Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
|
|
- Elżbieta Sosnowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07
2 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) Systemy OLAP Analiza i eksploracja danych Rozmyte zapytania do baz danych Internet jako baza danych (Dawid Weiss)
3 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie
4 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie
5 Serwery OLAP sa narzędziem do efektywnego wielowymiarowego przetwarzanie ogromnych wolumenów danych. Serwery OLAP: ROLAP (Relacyjne) MOLAP (Wielowymiarowe) HOLAP (Hybrydowe)
6 Optymalizacja w systemach OLAP: Operacje złaczenia, Indeksy, Dane zagregowane, Wykorzystanie danych zagregowanych, Aktualizacja zmaterializowanych perspektyw, Przetwarzanie zapytań.
7 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie
8 Operacje złaczenia Zapytania do systemów ROLAP wymagaja operacji złaczenia: Tabela faktów łaczona jest z tabelami wymiarów, Wybór algorytmu złaczenia ma bardzo duży wpływ na koszt wykonania zapytania.
9 Implementacja operacji połaczenia: Zagnieżdżona pętla wybierz jeden plik jako zewnętrzny, a drugi jako wewnętrzny. Dla każdego pobranego rekordu z pliku zewnętrzenego odczytuj po kolei wszystkie rekordy pliku wewnętrznego i dla każdych dwóch rekordów sprawdź warunek połaczenia, Bezpośrednie ścieżki dostępu dla dopasowania rekordów poprzez wykorzystanie indeksów lub funkcji haszowych, Algorytm Sort-Merge, Algorytm Hash-join. Dwa źródła złożoności: operacje I/O oraz operacje obliczeniowe (procesora).
10 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie
11 Indeksy Zasada indeksów: mapowanie wartości kluczowych rekordów w celu szybkiego dostępu asocjacyjnego.
12 Podstawowa metoda przyśpieszania dostępu do danych. Przypominaja w pewien sposób indeksy w ksiażkach. Indeks jest zakładany na atrybucie relacji atrybut ten nosi nazwę atrybutu indeksowego. Definicja Indeks jest to uporzadkowany plik rekordów o stałej długości i o dwóch polach: wartość pola indeksowanego (atrybutu, który indeksujemy), wskaźnik na blok + przesunięcie w bloku (lub wskaźnik na adres bloku).
13 Odwrócona lista
14 Przykład Wybierz osoby w wieku 20 lat i o imieniu Fred: Lista osób - wiek = 20: R4, R18, R34, R35 Lista osób - imię = Fred: R18, R52 Wynik: przecięcie powyższych list: R18
15 Dodatkowe aspekty standardowych indeksów w hurtowniach danych: Wykonywanie zapytań na samych indeksach bez dostępu do danych w relacji. Indeksy na atrybutach złożonych. Indeksy w hurtowniach danych, m.in.: Odwrócona lista, Indeks bitmapowy, Indeks segmentowy, Indeks projekcji, Indeks połaczeniowy.
16 Indeks podstawowy Indeks podstawowy jest zakładany na atrybucie, który jest unikalny i porzadkuj acy. Plik z relacja jest uporzadkowany wg. atrybutu porzadkuj acego. Kolejne wskaźniki indeksów odpowiadaja poczatkom kolejnych bloków. Jest to tzw. indeks rzadki (tzn. liczba rekordów indeksu odpowiada liczbie bloków pliku wskażniki sa do bloków, a nie do rekordów). Taki indeks można przeszukiwać binarnie.
17 Indeks wtórny Pole, na którym zakładany jest indeks wtórny jest polem nieporzadkuj acym i nazywamy je polem indeksowanym. Może istnieć wiele indeksów wtórnych dla pojedynczej relacji. Indeks wtórny jest indeksem gęstym jednemu rekordowi indeksu odpowiada jeden rekord pliku danych. Taki indeks można przeszukiwać binarnie. Indeks ten zajmuje więcej pamięci niż indeks podstawowy.
