Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska"

Transkrypt

1 Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07

2 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) Systemy OLAP Analiza i eksploracja danych Rozmyte zapytania do baz danych Internet jako baza danych (Dawid Weiss)

3 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie

4 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie

5 Serwery OLAP sa narzędziem do efektywnego wielowymiarowego przetwarzanie ogromnych wolumenów danych. Serwery OLAP: ROLAP (Relacyjne) MOLAP (Wielowymiarowe) HOLAP (Hybrydowe)

6 Optymalizacja w systemach OLAP: Operacje złaczenia, Indeksy, Dane zagregowane, Wykorzystanie danych zagregowanych, Aktualizacja zmaterializowanych perspektyw, Przetwarzanie zapytań.

7 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie

8 Operacje złaczenia Zapytania do systemów ROLAP wymagaja operacji złaczenia: Tabela faktów łaczona jest z tabelami wymiarów, Wybór algorytmu złaczenia ma bardzo duży wpływ na koszt wykonania zapytania.

9 Implementacja operacji połaczenia: Zagnieżdżona pętla wybierz jeden plik jako zewnętrzny, a drugi jako wewnętrzny. Dla każdego pobranego rekordu z pliku zewnętrzenego odczytuj po kolei wszystkie rekordy pliku wewnętrznego i dla każdych dwóch rekordów sprawdź warunek połaczenia, Bezpośrednie ścieżki dostępu dla dopasowania rekordów poprzez wykorzystanie indeksów lub funkcji haszowych, Algorytm Sort-Merge, Algorytm Hash-join. Dwa źródła złożoności: operacje I/O oraz operacje obliczeniowe (procesora).

10 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie

11 Indeksy Zasada indeksów: mapowanie wartości kluczowych rekordów w celu szybkiego dostępu asocjacyjnego.

12 Podstawowa metoda przyśpieszania dostępu do danych. Przypominaja w pewien sposób indeksy w ksiażkach. Indeks jest zakładany na atrybucie relacji atrybut ten nosi nazwę atrybutu indeksowego. Definicja Indeks jest to uporzadkowany plik rekordów o stałej długości i o dwóch polach: wartość pola indeksowanego (atrybutu, który indeksujemy), wskaźnik na blok + przesunięcie w bloku (lub wskaźnik na adres bloku).

13 Odwrócona lista

14 Przykład Wybierz osoby w wieku 20 lat i o imieniu Fred: Lista osób - wiek = 20: R4, R18, R34, R35 Lista osób - imię = Fred: R18, R52 Wynik: przecięcie powyższych list: R18

15 Dodatkowe aspekty standardowych indeksów w hurtowniach danych: Wykonywanie zapytań na samych indeksach bez dostępu do danych w relacji. Indeksy na atrybutach złożonych. Indeksy w hurtowniach danych, m.in.: Odwrócona lista, Indeks bitmapowy, Indeks segmentowy, Indeks projekcji, Indeks połaczeniowy.

16 Indeks podstawowy Indeks podstawowy jest zakładany na atrybucie, który jest unikalny i porzadkuj acy. Plik z relacja jest uporzadkowany wg. atrybutu porzadkuj acego. Kolejne wskaźniki indeksów odpowiadaja poczatkom kolejnych bloków. Jest to tzw. indeks rzadki (tzn. liczba rekordów indeksu odpowiada liczbie bloków pliku wskażniki sa do bloków, a nie do rekordów). Taki indeks można przeszukiwać binarnie.

17 Indeks wtórny Pole, na którym zakładany jest indeks wtórny jest polem nieporzadkuj acym i nazywamy je polem indeksowanym. Może istnieć wiele indeksów wtórnych dla pojedynczej relacji. Indeks wtórny jest indeksem gęstym jednemu rekordowi indeksu odpowiada jeden rekord pliku danych. Taki indeks można przeszukiwać binarnie. Indeks ten zajmuje więcej pamięci niż indeks podstawowy.

