Pozbawiona faktów relacja faktów :) Pozbawiona faktów relacja faktów :): nie zawiera atrybutów będacych miarami, dodany jest durny :) atrybut zawierajacy wartość 1, opisuje zależności pomiędzy wymiarami. Przykład: które produkty były w promocji w danym dniu?.
37 Wolno zmieniajace się wymiary W porównaniu do relacji faktów, zawartość relacji wymiarów jest stosunkowo stabilna: nowe transakcje (fakty) w sposób ciagły dodawane sa do relacji faktów, nowe produkty pojawiaja się raczej rzadko, nowe sklepy otwierane sa też raczej rzadko. Niektóre wartości atrybutów wymiarów czasami ulegaja zmianie: klient przenosi się pod nowy adres, reforma administracyjna w Polsce, zmiana kategoryzacji produktu.
38 Wolno zmieniajace się wymiary Pierwsze rozwiazanie (najprostsze): nadpisywanie starej informacji. Przykłady: błędna nazwa ulicy, która trzeba poprawić (poprawne podejście), nadpisanie adresu zamieszkania może prowadzić do niespójności w otrzymanych wynikach analizy: Nowak przeprowadził się z Poznania do Warszawy: produkty przez niego zakupione będa odnosić się do miasta Warszawa!!!
39 Wolno zmieniajace się wymiary Drugie rozwiazanie: tworzenie nowych rekordów ze zmieniona wartościa. Przykłady: podczas zmiany adresu, w wymiarze klienta będa występować dwie krotki: Klient Nazwisko Miasto Nowak Poznań Nowak Warszawa stare krotki z tablicy faktów odnosza się do starej krotki w relacji wymiaru nowe krotki z tablicy faktów odnosza się do nowej krotki w relacji wymiaru.
40 Wolno zmieniajace się wymiary Trzecie rozwiazanie: tworzenie nowych atrybutów zawierajacych nowe wartości. Przykłady: zmiana podziału administracyjnego w Polsce Obszar Nazwa Nowa nazwa poznańskie wielkopolskie pilskie wielkopolskie stare krotki z tablicy faktów odnosza się do starej krotki w relacji wymiaru nowe krotki z tablicy faktów odnosza się do nowej krotki w relacji wymiaru.
41 Rozdzielanie wymiarów Rozdzielanie wymiarów ma swoje uzasadnienie przy uwzględnieniu wolno zmieniajacych się wymiarów. Rozważmy następujacy model: Sprzedaż (tablica faktów), Dział (tablica wymiarów), Miejsce (tablica wymiarów), Sprzedawca (tablica wymiarów), Pensja (atrybut w tablicy Sprzedawca, osobny wymiar dołaczany do relacji Sprzedaż, zdegenerowany wymiar) W przypadku tworzenia osobnego wymiaru trzeba pamiętać, że jedyne połaczenie Sprzedawcy z Pensja przebiega przez relację faktów: brak faktu - brak połaczenia
42 Macierz procesów biznesowych i wymiarów W celu stworzenia pełnej hurtowni danych dla całego przedsiębiorstwa, bioracej pod uwagę wiele procesów biznesowych, warto jest stworzyć macierz procesów biznesowych i wymiarów (ang. bus matrix).
43 Macierz procesów biznesowych i wymiarów W celu stworzenia pełnej hurtowni danych dla całego przedsiębiorstwa, bioracej pod uwagę wiele procesów biznesowych, warto jest stworzyć macierz procesów biznesowych i wymiarów (ang. bus matrix).
44 Dalsze problemy Według pewnych badań 80% zapytań w hurtowniach czasu dotyczy relacji wymiarów. Tylko 20% zapytań dotyczy bezpośrednio zapisanych faktów. Przykład zapytania dotyczacej relacji wymiarów Ilu klientów odeszło w ostatnim roku? Z powyższym problemem wiaże sie modelowanie systemów zarzadzania relacjami z klientami (CRM) - patrz Chris Todman,.