18 Indeks wielopoziomowy Polega na indeksowaniu indeksów :) Indeks jest indeksowany w sposób rzadki (dlaczego?). Taka struktura redukuje znacznie czas przeszukiwania. Problemem jest wstawianie i usuwanie rekordów (odpowiedź: B-drzewa).
19 Indeks bitmapowy Przykładowa relacja Klient Miasto Samochód C1 Detroit Ford C2 Chicago Honda C3 Detroit Honda C4 Poznań Ford C5 Paris BMW C6 Paris Nissan
20 Przykład: indeks bitmapowy na atrybucie miasto Klient Chicago Detroit Paris Poznań C C C C C C
21 Przykład: indeks bitmapowy na atrybucie samochód Klient BMW Ford Honda Nissan C C C C C C
22 Indeks bitmapowy: Pozwala na efektywne operacja bitowe, Można skompresować mapy bitowe (potrzeba dekompresji), Czasami jego działanie jest wspomagane sprzętowo, Jest bardzo wydajny dla pewnego rodzaju zapytań: selekcja na dwóch atrybutach, Słabo się sprawdza przy dużych dziedzinach wartości atrybutów, Trudny do utrzymywania potrzeba reorganizacji gdy zmienia się wielkość relacji. Ilu klientów z Detroit posiada Ford a? Ilu klientów posiada Hondę?
23 Odwrócona lista z indeksem bitmapowym
24 Indeksy segmentowe sa zazwyczaj wykorzystywane dla miar lub atrybutów zawierajacych wartości liczbowe, najlepiej całkowite: podejście to pozwala na efektywne agregacje oraz efektywne przetwarzanie warunków przedziałowych. Definition Załóżmy, że wartościami atrybutu a sa liczby całkowite opisane n + 1 cyframi binarnymi. W takim wypadku atrybut a może być przedstawiony jako atrybuty binarne a 0,..., a n, takie że, a = a a n a n. Każdy atrybut a i może być reprezentowany jako indeks bitmapowy. Zbiór indeksów bitmapowych nałożonych na a i, i = 0,..., n, tworzy indeks segmentowy.
25 Indeks segmentowy Ilość Bitmapa Indeks segmentowy: B4: B3: B2: B1: 11001
26 Indeks segmentowy Pytanie Jak efektywnie obliczyć liczbę jedynek w indeksie bitmapowym? Obliczanie sumy: Ilość 5 Indeks segmentowy: 13 B4: B3: B2: B1: Suma: 33 Zliczenie sumy: = = 33. Zliczenie jedynek: B4: 1 B3: 4 B2: 3 B1: 3
27 Indeks projekcji Dane moga być zorientowane horyzontalnie (poziomo) lub wertykalnie (pionowo). Zazwyczaj relacyjne SZBD przechowuja dane w orientacji horyzontalnej. Indeks projekcji pozwala na dostęp w sposób pionowy (implementacja w systemie firmy Sybase).
28 Indeks połaczeniowy Przechowuje informacje na temat połaczeń z inna relacja.
29 Indeks połaczeniowy Przechowuje informacje na temat połaczeń z inna relacja.
30 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie
31 Dane zagregowane Krata kuboidów.
32 Dane zagregowane Przechowywanie w hurtowni danych wyników użytecznych dla wielu zapytań.
33 Dane zagregowane Operacje na kostce: SELECT Data, Produkt, Klient, SUM(ilosc) FROM Transakcje GROUP BY CUBE(date, produkt, klient); Dla powyższego zapytanie należy zrealizować następujace grupowanie: (data, produkt, klient), (data, produkt), (data, klient), (produkt,klient), (data), (produkt), (klient) (*)
34 Trzy strategie agregowania: wszystko, nic, część. Dane zagregowane Problem polega na wybraniu odpowiednich elementów i ich liczby do zmaterializowania. Duża liczba duże rozmiary hurtowni danych. Mała liczba wolne działanie hurtowni danych.