18 Indeks wielopoziomowy Polega na indeksowaniu indeksów :) Indeks jest indeksowany w sposób rzadki (dlaczego?). Taka struktura redukuje znacznie czas przeszukiwania. Problemem jest wstawianie i usuwanie rekordów (odpowiedź: B-drzewa).

19 Indeks bitmapowy Przykładowa relacja Klient Miasto Samochód C1 Detroit Ford C2 Chicago Honda C3 Detroit Honda C4 Poznań Ford C5 Paris BMW C6 Paris Nissan

20 Przykład: indeks bitmapowy na atrybucie miasto Klient Chicago Detroit Paris Poznań C C C C C C

21 Przykład: indeks bitmapowy na atrybucie samochód Klient BMW Ford Honda Nissan C C C C C C

22 Indeks bitmapowy: Pozwala na efektywne operacja bitowe, Można skompresować mapy bitowe (potrzeba dekompresji), Czasami jego działanie jest wspomagane sprzętowo, Jest bardzo wydajny dla pewnego rodzaju zapytań: selekcja na dwóch atrybutach, Słabo się sprawdza przy dużych dziedzinach wartości atrybutów, Trudny do utrzymywania potrzeba reorganizacji gdy zmienia się wielkość relacji. Ilu klientów z Detroit posiada Ford a? Ilu klientów posiada Hondę?

23 Odwrócona lista z indeksem bitmapowym

24 Indeksy segmentowe sa zazwyczaj wykorzystywane dla miar lub atrybutów zawierajacych wartości liczbowe, najlepiej całkowite: podejście to pozwala na efektywne agregacje oraz efektywne przetwarzanie warunków przedziałowych. Definition Załóżmy, że wartościami atrybutu a sa liczby całkowite opisane n + 1 cyframi binarnymi. W takim wypadku atrybut a może być przedstawiony jako atrybuty binarne a 0,..., a n, takie że, a = a a n a n. Każdy atrybut a i może być reprezentowany jako indeks bitmapowy. Zbiór indeksów bitmapowych nałożonych na a i, i = 0,..., n, tworzy indeks segmentowy.

25 Indeks segmentowy Ilość Bitmapa Indeks segmentowy: B4: B3: B2: B1: 11001

26 Indeks segmentowy Pytanie Jak efektywnie obliczyć liczbę jedynek w indeksie bitmapowym? Obliczanie sumy: Ilość 5 Indeks segmentowy: 13 B4: B3: B2: B1: Suma: 33 Zliczenie sumy: = = 33. Zliczenie jedynek: B4: 1 B3: 4 B2: 3 B1: 3

27 Indeks projekcji Dane moga być zorientowane horyzontalnie (poziomo) lub wertykalnie (pionowo). Zazwyczaj relacyjne SZBD przechowuja dane w orientacji horyzontalnej. Indeks projekcji pozwala na dostęp w sposób pionowy (implementacja w systemie firmy Sybase).

28 Indeks połaczeniowy Przechowuje informacje na temat połaczeń z inna relacja.

29 Indeks połaczeniowy Przechowuje informacje na temat połaczeń z inna relacja.

30 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie

31 Dane zagregowane Krata kuboidów.

32 Dane zagregowane Przechowywanie w hurtowni danych wyników użytecznych dla wielu zapytań.

33 Dane zagregowane Operacje na kostce: SELECT Data, Produkt, Klient, SUM(ilosc) FROM Transakcje GROUP BY CUBE(date, produkt, klient); Dla powyższego zapytanie należy zrealizować następujace grupowanie: (data, produkt, klient), (data, produkt), (data, klient), (produkt,klient), (data), (produkt), (klient) (*)

34 Trzy strategie agregowania: wszystko, nic, część. Dane zagregowane Problem polega na wybraniu odpowiednich elementów i ich liczby do zmaterializowania. Duża liczba duże rozmiary hurtowni danych. Mała liczba wolne działanie hurtowni danych.