45 Plan wykładu Ewolucja systemów baz danych Modele danych i ich ewolucja Systemy OLAP Proces ekstrakcji, transformacji i ładowania (ETL) Internet jako baza danych (Dawid Weiss) Rozszerzenia systemów OLAP Eksploracja hurtowni danych Rozmyte zapytania do baz danych
Projektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Izabela Szczęch Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoProjektowanie hurtowni danych i modelowanie wielowymiarowe
Projektowanie hurtowni danych i modelowanie wielowymiarowe Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoInformatyzacja przedsiębiorstw
Informatyzacja przedsiębiorstw Izabela Szczęch Politechnika Poznańska Plan wykładu Elementy Business Intelligence Model wielowymiarowy Modelowanie hurtowni danych podstawowe schematy logiczne Operacje
Bardziej szczegółowoModele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne
Bardziej szczegółowoModele danych - wykład V
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie
Bardziej szczegółowoSystemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia
Bardziej szczegółowoHurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Bardziej szczegółowoSystemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie
Bardziej szczegółowoSystemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz
Bardziej szczegółowoHurtownie danych wykład 3
Hurtownie danych wykład 3 dr Sebastian Zając SGH Warszawa 7 lutego 2017 Architektura relacyjna i wielowymiarowa Ze względu na przechowywanie danych na serwerze możemy zdecydować się na relacyjną bazę danych
Bardziej szczegółowoHurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoProjektowanie baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Bardziej szczegółowoHurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)
Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni
Bardziej szczegółowoModelowanie wielowymiarowe hurtowni danych
Modelowanie wielowymiarowe hurtowni danych 6 listopada 2016 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików.pdf, sformatowanych podobnie do tego dokumentu. Zadania
Bardziej szczegółowoHurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.
Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą
Bardziej szczegółowoProces ETL. Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris,
Proces ETL Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska {kris, tegra}@eti.pg.gda.pl - 1 - Proces ETL - 2 -
Bardziej szczegółowoEwolucja technik modelowania hurtowni danych
Baza wiedzy JPro Ewolucja technik modelowania hurtowni Porównanie technik modelowania hurtowni podsumowanie: Strona 1/6 Nazwa podejścia Corporate Information Factory Kimball Bus Architecture Data Vault
Bardziej szczegółowoSystemy baz danych i hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie
Bardziej szczegółowoWielowymiarowy model danych
Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:
Bardziej szczegółowoSAS OLAP Cube Studio Wprowadzenie
SAS OLAP Cube Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
Bardziej szczegółowoBazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
Bardziej szczegółowoHurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
Bardziej szczegółowoTransformacja modelu ER do modelu relacyjnego
Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) 1 Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2)
Bardziej szczegółowoHurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU
Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie
Bardziej szczegółowoProjektowanie Systemów Informacyjnych
Projektowanie Systemów Informacyjnych Wykład II Encje, Związki, Diagramy związków encji, Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło
Bardziej szczegółowoPierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Bardziej szczegółowoHurtownie danych a transakcyjne bazy danych
Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,
Bardziej szczegółowoZasady projektowania hurtowni cd.