35 Materializacja wszystkich kuboidów: Kuboidy moga być przechowywane w pamięci stałej, Podczas obliczania należy wziać pod uwagę pojemność pamięci operacyjnej oraz czas obliczeń, Liczba kuboidów: l = i=1,...,n (L i + 1), gdzie n to liczba wymiarów, a L i jest liczba poziomów hierarchii dla i-tego wymiaru, Przykładowo: 10 wymiarów, 4 poziomy każdy: l = 5 10 = 9,
36 Materializacja wszystkich kuboidów dla ROLAP: Sortowanie, haszowanie i grupowanie jest stosowane na atrybutach wymiarów w celu uporzadkowania i grupowania odpowiednich krotek, Grupowanie jest przeprowadzone na podagregatach jako krok częściowego grupowania, Agregaty sa obliczane z podagregatów.
37 Materializacja wszystkich kuboidów dla MOLAP Array Based Algorithm: Najbardziej szczegółowy Cuboid (np. data, produkt, klient) jest zapamiętany w postaci wielowymiarowej kostki, Kostka dzielona jest na równej wielkości podkostki o rozmiarach pozwalajacych na umieszczenie w pamięci operacyjnej, Podkostki sa zapamiętywane osobno oraz poddawane kompresji, Agregaty obliczane sa poprzez odwiedzanie każdej podkostki w porzadku, który zapewnia najmniejsza ilość pamięci zajętej przez obliczenia częściowe.
38 Array Based Algorithm Przykład I Trzy wymiary A, B, C, Podkostka 1 = a 0 b 0 c 0, Podkostka 2 = a 1 b 0 c 0, Podkostka 64 = a 3 b 3 c 3, Rozmiar kostki w każdym wymiarze A, B, C jest odpowiednio 40, 400, 4000, Rozmiar podkostki to 10, 100, 1000, odpowiednio, Pełna materializacja składa się z kuboidów: ABC (istnieje), AB, AC, BC, A, B, C, (*).
39 Array Based Algorithm Przykład I Rożne sposoby numerowania Obliczenie podkostki b 0 c 0 przejście od 1 do 4, Obliczenie podkostki b 1 c 0 przejście od 5 do 8, W ten sposób można obliczyć cały BC tylko jedna podkostka BC jest w pamięci podczas obliczania BC, Obliczajac BC musimy odwiedzić wszystkie (64) podkostki, Obliczenie wszystkich podagregatów: przy obliczaniu b 0 c 0 możemy obliczyć b 0 c 0, a 0 c 0, a 0 b 0.
40 Array Based Algorithm Przykład I Rożne sposoby numerowania, Potrzebna pamięc: BC = = 1, 6mln AC = = AB = = Najmniejsza podkostka obliczana jest najdłużej a 0 b 0 jest obliczona po odwiedzeniu 1, 17, 33 i 49, Największa podkostka obliczana jest najkrócej b 0 c 0 jest obliczona po odwiedzeniu 1, 2, 3 i 4.
41 Array Based Algorithm Przykład I Minimalna potrzebna pamięć do obliczenia agregatów: (AB) (wiersz AC) (podkostka BC) = 16, , , 000 = 156, 000
42 Array Based Algorithm Przykład I Inny sposób numerowania Minimalna potrzebna pamięć do obliczenia agregatów: (AB) (wiersz BC) (podkostka AC) = 16, , , 000 = 426, 000
43 Array Based Algorithm Przykład I Najgorszy przypadek: (BC) (wiersz AC) (podkostka AB) = , , 000 = 1, 641, 000
44 Array Based Algorithm Przykład II Pamięć:
45 Array Based Algorithm Przykład II Pamięć:
46 Array Based Algorithm Przykład II Pamięć:
47 Array Based Algorithm Przykład II Pamięć:
48 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie
49 Podsumowanie Systemy OLAP służa do efektywnego wielowymiarowego przetwarzania ogromnym wolumenów danych, Podstawowe techniki optymalizacji: operacje złaczenia, indeksy, wczesna agregacja danych,...