35 Materializacja wszystkich kuboidów: Kuboidy moga być przechowywane w pamięci stałej, Podczas obliczania należy wziać pod uwagę pojemność pamięci operacyjnej oraz czas obliczeń, Liczba kuboidów: l = i=1,...,n (L i + 1), gdzie n to liczba wymiarów, a L i jest liczba poziomów hierarchii dla i-tego wymiaru, Przykładowo: 10 wymiarów, 4 poziomy każdy: l = 5 10 = 9,

36 Materializacja wszystkich kuboidów dla ROLAP: Sortowanie, haszowanie i grupowanie jest stosowane na atrybutach wymiarów w celu uporzadkowania i grupowania odpowiednich krotek, Grupowanie jest przeprowadzone na podagregatach jako krok częściowego grupowania, Agregaty sa obliczane z podagregatów.

37 Materializacja wszystkich kuboidów dla MOLAP Array Based Algorithm: Najbardziej szczegółowy Cuboid (np. data, produkt, klient) jest zapamiętany w postaci wielowymiarowej kostki, Kostka dzielona jest na równej wielkości podkostki o rozmiarach pozwalajacych na umieszczenie w pamięci operacyjnej, Podkostki sa zapamiętywane osobno oraz poddawane kompresji, Agregaty obliczane sa poprzez odwiedzanie każdej podkostki w porzadku, który zapewnia najmniejsza ilość pamięci zajętej przez obliczenia częściowe.

38 Array Based Algorithm Przykład I Trzy wymiary A, B, C, Podkostka 1 = a 0 b 0 c 0, Podkostka 2 = a 1 b 0 c 0, Podkostka 64 = a 3 b 3 c 3, Rozmiar kostki w każdym wymiarze A, B, C jest odpowiednio 40, 400, 4000, Rozmiar podkostki to 10, 100, 1000, odpowiednio, Pełna materializacja składa się z kuboidów: ABC (istnieje), AB, AC, BC, A, B, C, (*).

39 Array Based Algorithm Przykład I Rożne sposoby numerowania Obliczenie podkostki b 0 c 0 przejście od 1 do 4, Obliczenie podkostki b 1 c 0 przejście od 5 do 8, W ten sposób można obliczyć cały BC tylko jedna podkostka BC jest w pamięci podczas obliczania BC, Obliczajac BC musimy odwiedzić wszystkie (64) podkostki, Obliczenie wszystkich podagregatów: przy obliczaniu b 0 c 0 możemy obliczyć b 0 c 0, a 0 c 0, a 0 b 0.

40 Array Based Algorithm Przykład I Rożne sposoby numerowania, Potrzebna pamięc: BC = = 1, 6mln AC = = AB = = Najmniejsza podkostka obliczana jest najdłużej a 0 b 0 jest obliczona po odwiedzeniu 1, 17, 33 i 49, Największa podkostka obliczana jest najkrócej b 0 c 0 jest obliczona po odwiedzeniu 1, 2, 3 i 4.

41 Array Based Algorithm Przykład I Minimalna potrzebna pamięć do obliczenia agregatów: (AB) (wiersz AC) (podkostka BC) = 16, , , 000 = 156, 000

42 Array Based Algorithm Przykład I Inny sposób numerowania Minimalna potrzebna pamięć do obliczenia agregatów: (AB) (wiersz BC) (podkostka AC) = 16, , , 000 = 426, 000

43 Array Based Algorithm Przykład I Najgorszy przypadek: (BC) (wiersz AC) (podkostka AB) = , , 000 = 1, 641, 000

44 Array Based Algorithm Przykład II Pamięć:

45 Array Based Algorithm Przykład II Pamięć:

46 Array Based Algorithm Przykład II Pamięć:

47 Array Based Algorithm Przykład II Pamięć:

48 Plan wykładu 1 Optymalizacja w systemach OLAP 2 Operacje złaczenia 3 Indeksy 4 Dane zagregowane 5 Podsumowanie

49 Podsumowanie Systemy OLAP służa do efektywnego wielowymiarowego przetwarzania ogromnym wolumenów danych, Podstawowe techniki optymalizacji: operacje złaczenia, indeksy, wczesna agregacja danych,...