Zasady projektowania hurtowni cd. Przykład hurtowni danych dla systemu NFZ Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoZwiązki pomiędzy tabelami
Związki pomiędzy tabelami bazy danych. Stosowanie relacji jako nazwy połączenia miedzy tabelami jest tylko grą słów, którą można znaleźć w wielu podręcznikach ( fachowo powinno się używać związku). Związki
Bardziej szczegółowoCzęść I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Bardziej szczegółowoHurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoSchematy logiczne dla hurtowni danych
Schematy logiczne dla hurtowni danych 26 Plan rozdziału 27 Model biznesowy, logiczny i fizyczny hurtowni danych Podstawowe pojęcia w modelu logicznym, logiczny model wielowymiarowy Implementacje ROLAP/MOLAP
Bardziej szczegółowoPodstawowe zagadnienia z zakresu baz danych
Podstawowe zagadnienia z zakresu baz danych Jednym z najważniejszych współczesnych zastosowań komputerów we wszelkich dziedzinach życia jest gromadzenie, wyszukiwanie i udostępnianie informacji. Specjalizowane
Bardziej szczegółowoRelacyjny model baz danych, model związków encji, normalizacje
Relacyjny model baz danych, model związków encji, normalizacje Wyklad 3 mgr inż. Maciej Lasota mgr inż. Karol Wieczorek Politechnika Świętokrzyska Katedra Informatyki Kielce, 2009 Definicje Operacje na
Bardziej szczegółowoNormalizacja relacyjnych baz danych. Sebastian Ernst
Normalizacja relacyjnych baz danych Sebastian Ernst Zależności funkcyjne Zależność funkcyjna pomiędzy zbiorami atrybutów X oraz Y oznacza, że każdemu zestawowi wartości atrybutów X odpowiada dokładnie
Bardziej szczegółowoHURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/
Bardziej szczegółowoHaszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Bardziej szczegółowoKrzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
Bardziej szczegółowoOpracowanie: Izabela Czepil i Andrzej Solski
Opracowanie: Izabela Czepil i Andrzej Solski Wykorzystanie serwisów do wykonywania operacji na serwerze Generowanie nowych struktur budżetowych na podstawie istniejących zbiorcze kopiowanie struktur Mechanizm
Bardziej szczegółowoHurtownie danych w praktyce
Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARIANTY BUDOWY HURTOWNI DANYCH Literatura R. Kimball, The Data Warehouse Lifecycle, Wiley, 2013 W. Inmon, Building the Data Warehouse,
Bardziej szczegółowoSpis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services
Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl PROJEKTOWANIE WARSTWY DANYCH DETALICZNYCH - ZAGADNIENIA Partycjonowanie Partycja jest wydzielonym miejscem na dysku, w którym przechowywane
Bardziej szczegółowoBazy analityczne (hurtownie danych, bazy OLAP)
Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,
Bardziej szczegółowoWprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Bardziej szczegółowoFaza Określania Wymagań
Faza Określania Wymagań Celem tej fazy jest dokładne określenie wymagań klienta wobec tworzonego systemu. W tej fazie dokonywana jest zamiana celów klienta na konkretne wymagania zapewniające osiągnięcie
Bardziej szczegółowoTechnologia informacyjna
Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,
Bardziej szczegółowoHURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Bardziej szczegółowoBazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?
Bardziej szczegółowoRelacyjne bazy danych. Normalizacja i problem nadmierności danych.
Relacyjne bazy danych. Normalizacja i problem nadmierności danych. Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Relacyjne bazy danych Stworzone
Bardziej szczegółowoSIECI KOMPUTEROWE I BAZY DANYCH
KATEDRA MECHANIKI I ROBOTYKI STOSOWANEJ WYDZIAŁ BUDOWY MASZYN I LOTNICTWA, POLITECHNIKA RZESZOWSKA SIECI KOMPUTEROWE I BAZY DANYCH Laboratorium DB2: TEMAT: Relacyjne bazy danych Cz. I, II Cel laboratorium
Bardziej szczegółowoInformatyka Ćwiczenie 10. Bazy danych. Strukturę bazy danych można określić w formie jak na rysunku 1. atrybuty
Informatyka Ćwiczenie 10 Bazy danych Baza danych jest zbiór informacji (zbiór danych). Strukturę bazy danych można określić w formie jak na rysunku 1. Pracownik(ID pracownika, imie, nazwisko, pensja) Klient(ID
Bardziej szczegółowoKrzysztof Kadowski. PL-E3579, PL-EA0312,
Krzysztof Kadowski PL-E3579, PL-EA0312, kadowski@jkk.edu.pl Bazą danych nazywamy zbiór informacji w postaci tabel oraz narzędzi stosowanych do gromadzenia, przekształcania oraz wyszukiwania danych. Baza
Bardziej szczegółowoDefinicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.
TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.