50 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) Systemy OLAP Analiza i eksploracja danych Rozmyte zapytania do baz danych Internet jako baza danych (Dawid Weiss)
Systemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie
Struktury danych i optymalizacja
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU
Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie
Modele danych - wykład V
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie
Spis tre±ci. Przedmowa... Cz ± I
Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja
Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/
Optymalizacja poleceń SQL Metody dostępu do danych
Optymalizacja poleceń SQL Metody dostępu do danych 1 Metody dostępu do danych Określają, w jaki sposób dane polecenia SQL są odczytywane z miejsca ich fizycznej lokalizacji. Dostęp do tabeli: pełne przeglądnięcie,
Indeksy w hurtowniach danych
Indeksy w hurtowniach danych Hurtownie danych 2011 Łukasz Idkowiak Tomasz Kamiński Bibliografia Zbyszko Królikowski, Hurtownie danych. Logiczne i fizyczne struktury danych, Wydawnictwo Politechniki Poznańskiej,
Hurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Projektowanie hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2004/05 Plan wykładu Ewolucja
< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.
Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą
Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)
Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks
SAS OLAP Cube Studio Wprowadzenie
SAS OLAP Cube Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele
Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych
1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni
BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego
BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie
Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.
Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie
Krzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie
Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
OLAP i hurtownie danych c.d.
OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie. Krzysztof Jankiewicz
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie Krzysztof Jankiewicz Plan Opis schematu dla "kilku słów" Postać polecenia SQL Sposoby dostępu do tabel Indeksy B*-drzewo Indeksy
Hurtownie danych - przegląd technologii
Efektywność przetwarzania OLAP Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel. Indeksowanie
Haszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja
Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów
Systemy baz danych i hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie
INDEKSY. Biologiczne Aplikacje Baz Danych. dr inż. Anna Leśniewska
INDEKSY Biologiczne Aplikacje Baz Danych dr inż. Anna Leśniewska alesniewska@cs.put.poznan.pl INDEKSY dodatkowe struktury służące przyspieszaniu dostępu do danych, tworzone dla relacji, są jednak niezależne
Architektura komputerów
Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna
Optymalizacja w relacyjnych bazach danych - wybór wydajnej strategii obliczania wyrażenia relacyjnego.
Plan wykładu Spis treści 1 Optymalizacja 1 1.1 Etapy optymalizacji............................... 3 1.2 Transformacja zapytania............................ 3 1.3 Przepisywanie zapytań.............................
Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36
Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów
Optymalizacja poleceń SQL
Optymalizacja poleceń SQL Przetwarzanie polecenia SQL użytkownik polecenie PARSER słownik REGUŁOWY RBO plan zapytania RODZAJ OPTYMALIZATORA? GENERATOR KROTEK plan wykonania statystyki KOSZTOWY CBO plan
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
Wstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Optymalizacja poleceń SQL Indeksy
Optymalizacja poleceń SQL Indeksy Indeksy Dodatkowe struktury służące przyspieszaniu dostępu do danych. Tworzone dla relacji, są jednak niezależne logicznie i fizycznie od danych relacji. O użyciu indeksu
Jakub Pilecki Szymon Wojciechowski
Indeksy w hurtowniach danych Jakub Pilecki Szymon Wojciechowski Plan prezentacji 1. Czym są indeksy? 2. Cel stosowania indeksó w 3. Co należy indeksować? 4. Rodzaje indeksó w 5. B-drzewa (drzewa zró wnoważone)
Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)
Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni
Bazy analityczne (hurtownie danych, bazy OLAP)
Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,
Wielowymiarowy model danych
Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:
4. Znaczenie czasu w modelowaniu i strukturalizacji danych
Temat1- Geneza 1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały
Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services
Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...
Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL
Hurtownie danych Ładowanie, integracja i aktualizacja danych. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH Źródła danych ETL Centralna hurtownia danych Do hurtowni
Bazy danych. Plan wykładu. Przetwarzanie zapytań. Etapy przetwarzania zapytania. Translacja zapytań języka SQL do postaci wyrażeń algebry relacji
Plan wykładu Bazy danych Wykład 12: Optymalizacja zapytań. Język DDL, DML (cd) Etapy przetwarzania zapytania Implementacja wyrażeń algebry relacji Reguły heurystyczne optymalizacji zapytań Kosztowa optymalizacja
Bazy danych wykład ósmy Indeksy
Bazy danych wykład ósmy Indeksy Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa Konrad Zdanowski ( Uniwersytet Kardynała Stefana Bazy Wyszyńskiego, danych wykład Warszawa) ósmy Indeksy
Przykładowe B+ drzewo
Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku
PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych
PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych 2005/2006 Wykład "Podstawy baz danych" 1 Statyczny model pamiętania bazy danych 1. Dane przechowywane są w pamięci zewnętrznej podzielonej
Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania
Plan wykładu Bazy danych Wykład 10: Fizyczna organizacja danych w bazie danych Model logiczny i model fizyczny Mechanizmy składowania plików Moduł zarządzania miejscem na dysku i moduł zarządzania buforami
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
SQL SERVER 2012 i nie tylko:
SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK 1 2 3 Pamięć zewnętrzna Pamięć zewnętrzna organizacja plikowa. Pamięć operacyjna organizacja blokowa. 4 Bufory bazy danych. STRUKTURA PROSTA
Bazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2011/2012 Instytut Techniczny Kierunek studiów: Informatyka Kod kierunku: 11.3 Specjalność: Informatyka Stosowana
Pojęcie bazy danych. Funkcje i możliwości.
Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych Baza danych to: zbiór informacji zapisanych według ściśle określonych reguł, w strukturach odpowiadających założonemu modelowi danych, zbiór
Hurtownie danych a transakcyjne bazy danych
Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,
Indeksowanie w bazach danych
w bazach Katedra Informatyki Stosowanej AGH 5grudnia2013 Outline 1 2 3 4 Czym jest indeks? Indeks to struktura, która ma przyspieszyć wyszukiwanie. Indeks definiowany jest dla atrybutów, które nazywamy
Modelowanie hierarchicznych struktur w relacyjnych bazach danych
Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego
Projektowanie baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja
Ćwiczenia z Zaawansowanych Systemów Baz Danych
Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku
Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
System plików przykłady. implementacji
Dariusz Wawrzyniak Plan wykładu CP/M MS DOS ISO 9660 UNIX NTFS System plików (2) 1 Przykłady systemu plików (1) CP/M katalog zawiera blok kontrolny pliku (FCB), identyfikujący 16 jednostek alokacji (zawierający
Wykład I. Wprowadzenie do baz danych
Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl PROJEKTOWANIE WARSTWY DANYCH DETALICZNYCH - ZAGADNIENIA Partycjonowanie Partycja jest wydzielonym miejscem na dysku, w którym przechowywane
Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?
Wykład XII. optymalizacja w relacyjnych bazach danych
Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych
STROJENIE BAZ DANYCH: INDEKSY. Cezary Ołtuszyk coltuszyk.wordpress.com
STROJENIE BAZ DANYCH: INDEKSY Cezary Ołtuszyk coltuszyk.wordpress.com Plan spotkania I. Wprowadzenie do strojenia baz danych II. III. IV. Mierzenie wydajności Jak SQL Server przechowuje i czyta dane? Budowa
Informatyzacja przedsiębiorstw
Informatyzacja przedsiębiorstw Izabela Szczęch Politechnika Poznańska Plan wykładu Elementy Business Intelligence Model wielowymiarowy Modelowanie hurtowni danych podstawowe schematy logiczne Operacje
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 8b: Algebra relacyjna http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Algebra relacyjna Algebra relacyjna (ang.