50 Plan wykładu Systemy baz i hurtowni danych wprowadzenie do wykładu Modele danych i ewolucja systemów baz danych Projektowanie hurtowni danych i modelowanie wielowymiarowe Proces ekstrakcji, transformacji i ładowania danych (Proces ETL) Systemy OLAP Analiza i eksploracja danych Rozmyte zapytania do baz danych Internet jako baza danych (Dawid Weiss)

Systemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie

Bardziej szczegółowo

Struktury danych i optymalizacja

Struktury danych i optymalizacja Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Modele danych - wykład V

Modele danych - wykład V Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie

Bardziej szczegółowo

Spis tre±ci. Przedmowa... Cz ± I

Spis tre±ci. Przedmowa... Cz ± I Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja

Bardziej szczegółowo

Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE

Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Optymalizacja poleceń SQL Metody dostępu do danych

Optymalizacja poleceń SQL Metody dostępu do danych Optymalizacja poleceń SQL Metody dostępu do danych 1 Metody dostępu do danych Określają, w jaki sposób dane polecenia SQL są odczytywane z miejsca ich fizycznej lokalizacji. Dostęp do tabeli: pełne przeglądnięcie,

Bardziej szczegółowo

Indeksy w hurtowniach danych

Indeksy w hurtowniach danych Indeksy w hurtowniach danych Hurtownie danych 2011 Łukasz Idkowiak Tomasz Kamiński Bibliografia Zbyszko Królikowski, Hurtownie danych. Logiczne i fizyczne struktury danych, Wydawnictwo Politechniki Poznańskiej,

Bardziej szczegółowo

Hurtownie danych. 31 stycznia 2017

Hurtownie danych. 31 stycznia 2017 31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny

Bardziej szczegółowo

Projektowanie hurtowni danych

Projektowanie hurtowni danych Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2004/05 Plan wykładu Ewolucja

Bardziej szczegółowo

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 > Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw. Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą

Bardziej szczegółowo

Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)

Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1) Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks

Bardziej szczegółowo

SAS OLAP Cube Studio Wprowadzenie

SAS OLAP Cube Studio Wprowadzenie SAS OLAP Cube Studio Wprowadzenie Izabela Szczęch i Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania

Bardziej szczegółowo

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. 77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele

Bardziej szczegółowo

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych

Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych 1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni

Bardziej szczegółowo

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne

Bardziej szczegółowo

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie

Bardziej szczegółowo

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów. Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie

Bardziej szczegółowo

Krzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08

Krzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08 Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie. Krzysztof Jankiewicz

Kilka słów o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie. Krzysztof Jankiewicz "Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie Krzysztof Jankiewicz Plan Opis schematu dla "kilku słów" Postać polecenia SQL Sposoby dostępu do tabel Indeksy B*-drzewo Indeksy

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Efektywność przetwarzania OLAP Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel. Indeksowanie

Bardziej szczegółowo

Haszowanie (adresowanie rozpraszające, mieszające)

Haszowanie (adresowanie rozpraszające, mieszające) Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów

Bardziej szczegółowo

Systemy baz danych i hurtowni danych

Systemy baz danych i hurtowni danych Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie

Bardziej szczegółowo

INDEKSY. Biologiczne Aplikacje Baz Danych. dr inż. Anna Leśniewska

INDEKSY. Biologiczne Aplikacje Baz Danych. dr inż. Anna Leśniewska INDEKSY Biologiczne Aplikacje Baz Danych dr inż. Anna Leśniewska alesniewska@cs.put.poznan.pl INDEKSY dodatkowe struktury służące przyspieszaniu dostępu do danych, tworzone dla relacji, są jednak niezależne

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

Optymalizacja w relacyjnych bazach danych - wybór wydajnej strategii obliczania wyrażenia relacyjnego.

Optymalizacja w relacyjnych bazach danych - wybór wydajnej strategii obliczania wyrażenia relacyjnego. Plan wykładu Spis treści 1 Optymalizacja 1 1.1 Etapy optymalizacji............................... 3 1.2 Transformacja zapytania............................ 3 1.3 Przepisywanie zapytań.............................

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

Optymalizacja poleceń SQL

Optymalizacja poleceń SQL Optymalizacja poleceń SQL Przetwarzanie polecenia SQL użytkownik polecenie PARSER słownik REGUŁOWY RBO plan zapytania RODZAJ OPTYMALIZATORA? GENERATOR KROTEK plan wykonania statystyki KOSZTOWY CBO plan

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Optymalizacja poleceń SQL Indeksy

Optymalizacja poleceń SQL Indeksy Optymalizacja poleceń SQL Indeksy Indeksy Dodatkowe struktury służące przyspieszaniu dostępu do danych. Tworzone dla relacji, są jednak niezależne logicznie i fizycznie od danych relacji. O użyciu indeksu

Bardziej szczegółowo

Jakub Pilecki Szymon Wojciechowski

Jakub Pilecki Szymon Wojciechowski Indeksy w hurtowniach danych Jakub Pilecki Szymon Wojciechowski Plan prezentacji 1. Czym są indeksy? 2. Cel stosowania indeksó w 3. Co należy indeksować? 4. Rodzaje indeksó w 5. B-drzewa (drzewa zró wnoważone)

Bardziej szczegółowo

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1) Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni

Bardziej szczegółowo

Bazy analityczne (hurtownie danych, bazy OLAP)

Bazy analityczne (hurtownie danych, bazy OLAP) Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,

Bardziej szczegółowo

Wielowymiarowy model danych

Wielowymiarowy model danych Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:

Bardziej szczegółowo

4. Znaczenie czasu w modelowaniu i strukturalizacji danych

4. Znaczenie czasu w modelowaniu i strukturalizacji danych Temat1- Geneza 1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały

Bardziej szczegółowo

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL Hurtownie danych Ładowanie, integracja i aktualizacja danych. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH Źródła danych ETL Centralna hurtownia danych Do hurtowni

Bardziej szczegółowo

Bazy danych. Plan wykładu. Przetwarzanie zapytań. Etapy przetwarzania zapytania. Translacja zapytań języka SQL do postaci wyrażeń algebry relacji

Bazy danych. Plan wykładu. Przetwarzanie zapytań. Etapy przetwarzania zapytania. Translacja zapytań języka SQL do postaci wyrażeń algebry relacji Plan wykładu Bazy danych Wykład 12: Optymalizacja zapytań. Język DDL, DML (cd) Etapy przetwarzania zapytania Implementacja wyrażeń algebry relacji Reguły heurystyczne optymalizacji zapytań Kosztowa optymalizacja

Bardziej szczegółowo

Bazy danych wykład ósmy Indeksy

Bazy danych wykład ósmy Indeksy Bazy danych wykład ósmy Indeksy Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa Konrad Zdanowski ( Uniwersytet Kardynała Stefana Bazy Wyszyńskiego, danych wykład Warszawa) ósmy Indeksy

Bardziej szczegółowo

Przykładowe B+ drzewo

Przykładowe B+ drzewo Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych

PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych 2005/2006 Wykład "Podstawy baz danych" 1 Statyczny model pamiętania bazy danych 1. Dane przechowywane są w pamięci zewnętrznej podzielonej

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania

Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania Plan wykładu Bazy danych Wykład 10: Fizyczna organizacja danych w bazie danych Model logiczny i model fizyczny Mechanizmy składowania plików Moduł zarządzania miejscem na dysku i moduł zarządzania buforami

Bardziej szczegółowo

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej

Bardziej szczegółowo

SQL SERVER 2012 i nie tylko:

SQL SERVER 2012 i nie tylko: SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu

Bardziej szczegółowo

wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK

wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK 1 2 3 Pamięć zewnętrzna Pamięć zewnętrzna organizacja plikowa. Pamięć operacyjna organizacja blokowa. 4 Bufory bazy danych. STRUKTURA PROSTA

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, /15

Bazy danych. Andrzej Łachwa, UJ, /15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2011/2012 Instytut Techniczny Kierunek studiów: Informatyka Kod kierunku: 11.3 Specjalność: Informatyka Stosowana

Bardziej szczegółowo

Pojęcie bazy danych. Funkcje i możliwości.

Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych Baza danych to: zbiór informacji zapisanych według ściśle określonych reguł, w strukturach odpowiadających założonemu modelowi danych, zbiór

Bardziej szczegółowo

Hurtownie danych a transakcyjne bazy danych

Hurtownie danych a transakcyjne bazy danych Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,

Bardziej szczegółowo

Indeksowanie w bazach danych

Indeksowanie w bazach danych w bazach Katedra Informatyki Stosowanej AGH 5grudnia2013 Outline 1 2 3 4 Czym jest indeks? Indeks to struktura, która ma przyspieszyć wyszukiwanie. Indeks definiowany jest dla atrybutów, które nazywamy

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

Projektowanie baz danych

Projektowanie baz danych Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja

Bardziej szczegółowo

Ćwiczenia z Zaawansowanych Systemów Baz Danych

Ćwiczenia z Zaawansowanych Systemów Baz Danych Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku

Bardziej szczegółowo

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu

Bardziej szczegółowo

System plików przykłady. implementacji

System plików przykłady. implementacji Dariusz Wawrzyniak Plan wykładu CP/M MS DOS ISO 9660 UNIX NTFS System plików (2) 1 Przykłady systemu plików (1) CP/M katalog zawiera blok kontrolny pliku (FCB), identyfikujący 16 jednostek alokacji (zawierający

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych. Mariusz Rafało

Wprowadzenie do Hurtowni Danych. Mariusz Rafało Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl PROJEKTOWANIE WARSTWY DANYCH DETALICZNYCH - ZAGADNIENIA Partycjonowanie Partycja jest wydzielonym miejscem na dysku, w którym przechowywane

Bardziej szczegółowo

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

STROJENIE BAZ DANYCH: INDEKSY. Cezary Ołtuszyk coltuszyk.wordpress.com

STROJENIE BAZ DANYCH: INDEKSY. Cezary Ołtuszyk coltuszyk.wordpress.com STROJENIE BAZ DANYCH: INDEKSY Cezary Ołtuszyk coltuszyk.wordpress.com Plan spotkania I. Wprowadzenie do strojenia baz danych II. III. IV. Mierzenie wydajności Jak SQL Server przechowuje i czyta dane? Budowa

Bardziej szczegółowo

Informatyzacja przedsiębiorstw

Informatyzacja przedsiębiorstw Informatyzacja przedsiębiorstw Izabela Szczęch Politechnika Poznańska Plan wykładu Elementy Business Intelligence Model wielowymiarowy Modelowanie hurtowni danych podstawowe schematy logiczne Operacje

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 8b: Algebra relacyjna http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Algebra relacyjna Algebra relacyjna (ang.

Bardziej szczegółowo

Hurtownie danych wykład 3

Hurtownie danych wykład 3 Hurtownie danych wykład 3 dr Sebastian Zając SGH Warszawa 7 lutego 2017 Architektura relacyjna i wielowymiarowa Ze względu na przechowywanie danych na serwerze możemy zdecydować się na relacyjną bazę danych

Bardziej szczegółowo

Krzysztof Kadowski. PL-E3579, PL-EA0312,

Krzysztof Kadowski. PL-E3579, PL-EA0312, Krzysztof Kadowski PL-E3579, PL-EA0312, kadowski@jkk.edu.pl Bazą danych nazywamy zbiór informacji w postaci tabel oraz narzędzi stosowanych do gromadzenia, przekształcania oraz wyszukiwania danych. Baza

Bardziej szczegółowo

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com

Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Media Partners Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Adrian Chodkowski Konsultant Business Intelligence w Jcommerce S.A Certyfikowany

Bardziej szczegółowo

Tabela wewnętrzna - definicja

Tabela wewnętrzna - definicja ABAP/4 Tabela wewnętrzna - definicja Temporalna tabela przechowywana w pamięci operacyjnej serwera aplikacji Tworzona, wypełniana i modyfikowana jest przez program podczas jego wykonywania i usuwana, gdy

Bardziej szczegółowo

Technologia informacyjna (IT - Information Technology) dziedzina wiedzy obejmująca:

Technologia informacyjna (IT - Information Technology) dziedzina wiedzy obejmująca: 1.1. Podstawowe pojęcia Technologia informacyjna (IT - Information Technology) dziedzina wiedzy obejmująca: informatykę (włącznie ze sprzętem komputerowym oraz oprogramowaniem używanym do tworzenia, przesyłania,

Bardziej szczegółowo

WPROWADZENIE DO BAZ DANYCH

WPROWADZENIE DO BAZ DANYCH WPROWADZENIE DO BAZ DANYCH Pojęcie danych i baz danych Dane to wszystkie informacje jakie przechowujemy, aby w każdej chwili mieć do nich dostęp. Baza danych (data base) to uporządkowany zbiór danych z

Bardziej szczegółowo

SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, Spis treści

SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, Spis treści SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, 2017 Spis treści O autorze 9 Wprowadzenie 11 Lekcja 1. Zrozumieć SQL 15 Podstawy baz danych 15 Język SQL

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI

METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

Statystyki (1) Optymalizacja poleceń SQL Część 2. Statystyki (2) Statystyki (3) Informacje, opisujące dane i struktury obiektów bazy danych.

Statystyki (1) Optymalizacja poleceń SQL Część 2. Statystyki (2) Statystyki (3) Informacje, opisujące dane i struktury obiektów bazy danych. Statystyki (1) Informacje, opisujące dane i struktury obiektów bazy danych. Optymalizacja poleceń SQL Część 2. Statystyki i histogramy, metody dostępu do danych Przechowywane w słowniku danych. Używane

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA

OPIS PRZEDMIOTU ZAMÓWIENIA Załącznik nr 1 OPIS PRZEDMIOTU ZAMÓWIENIA Licencja Microsoft Windows SQL Server Standard 2012 (nie OEM) lub w pełni równoważny oraz licencja umożliwiająca dostęp do Microsoft Windows SQL Server Standard

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja

Bardziej szczegółowo

Pierwsze wdrożenie SAP BW w firmie

Pierwsze wdrożenie SAP BW w firmie Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe

Bardziej szczegółowo

Porównanie systemów zarządzania relacyjnymi bazami danych

Porównanie systemów zarządzania relacyjnymi bazami danych Jarosław Gołębiowski 12615 08-07-2013 Porównanie systemów zarządzania relacyjnymi bazami danych Podstawowa terminologia związana z tematem systemów zarządzania bazami danych Baza danych jest to zbiór danych

Bardziej szczegółowo

Ewolucja technik modelowania hurtowni danych

Ewolucja technik modelowania hurtowni danych Baza wiedzy JPro Ewolucja technik modelowania hurtowni Porównanie technik modelowania hurtowni podsumowanie: Strona 1/6 Nazwa podejścia Corporate Information Factory Kimball Bus Architecture Data Vault

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Indeksy. Rozdział 18. Indeksy. Struktura indeksu. Adres rekordu

Indeksy. Rozdział 18. Indeksy. Struktura indeksu. Adres rekordu Indeksy Rozdział 8 Indeksy Indeksy B-drzewo i bitmapowe, zwykłe i złoŝone, unikalne i nieunikalne, odwrócone, funkcyjne, skompresowane, bitmapowe połączeniowe. Zarządzanie indeksami. dodatkowe struktury

Bardziej szczegółowo

Transformacja modelu pojęciowego. do logicznego

Transformacja modelu pojęciowego. do logicznego Transformacja modelu pojęciowego do logicznego Plan wykładu 1. Modelowanie logiczne 2. Transformacja modelu pojęciowego do logicznego Transformacja własności Transformacja związków Transformacja hierarchii

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika

Bardziej szczegółowo