Bardziej szczegółowoWprowadzenie do metodologii modelowania systemów informacyjnych. Strategia (1) Strategia (2) Etapy Ŝycia systemu informacyjnego
Etapy Ŝycia systemu informacyjnego Wprowadzenie do metodologii modelowania systemów informacyjnych 1. Strategia 2. Analiza 3. Projektowanie 4. Implementowanie, testowanie i dokumentowanie 5. WdroŜenie
Bardziej szczegółowoWprowadzenie do hurtowni danych
Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Kostka Kostka (cube) to podstawowy element hurtowni Kostka jest wielowymiarowa (od 1 do N wymiarów) Kostka składa się z: faktów wektora wartości
Bardziej szczegółowoNormalizacja baz danych
Wrocławska Wyższa Szkoła Informatyki Stosowanej Normalizacja baz danych Dr hab. inż. Krzysztof Pieczarka Email: krzysztof.pieczarka@gmail.com Normalizacja relacji ma na celu takie jej przekształcenie,
Bardziej szczegółowoWPROWADZENIE DO BAZ DANYCH
WPROWADZENIE DO BAZ DANYCH Pojęcie danych i baz danych Dane to wszystkie informacje jakie przechowujemy, aby w każdej chwili mieć do nich dostęp. Baza danych (data base) to uporządkowany zbiór danych z
Bardziej szczegółowoSystemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Bardziej szczegółowoProgram wykładu. zastosowanie w aplikacjach i PL/SQL;
Program wykładu 1 Model relacyjny (10 godz.): podstawowe pojęcia, języki zapytań (algebra relacji, relacyjny rachunek krotek, relacyjny rachunek dziedzin), zależności funkcyjne i postaci normalne (BCNF,
Bardziej szczegółowoLiteratura. Bazy danych s.1-1
Literatura R.Colette, Bazy danych : od koncepcji do realizacji, PWE 1988, S.Forte, T.Howe, J. Ralston, Access2000, HELION 2001, R.J.Muller, Bazy danych, język UML w modelowaniu danych, MIKOM 2000, M.Muraszkiewicz,
Bardziej szczegółowoLK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika
LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika Prowadzący: Dr inż. Jacek Habel Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów
Bardziej szczegółowoBazy danych Wykład zerowy. P. F. Góra
Bazy danych Wykład zerowy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Patron? Św. Izydor z Sewilli (VI wiek), biskup, patron Internetu (sic!), stworzył pierwszy katalog Copyright c 2011-12 P.
Bardziej szczegółowoCel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
Bardziej szczegółowoMigracja Business Intelligence do wersji 2013.3
Migracja Business Intelligence do wersji 2013.3 Copyright 2013 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoWstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Bardziej szczegółowoHurtownie Danych Slowly Changing Dimension
Hurtownie Danych Slowly Changing Dimension Krzysztof Jankiewicz Politechnika Poznańska Instytut Informatyki Z założenia hurtownia danych zawiera dane trwałe nieulotne. Nieulotność wymusza wprowadzanie
Bardziej szczegółowoBaza danych. Modele danych
Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych
Bardziej szczegółowoSystemy GIS Systemy baz danych
Systemy GIS Systemy baz danych Wykład nr 5 System baz danych Skomputeryzowany system przechowywania danych/informacji zorganizowanych w pliki Użytkownik ma do dyspozycji narzędzia do wykonywania różnych
Bardziej szczegółowoBazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000
Bazy Danych LITERATURA C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 J. D. Ullman, Systemy baz danych, WNT - W-wa, 1998 J. D. Ullman, J. Widom, Podstawowy
Bardziej szczegółowoPLAN WYKŁADU BAZY DANYCH GŁÓWNE ETAPY PROJEKTOWANIA BAZY MODELOWANIE LOGICZNE
PLAN WYKŁADU Modelowanie logiczne Transformacja ERD w model relacyjny Odwzorowanie encji Odwzorowanie związków Odwzorowanie specjalizacji i generalizacji BAZY DANYCH Wykład 7 dr inż. Agnieszka Bołtuć GŁÓWNE
Bardziej szczegółowoModel logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL
Podstawy baz danych: Rysunek 1. Tradycyjne systemy danych 1- Obsługa wejścia 2- Przechowywanie danych 3- Funkcje użytkowe 4- Obsługa wyjścia Ewolucja baz danych: Fragment świata rzeczywistego System przetwarzania
Bardziej szczegółowoEwolucja systemów baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2004/05 Plan wykładu Relacyjne
Bardziej szczegółowoIndeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Bardziej szczegółowoBAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Bardziej szczegółowoMigracja XL Business Intelligence do wersji
Migracja XL Business Intelligence do wersji 2019.0 Copyright 2018 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Bardziej szczegółowoBaza danych. Baza danych to:
Baza danych Baza danych to: zbiór danych o określonej strukturze, zapisany na zewnętrznym nośniku (najczęściej dysku twardym komputera), mogący zaspokoić potrzeby wielu użytkowników korzystających z niego
Bardziej szczegółowoCel normalizacji. Tadeusz Pankowski
Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia
Bardziej szczegółowoWykład XII. optymalizacja w relacyjnych bazach danych
Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych
Bardziej szczegółowoRady i porady użytkowe
Rady i porady użytkowe Dział Eksploatacji CONTROLLING SYSTEMS sp. z o.o. Rady i porady - źródło prezentacji: Najczęstsze problemy zgłaszane przez Klientów na etapie eksploatacji systemu Spostrzeżenia konsultantów
Bardziej szczegółowoWykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.
Bazy Danych Wykład II Encja, atrybuty, klucze Związki encji Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło 1 Encja Byt pojęciowy
Bardziej szczegółowoZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja
Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów
Bardziej szczegółowoBD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego
BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne
Bardziej szczegółowoBAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Bardziej szczegółowoTechnologie baz danych
Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 8b: Algebra relacyjna http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Algebra relacyjna Algebra relacyjna (ang.
Bardziej szczegółowoNormalizacja baz danych
Normalizacja baz danych Definicja 1 1 Normalizacja to proces organizowania danych w bazie danych. Obejmuje to tworzenie tabel i ustanawianie relacji między tymi tabelami zgodnie z regułami zaprojektowanymi
Bardziej szczegółowoPrzykłady normalizacji
Przykłady normalizacji Nr faktury Za okres Nabywca Usługa Strefa czasowa od 21113332437 1.11.2007 30.11.2007 Andrzej Macioł, Kraków ul. Armii Krajowej 7 21113332437 1.11.2007 30.11.2007 Andrzej Macioł,
Bardziej szczegółowoMigracja Business Intelligence do wersji 11.0
Migracja Business Intelligence do wersji 11.0 Copyright 2012 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoCase Study. aplikacji Microsoft Dynamics CRM 4.0. Wdrożenie w firmie Finder S.A.
Case Study aplikacji Microsoft Dynamics CRM 4.0 Wdrożenie w firmie Finder S.A. PRZEDSTAWIENIE FIRMY Finder jest operatorem systemu lokalizacji i monitoringu, wspomagającego zarządzanie pracownikami w terenie
Bardziej szczegółowoHurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL
Hurtownie danych Ładowanie, integracja i aktualizacja danych. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH Źródła danych ETL Centralna hurtownia danych Do hurtowni
Bardziej szczegółowoWykład 8. SQL praca z tabelami 5
Wykład 8 SQL praca z tabelami 5 Podzapytania to mechanizm pozwalający wykorzystywać wyniki jednego zapytania w innym zapytaniu. Nazywane często zapytaniami zagnieżdżonymi. Są stosowane z zapytaniami typu
Bardziej szczegółowo030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła
030 PROJEKTOWANIE BAZ DANYCH Prof. dr hab. Marek Wisła Elementy procesu projektowania bazy danych Badanie zależności funkcyjnych Normalizacja Projektowanie bazy danych Model ER, diagramy ERD Encje, atrybuty,
Bardziej szczegółowoUsługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Bardziej szczegółowoPodstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38
Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych
Bardziej szczegółowodr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoĆwiczenia z Zaawansowanych Systemów Baz Danych
Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku
Bardziej szczegółowo