Hurtownie danych wykład 3
Hurtownie danych wykład 3 dr Sebastian Zając SGH Warszawa 7 lutego 2017 Architektura relacyjna i wielowymiarowa Ze względu na przechowywanie danych na serwerze możemy zdecydować się na relacyjną bazę danych
Krzysztof Kadowski. PL-E3579, PL-EA0312,
Krzysztof Kadowski PL-E3579, PL-EA0312, kadowski@jkk.edu.pl Bazą danych nazywamy zbiór informacji w postaci tabel oraz narzędzi stosowanych do gromadzenia, przekształcania oraz wyszukiwania danych. Baza
Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com
Media Partners Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Adrian Chodkowski Konsultant Business Intelligence w Jcommerce S.A Certyfikowany
Tabela wewnętrzna - definicja
ABAP/4 Tabela wewnętrzna - definicja Temporalna tabela przechowywana w pamięci operacyjnej serwera aplikacji Tworzona, wypełniana i modyfikowana jest przez program podczas jego wykonywania i usuwana, gdy
Technologia informacyjna (IT - Information Technology) dziedzina wiedzy obejmująca:
1.1. Podstawowe pojęcia Technologia informacyjna (IT - Information Technology) dziedzina wiedzy obejmująca: informatykę (włącznie ze sprzętem komputerowym oraz oprogramowaniem używanym do tworzenia, przesyłania,
WPROWADZENIE DO BAZ DANYCH
WPROWADZENIE DO BAZ DANYCH Pojęcie danych i baz danych Dane to wszystkie informacje jakie przechowujemy, aby w każdej chwili mieć do nich dostęp. Baza danych (data base) to uporządkowany zbiór danych z
SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, Spis treści
SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, 2017 Spis treści O autorze 9 Wprowadzenie 11 Lekcja 1. Zrozumieć SQL 15 Podstawy baz danych 15 Język SQL
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej
Przestrzenne bazy danych Podstawy języka SQL
Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured
Statystyki (1) Optymalizacja poleceń SQL Część 2. Statystyki (2) Statystyki (3) Informacje, opisujące dane i struktury obiektów bazy danych.
Statystyki (1) Informacje, opisujące dane i struktury obiektów bazy danych. Optymalizacja poleceń SQL Część 2. Statystyki i histogramy, metody dostępu do danych Przechowywane w słowniku danych. Używane
OPIS PRZEDMIOTU ZAMÓWIENIA
Załącznik nr 1 OPIS PRZEDMIOTU ZAMÓWIENIA Licencja Microsoft Windows SQL Server Standard 2012 (nie OEM) lub w pełni równoważny oraz licencja umożliwiająca dostęp do Microsoft Windows SQL Server Standard
Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja
Pierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Porównanie systemów zarządzania relacyjnymi bazami danych
Jarosław Gołębiowski 12615 08-07-2013 Porównanie systemów zarządzania relacyjnymi bazami danych Podstawowa terminologia związana z tematem systemów zarządzania bazami danych Baza danych jest to zbiór danych
Ewolucja technik modelowania hurtowni danych
Baza wiedzy JPro Ewolucja technik modelowania hurtowni Porównanie technik modelowania hurtowni podsumowanie: Strona 1/6 Nazwa podejścia Corporate Information Factory Kimball Bus Architecture Data Vault
Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane
Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne
Część I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Indeksy. Rozdział 18. Indeksy. Struktura indeksu. Adres rekordu
Indeksy Rozdział 8 Indeksy Indeksy B-drzewo i bitmapowe, zwykłe i złoŝone, unikalne i nieunikalne, odwrócone, funkcyjne, skompresowane, bitmapowe połączeniowe. Zarządzanie indeksami. dodatkowe struktury
Transformacja modelu pojęciowego. do logicznego
Transformacja modelu pojęciowego do logicznego Plan wykładu 1. Modelowanie logiczne 2. Transformacja modelu pojęciowego do logicznego Transformacja własności Transformacja związków Transformacja hierarchii
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika